Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory: The preconditioned setting

Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz matrices generated by a function f. Unfortunately, such a theory is not available in the preconditioning setting, that is for matrices of the form  ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 466; s. 128483
Hlavní autoři: Bogoya, M., Serra-Capizzano, S., Vassalos, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.04.2024
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz matrices generated by a function f. Unfortunately, such a theory is not available in the preconditioning setting, that is for matrices of the form  with  real-valued, g nonnnegative and not identically zero almost everywhere. Independently and under the milder hypothesis that  is even and monotonic over , matrix-less algorithms have been developed for the fast eigenvalue computation of large preconditioned matrices of the type above, within a linear complexity in the matrix order: behind the high efficiency of such algorithms there are the expansions as in the case , combined with the extrapolation idea, and hence we conjecture that the simple-loop theory has to be extended in such a new setting, as the numerics strongly suggest. Here we focus our attention on a change of variable, followed by the asymptotic expansion of the new variable, and we consider new matrix-less algorithms ad hoc for the current case. Numerical experiments show a much higher accuracy till machine precision and the same linear computational cost, when compared with the matrix-less procedures already proposed in the literature.
AbstractList Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz matrices generated by a function f. Unfortunately, such a theory is not available in the preconditioning setting, that is for matrices of the form  with  real-valued, g nonnnegative and not identically zero almost everywhere. Independently and under the milder hypothesis that  is even and monotonic over , matrix-less algorithms have been developed for the fast eigenvalue computation of large preconditioned matrices of the type above, within a linear complexity in the matrix order: behind the high efficiency of such algorithms there are the expansions as in the case , combined with the extrapolation idea, and hence we conjecture that the simple-loop theory has to be extended in such a new setting, as the numerics strongly suggest. Here we focus our attention on a change of variable, followed by the asymptotic expansion of the new variable, and we consider new matrix-less algorithms ad hoc for the current case. Numerical experiments show a much higher accuracy till machine precision and the same linear computational cost, when compared with the matrix-less procedures already proposed in the literature.
ArticleNumber 128483
Author Vassalos, P.
Serra-Capizzano, S.
Bogoya, M.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0003-3551-8152
  surname: Bogoya
  fullname: Bogoya, M.
– sequence: 2
  givenname: S.
  surname: Serra-Capizzano
  fullname: Serra-Capizzano, S.
– sequence: 3
  givenname: P.
  surname: Vassalos
  fullname: Vassalos, P.
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-519370$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp1kMlOwzAQhn0oEmV5AG5-gKbYcXBTbhW7hMSlcLXMZJI6cuzIdtiegwcmpXBB4jSL_m9G-g7IxHmHhJxwNueMy9N2rjuY5ywXc56XRSkmZMrYUmaCMbFPDmJsGWMLyYsp-bzWMdG1x96a9EHRNOhetB2Qgu_6IelkvIsz2nrjjGuocQlD7-33PsO3FPTvRDudgnnLLMZItW18MGnTja2raDRdbzGz3vc0bdCH93O63iDtA4J3ldnyOMYwpfHLEdmrtY14_FMPyeP11friNrt_uLm7WN1nkJd5ymReyBpKXRUgS61r-QxL5Mi5hLwCmQMDDkILXmnGAOoSloIVUshaQI01E4dktrsbX7EfnlUfTKfDu_LaqEvztFI-NGoY1BlfisU2vtjFIfgYA9YKzE7QaMFYxZna-letGv2rrX-18z-S_A_5--p_5gssR5SM
CitedBy_id crossref_primary_10_1137_22M1529920
Cites_doi 10.1007/s11831-018-9295-y
10.1553/etna_vol53s113
10.1007/s10543-018-0715-z
10.1137/140976480
10.1007/s10958-023-06362-9
10.1007/s11075-022-01318-7
10.1007/BF01934269
10.1023/A:1022329526925
10.1007/s11075-017-0404-z
10.1002/nla.2151
10.3390/axioms7030049
10.1016/0024-3795(94)00025-5
10.1137/S0895479896310160
10.1007/BF00319101
10.1002/nla.2198
10.1080/03081089808818584
10.1016/S0024-3795(97)82204-5
10.1016/0898-1221(93)90297-9
10.1016/S0024-3795(98)80002-5
10.1016/0024-3795(86)90280-6
10.1007/978-1-4612-1426-7
10.1553/etna_vol53s28
10.1007/s11075-018-0508-0
10.1016/S0024-3795(97)80001-8
10.1016/j.jmaa.2014.09.057
10.1080/10586458.2017.1320241
10.1016/j.jat.2015.03.003
10.1016/j.laa.2015.12.017
ContentType Journal Article
DBID AAYXX
CITATION
ADTPV
AOWAS
DF2
DOI 10.1016/j.amc.2023.128483
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID oai_DiVA_org_uu_519370
10_1016_j_amc_2023_128483
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADIYS
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
~HD
ADTPV
AOWAS
DF2
ID FETCH-LOGICAL-c282t-6246fc8ad4c68aaf6bc9e1e116c2dc62c0c1c3a31da00ccf8c9304636f3cfef03
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001128886300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
1873-5649
IngestDate Tue Nov 04 17:27:22 EST 2025
Sat Nov 29 07:25:07 EST 2025
Tue Nov 18 22:24:05 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c282t-6246fc8ad4c68aaf6bc9e1e116c2dc62c0c1c3a31da00ccf8c9304636f3cfef03
ORCID 0000-0003-3551-8152
ParticipantIDs swepub_primary_oai_DiVA_org_uu_519370
crossref_citationtrail_10_1016_j_amc_2023_128483
crossref_primary_10_1016_j_amc_2023_128483
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied mathematics and computation
PublicationYear 2024
References Serra-Capizzano (10.1016/j.amc.2023.128483_br0190) 1997; 267
Dumbser (10.1016/j.amc.2023.128483_br0360) 2018; 25
Tyrtyshnikov (10.1016/j.amc.2023.128483_br0240) 1998; 270
Serra-Capizzano (10.1016/j.amc.2023.128483_br0200) 1999; 20
Garoni (10.1016/j.amc.2023.128483_br0350) 2018; 7
Bogoya (10.1016/j.amc.2023.128483_br0090) 2017; 208
Tyrtyshnikov (10.1016/j.amc.2023.128483_br0320) 1996; 232
Garoni (10.1016/j.amc.2023.128483_br0380) 2019; 26
Bogoya (10.1016/j.amc.2023.128483_br0070) 2016; 493
Böttcher (10.1016/j.amc.2023.128483_br0120) 1999
Serra-Capizzano (10.1016/j.amc.2023.128483_br0180) 1994; 34
Avram (10.1016/j.amc.2023.128483_br0300) 1988; 79
Ekström (10.1016/j.amc.2023.128483_br0050) 2019; 80
Parter (10.1016/j.amc.2023.128483_br0310) 1986; 80
Bogoya (10.1016/j.amc.2023.128483_br0100)
Bogoya (10.1016/j.amc.2023.128483_br0330)
Serra-Capizzano (10.1016/j.amc.2023.128483_br0210) 1999; 39
Tilli (10.1016/j.amc.2023.128483_br0250) 1998; 45
Ekström (10.1016/j.amc.2023.128483_br0010) 2018; 27
Grenander (10.1016/j.amc.2023.128483_br0230) 1984
Garoni (10.1016/j.amc.2023.128483_br0150) 2017
Stoer (10.1016/j.amc.2023.128483_br0270) 2010
Garoni (10.1016/j.amc.2023.128483_br0160) 2018
Bogoya (10.1016/j.amc.2023.128483_br0290) 2015; 196
Di-Benedetto (10.1016/j.amc.2023.128483_br0170) 1993; 25
Barrera (10.1016/j.amc.2023.128483_br0340) 2017; 259
Garoni (10.1016/j.amc.2023.128483_br0370) 2015; 36
Bogoya (10.1016/j.amc.2023.128483_br0080) 2017; 259
Barbarino (10.1016/j.amc.2023.128483_br0130) 2020; 53
Bogoya (10.1016/j.amc.2023.128483_br0260) 2023; 271
Serra-Capizzano (10.1016/j.amc.2023.128483_br0220) 1998; 282
Davis (10.1016/j.amc.2023.128483_br0280) 1975
Ekström (10.1016/j.amc.2023.128483_br0030) 2018; 25
Ahmad (10.1016/j.amc.2023.128483_br0020) 2018; 78
Ekström (10.1016/j.amc.2023.128483_br0040) 2018; 58
Bogoya (10.1016/j.amc.2023.128483_br0110) 2022; 91
Barbarino (10.1016/j.amc.2023.128483_br0140) 2020; 53
Bogoya (10.1016/j.amc.2023.128483_br0060) 2015; 422
References_xml – volume: 26
  start-page: 1639
  issue: 5
  year: 2019
  ident: 10.1016/j.amc.2023.128483_br0380
  article-title: Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: exposition and review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-018-9295-y
– ident: 10.1016/j.amc.2023.128483_br0100
– volume: 53
  start-page: 113
  year: 2020
  ident: 10.1016/j.amc.2023.128483_br0130
  article-title: Block generalized locally Toeplitz sequences: theory and applications in the multidimensional case
  publication-title: Electron. Trans. Numer. Anal.
  doi: 10.1553/etna_vol53s113
– volume: 58
  start-page: 937
  issue: 4
  year: 2018
  ident: 10.1016/j.amc.2023.128483_br0040
  article-title: Exact formulae and matrix-less eigensolvers for block banded Toeplitz-like matrices
  publication-title: BIT
  doi: 10.1007/s10543-018-0715-z
– year: 1975
  ident: 10.1016/j.amc.2023.128483_br0280
– volume: 36
  start-page: 1100
  issue: 3
  year: 2015
  ident: 10.1016/j.amc.2023.128483_br0370
  article-title: Spectral analysis and spectral symbol of d-variate Qp Lagrangian FEM stiffness matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/140976480
– volume: 271
  start-page: 176
  year: 2023
  ident: 10.1016/j.amc.2023.128483_br0260
  article-title: Asymptotic eigenvalue expansions for Toeplitz matrices with certain Fisher–Hartwig symbols
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-023-06362-9
– volume: 91
  start-page: 1653
  year: 2022
  ident: 10.1016/j.amc.2023.128483_br0110
  article-title: Fast Toeplitz eigenvalue computations joining interpolation-extrapolation matrix-less algorithms and simple-loop theory
  publication-title: Numer. Algebra
  doi: 10.1007/s11075-022-01318-7
– volume: 259
  start-page: 51
  year: 2017
  ident: 10.1016/j.amc.2023.128483_br0340
  article-title: Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices
  publication-title: Oper. Theory, Adv. Appl.
– volume: 34
  start-page: 579
  issue: 4
  year: 1994
  ident: 10.1016/j.amc.2023.128483_br0180
  article-title: Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems
  publication-title: BIT
  doi: 10.1007/BF01934269
– volume: 39
  start-page: 152
  issue: 1
  year: 1999
  ident: 10.1016/j.amc.2023.128483_br0210
  article-title: Spectral and computational analysis of block Toeplitz matrices having nonnegative definite matrix-valued generating functions
  publication-title: BIT
  doi: 10.1023/A:1022329526925
– volume: 78
  start-page: 867
  issue: 3
  year: 2018
  ident: 10.1016/j.amc.2023.128483_br0020
  article-title: Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?
  publication-title: Numer. Algebra
  doi: 10.1007/s11075-017-0404-z
– volume: 25
  issue: 5
  year: 2018
  ident: 10.1016/j.amc.2023.128483_br0360
  article-title: Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations: spectral analysis and computational results
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.2151
– volume: 7
  start-page: 49
  issue: 3
  year: 2018
  ident: 10.1016/j.amc.2023.128483_br0350
  article-title: Block generalized locally Toeplitz sequences: from the theory to the applications
  publication-title: Axioms
  doi: 10.3390/axioms7030049
– year: 1984
  ident: 10.1016/j.amc.2023.128483_br0230
  article-title: Toeplitz Forms and Their Applications
– volume: 232
  start-page: 1
  year: 1996
  ident: 10.1016/j.amc.2023.128483_br0320
  article-title: A unifying approach to some old and new theorems on distribution and clustering
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)00025-5
– volume: 20
  start-page: 31
  issue: 1
  year: 1999
  ident: 10.1016/j.amc.2023.128483_br0200
  article-title: Asymptotic results on the spectra of block Toeplitz preconditioned matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479896310160
– volume: 79
  start-page: 37
  year: 1988
  ident: 10.1016/j.amc.2023.128483_br0300
  article-title: On bilinear forms in Gaussian random variables and Toeplitz matrices
  publication-title: Probab. Theory Relat.
  doi: 10.1007/BF00319101
– volume: 25
  issue: 5
  year: 2018
  ident: 10.1016/j.amc.2023.128483_br0030
  article-title: Are the eigenvalues of the B-spline isogeometric analysis approximation of −Δu=λu known in almost closed form?
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.2198
– volume: 45
  start-page: 147
  issue: 2–3
  year: 1998
  ident: 10.1016/j.amc.2023.128483_br0250
  article-title: A note on the spectral distribution of Toeplitz matrices
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081089808818584
– year: 2017
  ident: 10.1016/j.amc.2023.128483_br0150
– volume: 267
  start-page: 139
  year: 1997
  ident: 10.1016/j.amc.2023.128483_br0190
  article-title: The extension of the concept of the generating function to a class of preconditioned Toeplitz matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(97)82204-5
– volume: 25
  start-page: 35
  issue: 6
  year: 1993
  ident: 10.1016/j.amc.2023.128483_br0170
  article-title: C.G. preconditioning for Toeplitz matrices
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(93)90297-9
– volume: 282
  start-page: 161
  issue: 1–3
  year: 1998
  ident: 10.1016/j.amc.2023.128483_br0220
  article-title: An ergodic theorem for classes of preconditioned matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(98)80002-5
– year: 2018
  ident: 10.1016/j.amc.2023.128483_br0160
– volume: 80
  start-page: 115
  year: 1986
  ident: 10.1016/j.amc.2023.128483_br0310
  article-title: On the distribution of the singular values of Toeplitz matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(86)90280-6
– ident: 10.1016/j.amc.2023.128483_br0330
– volume: 259
  start-page: 179
  year: 2017
  ident: 10.1016/j.amc.2023.128483_br0080
  article-title: Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness
  publication-title: Oper. Theory, Adv. Appl.
– year: 1999
  ident: 10.1016/j.amc.2023.128483_br0120
  article-title: Introduction to Large Truncated Toeplitz Matrices
  doi: 10.1007/978-1-4612-1426-7
– volume: 53
  start-page: 28
  year: 2020
  ident: 10.1016/j.amc.2023.128483_br0140
  article-title: Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case
  publication-title: Electron. Trans. Numer. Anal.
  doi: 10.1553/etna_vol53s28
– volume: 80
  start-page: 819
  year: 2019
  ident: 10.1016/j.amc.2023.128483_br0050
  article-title: A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices
  publication-title: Numer. Algebra
  doi: 10.1007/s11075-018-0508-0
– volume: 208
  start-page: 4
  issue: 11
  year: 2017
  ident: 10.1016/j.amc.2023.128483_br0090
  article-title: Asymptotics of the eigenvalues and eigenvectors of Toeplitz matrices
  publication-title: Sb. Math.
– volume: 270
  start-page: 15
  year: 1998
  ident: 10.1016/j.amc.2023.128483_br0240
  article-title: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(97)80001-8
– volume: 422
  start-page: 1308
  year: 2015
  ident: 10.1016/j.amc.2023.128483_br0060
  article-title: Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.09.057
– volume: 27
  start-page: 478
  issue: 4
  year: 2018
  ident: 10.1016/j.amc.2023.128483_br0010
  article-title: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form?
  publication-title: Exp. Math.
  doi: 10.1080/10586458.2017.1320241
– year: 2010
  ident: 10.1016/j.amc.2023.128483_br0270
– volume: 196
  start-page: 79
  year: 2015
  ident: 10.1016/j.amc.2023.128483_br0290
  article-title: Maximum norm versions of the Szegő and Avram–Parter theorems for Toeplitz matrices
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2015.03.003
– volume: 493
  start-page: 606
  year: 2016
  ident: 10.1016/j.amc.2023.128483_br0070
  article-title: Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2015.12.017
SSID ssj0007614
Score 2.4329886
Snippet Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz...
SourceID swepub
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 128483
SubjectTerms Asymptotic expansion
Beräkningsvetenskap med inriktning mot numerisk analys
Numerical algorithm
Preconditioned matrix
Scientific Computing with specialization in Numerical Analysis
Spectra
Toeplitz matrix
Title Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory: The preconditioned setting
URI https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-519370
Volume 466
WOSCitedRecordID wos001128886300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1873-5649
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007614
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM8ID7F-JIf4IWSykk6J-GtGpsAadMkytS3yHXskiptojSduv4OfgQ_k2s7TtIhJvbAS9SmrhP1nF5fO8fnIvTWkzwhXMkqZCicIVOF3CMvcKbhNAoY8w_ZlOhiE8HZWTiZROe93i-7F-YyC5bLcLOJiv8KNZwDsNXW2VvA3XQKJ-A1gA5HgB2O_wT8CVtV_XEuILustn2h3DaVo7fQ6vG1efKuwZvnujiEdowoi9yI4hwI1iWz7_oL5eC_cTIVD1k2y8u0-rEwts6rVBkLO1meF2Y75JVVcBR6lp0YFyRoKLS2upsG29x30ZjGruwGO3uLzTpBPsuvdIZ7OmiWg0RZMueIFel2y3Tt8P635sMLmA6wzKgHzwfdVQ2vK4apI3WkNHnE70bqIe3GWjWymiI4fwwDZkViPmAL5VLp-YO27a7l9rWhsBEoWu3bPIYuYtVFbLq4g_a94DCC-Lk_-nI8-dqM-gE1PvL2vu0TdK0lvHYfOznQjkOtzmrGD9GDejqCR4ZGj1BPLB-j-6ctLE_QT0UobAmFW0LhLqE-4JpO-AY64Q6dcEsnDNDjDp2wodNHDGTCu2TCNZmeou8nx-Ojz05dy8PhMKmvHOoNqeQhS4achoxJOuWRcIXrUu4lnHqccJf7zHcTRgjnMuSRMbOTPpdCEv8Z2lvCdZ4jHAkqiYxcL4FkP4D0XlB_CkOTgNgiuB8eIGJ_3ZjXRveq3koW_xXVA_S--UphXF5uavzOQNY0VRbtn9KLUZyXs3i9jtWsKCAvbtPpS3Sv_Ru8QntVuRav0V1-WaWr8k1Ntt9_c7iE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Toeplitz+eigenvalue+computations%2C+joining+interpolation-extrapolation+matrix-less+algorithms+and+simple-loop+theory%3A+The+preconditioned+setting&rft.jtitle=Applied+mathematics+and+computation&rft.au=Bogoya%2C+M.&rft.au=Serra-Capizzano%2C+S.&rft.au=Vassalos%2C+P.&rft.date=2024-04-01&rft.issn=0096-3003&rft.volume=466&rft.spage=128483&rft_id=info:doi/10.1016%2Fj.amc.2023.128483&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2023_128483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon