Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory: The preconditioned setting
Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz matrices generated by a function f. Unfortunately, such a theory is not available in the preconditioning setting, that is for matrices of the form ...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 466; s. 128483 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.04.2024
|
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz matrices generated by a function f. Unfortunately, such a theory is not available in the preconditioning setting, that is for matrices of the form with real-valued, g nonnnegative and not identically zero almost everywhere. Independently and under the milder hypothesis that is even and monotonic over , matrix-less algorithms have been developed for the fast eigenvalue computation of large preconditioned matrices of the type above, within a linear complexity in the matrix order: behind the high efficiency of such algorithms there are the expansions as in the case , combined with the extrapolation idea, and hence we conjecture that the simple-loop theory has to be extended in such a new setting, as the numerics strongly suggest.
Here we focus our attention on a change of variable, followed by the asymptotic expansion of the new variable, and we consider new matrix-less algorithms ad hoc for the current case.
Numerical experiments show a much higher accuracy till machine precision and the same linear computational cost, when compared with the matrix-less procedures already proposed in the literature. |
|---|---|
| AbstractList | Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz matrices generated by a function f. Unfortunately, such a theory is not available in the preconditioning setting, that is for matrices of the form with real-valued, g nonnnegative and not identically zero almost everywhere. Independently and under the milder hypothesis that is even and monotonic over , matrix-less algorithms have been developed for the fast eigenvalue computation of large preconditioned matrices of the type above, within a linear complexity in the matrix order: behind the high efficiency of such algorithms there are the expansions as in the case , combined with the extrapolation idea, and hence we conjecture that the simple-loop theory has to be extended in such a new setting, as the numerics strongly suggest.
Here we focus our attention on a change of variable, followed by the asymptotic expansion of the new variable, and we consider new matrix-less algorithms ad hoc for the current case.
Numerical experiments show a much higher accuracy till machine precision and the same linear computational cost, when compared with the matrix-less procedures already proposed in the literature. |
| ArticleNumber | 128483 |
| Author | Vassalos, P. Serra-Capizzano, S. Bogoya, M. |
| Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0003-3551-8152 surname: Bogoya fullname: Bogoya, M. – sequence: 2 givenname: S. surname: Serra-Capizzano fullname: Serra-Capizzano, S. – sequence: 3 givenname: P. surname: Vassalos fullname: Vassalos, P. |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-519370$$DView record from Swedish Publication Index (Uppsala universitet) |
| BookMark | eNp1kMlOwzAQhn0oEmV5AG5-gKbYcXBTbhW7hMSlcLXMZJI6cuzIdtiegwcmpXBB4jSL_m9G-g7IxHmHhJxwNueMy9N2rjuY5ywXc56XRSkmZMrYUmaCMbFPDmJsGWMLyYsp-bzWMdG1x96a9EHRNOhetB2Qgu_6IelkvIsz2nrjjGuocQlD7-33PsO3FPTvRDudgnnLLMZItW18MGnTja2raDRdbzGz3vc0bdCH93O63iDtA4J3ldnyOMYwpfHLEdmrtY14_FMPyeP11friNrt_uLm7WN1nkJd5ymReyBpKXRUgS61r-QxL5Mi5hLwCmQMDDkILXmnGAOoSloIVUshaQI01E4dktrsbX7EfnlUfTKfDu_LaqEvztFI-NGoY1BlfisU2vtjFIfgYA9YKzE7QaMFYxZna-letGv2rrX-18z-S_A_5--p_5gssR5SM |
| CitedBy_id | crossref_primary_10_1137_22M1529920 |
| Cites_doi | 10.1007/s11831-018-9295-y 10.1553/etna_vol53s113 10.1007/s10543-018-0715-z 10.1137/140976480 10.1007/s10958-023-06362-9 10.1007/s11075-022-01318-7 10.1007/BF01934269 10.1023/A:1022329526925 10.1007/s11075-017-0404-z 10.1002/nla.2151 10.3390/axioms7030049 10.1016/0024-3795(94)00025-5 10.1137/S0895479896310160 10.1007/BF00319101 10.1002/nla.2198 10.1080/03081089808818584 10.1016/S0024-3795(97)82204-5 10.1016/0898-1221(93)90297-9 10.1016/S0024-3795(98)80002-5 10.1016/0024-3795(86)90280-6 10.1007/978-1-4612-1426-7 10.1553/etna_vol53s28 10.1007/s11075-018-0508-0 10.1016/S0024-3795(97)80001-8 10.1016/j.jmaa.2014.09.057 10.1080/10586458.2017.1320241 10.1016/j.jat.2015.03.003 10.1016/j.laa.2015.12.017 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTPV AOWAS DF2 |
| DOI | 10.1016/j.amc.2023.128483 |
| DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Uppsala universitet |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | oai_DiVA_org_uu_519370 10_1016_j_amc_2023_128483 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADIYS ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- ~HD ADTPV AOWAS DF2 |
| ID | FETCH-LOGICAL-c282t-6246fc8ad4c68aaf6bc9e1e116c2dc62c0c1c3a31da00ccf8c9304636f3cfef03 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001128886300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 1873-5649 |
| IngestDate | Tue Nov 04 17:27:22 EST 2025 Sat Nov 29 07:25:07 EST 2025 Tue Nov 18 22:24:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c282t-6246fc8ad4c68aaf6bc9e1e116c2dc62c0c1c3a31da00ccf8c9304636f3cfef03 |
| ORCID | 0000-0003-3551-8152 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_uu_519370 crossref_citationtrail_10_1016_j_amc_2023_128483 crossref_primary_10_1016_j_amc_2023_128483 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2024 |
| References | Serra-Capizzano (10.1016/j.amc.2023.128483_br0190) 1997; 267 Dumbser (10.1016/j.amc.2023.128483_br0360) 2018; 25 Tyrtyshnikov (10.1016/j.amc.2023.128483_br0240) 1998; 270 Serra-Capizzano (10.1016/j.amc.2023.128483_br0200) 1999; 20 Garoni (10.1016/j.amc.2023.128483_br0350) 2018; 7 Bogoya (10.1016/j.amc.2023.128483_br0090) 2017; 208 Tyrtyshnikov (10.1016/j.amc.2023.128483_br0320) 1996; 232 Garoni (10.1016/j.amc.2023.128483_br0380) 2019; 26 Bogoya (10.1016/j.amc.2023.128483_br0070) 2016; 493 Böttcher (10.1016/j.amc.2023.128483_br0120) 1999 Serra-Capizzano (10.1016/j.amc.2023.128483_br0180) 1994; 34 Avram (10.1016/j.amc.2023.128483_br0300) 1988; 79 Ekström (10.1016/j.amc.2023.128483_br0050) 2019; 80 Parter (10.1016/j.amc.2023.128483_br0310) 1986; 80 Bogoya (10.1016/j.amc.2023.128483_br0100) Bogoya (10.1016/j.amc.2023.128483_br0330) Serra-Capizzano (10.1016/j.amc.2023.128483_br0210) 1999; 39 Tilli (10.1016/j.amc.2023.128483_br0250) 1998; 45 Ekström (10.1016/j.amc.2023.128483_br0010) 2018; 27 Grenander (10.1016/j.amc.2023.128483_br0230) 1984 Garoni (10.1016/j.amc.2023.128483_br0150) 2017 Stoer (10.1016/j.amc.2023.128483_br0270) 2010 Garoni (10.1016/j.amc.2023.128483_br0160) 2018 Bogoya (10.1016/j.amc.2023.128483_br0290) 2015; 196 Di-Benedetto (10.1016/j.amc.2023.128483_br0170) 1993; 25 Barrera (10.1016/j.amc.2023.128483_br0340) 2017; 259 Garoni (10.1016/j.amc.2023.128483_br0370) 2015; 36 Bogoya (10.1016/j.amc.2023.128483_br0080) 2017; 259 Barbarino (10.1016/j.amc.2023.128483_br0130) 2020; 53 Bogoya (10.1016/j.amc.2023.128483_br0260) 2023; 271 Serra-Capizzano (10.1016/j.amc.2023.128483_br0220) 1998; 282 Davis (10.1016/j.amc.2023.128483_br0280) 1975 Ekström (10.1016/j.amc.2023.128483_br0030) 2018; 25 Ahmad (10.1016/j.amc.2023.128483_br0020) 2018; 78 Ekström (10.1016/j.amc.2023.128483_br0040) 2018; 58 Bogoya (10.1016/j.amc.2023.128483_br0110) 2022; 91 Barbarino (10.1016/j.amc.2023.128483_br0140) 2020; 53 Bogoya (10.1016/j.amc.2023.128483_br0060) 2015; 422 |
| References_xml | – volume: 26 start-page: 1639 issue: 5 year: 2019 ident: 10.1016/j.amc.2023.128483_br0380 article-title: Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: exposition and review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-018-9295-y – ident: 10.1016/j.amc.2023.128483_br0100 – volume: 53 start-page: 113 year: 2020 ident: 10.1016/j.amc.2023.128483_br0130 article-title: Block generalized locally Toeplitz sequences: theory and applications in the multidimensional case publication-title: Electron. Trans. Numer. Anal. doi: 10.1553/etna_vol53s113 – volume: 58 start-page: 937 issue: 4 year: 2018 ident: 10.1016/j.amc.2023.128483_br0040 article-title: Exact formulae and matrix-less eigensolvers for block banded Toeplitz-like matrices publication-title: BIT doi: 10.1007/s10543-018-0715-z – year: 1975 ident: 10.1016/j.amc.2023.128483_br0280 – volume: 36 start-page: 1100 issue: 3 year: 2015 ident: 10.1016/j.amc.2023.128483_br0370 article-title: Spectral analysis and spectral symbol of d-variate Qp Lagrangian FEM stiffness matrices publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/140976480 – volume: 271 start-page: 176 year: 2023 ident: 10.1016/j.amc.2023.128483_br0260 article-title: Asymptotic eigenvalue expansions for Toeplitz matrices with certain Fisher–Hartwig symbols publication-title: J. Math. Sci. doi: 10.1007/s10958-023-06362-9 – volume: 91 start-page: 1653 year: 2022 ident: 10.1016/j.amc.2023.128483_br0110 article-title: Fast Toeplitz eigenvalue computations joining interpolation-extrapolation matrix-less algorithms and simple-loop theory publication-title: Numer. Algebra doi: 10.1007/s11075-022-01318-7 – volume: 259 start-page: 51 year: 2017 ident: 10.1016/j.amc.2023.128483_br0340 article-title: Asymptotics of eigenvalues for pentadiagonal symmetric Toeplitz matrices publication-title: Oper. Theory, Adv. Appl. – volume: 34 start-page: 579 issue: 4 year: 1994 ident: 10.1016/j.amc.2023.128483_br0180 article-title: Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems publication-title: BIT doi: 10.1007/BF01934269 – volume: 39 start-page: 152 issue: 1 year: 1999 ident: 10.1016/j.amc.2023.128483_br0210 article-title: Spectral and computational analysis of block Toeplitz matrices having nonnegative definite matrix-valued generating functions publication-title: BIT doi: 10.1023/A:1022329526925 – volume: 78 start-page: 867 issue: 3 year: 2018 ident: 10.1016/j.amc.2023.128483_br0020 article-title: Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? publication-title: Numer. Algebra doi: 10.1007/s11075-017-0404-z – volume: 25 issue: 5 year: 2018 ident: 10.1016/j.amc.2023.128483_br0360 article-title: Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations: spectral analysis and computational results publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2151 – volume: 7 start-page: 49 issue: 3 year: 2018 ident: 10.1016/j.amc.2023.128483_br0350 article-title: Block generalized locally Toeplitz sequences: from the theory to the applications publication-title: Axioms doi: 10.3390/axioms7030049 – year: 1984 ident: 10.1016/j.amc.2023.128483_br0230 article-title: Toeplitz Forms and Their Applications – volume: 232 start-page: 1 year: 1996 ident: 10.1016/j.amc.2023.128483_br0320 article-title: A unifying approach to some old and new theorems on distribution and clustering publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(94)00025-5 – volume: 20 start-page: 31 issue: 1 year: 1999 ident: 10.1016/j.amc.2023.128483_br0200 article-title: Asymptotic results on the spectra of block Toeplitz preconditioned matrices publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479896310160 – volume: 79 start-page: 37 year: 1988 ident: 10.1016/j.amc.2023.128483_br0300 article-title: On bilinear forms in Gaussian random variables and Toeplitz matrices publication-title: Probab. Theory Relat. doi: 10.1007/BF00319101 – volume: 25 issue: 5 year: 2018 ident: 10.1016/j.amc.2023.128483_br0030 article-title: Are the eigenvalues of the B-spline isogeometric analysis approximation of −Δu=λu known in almost closed form? publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2198 – volume: 45 start-page: 147 issue: 2–3 year: 1998 ident: 10.1016/j.amc.2023.128483_br0250 article-title: A note on the spectral distribution of Toeplitz matrices publication-title: Linear Multilinear Algebra doi: 10.1080/03081089808818584 – year: 2017 ident: 10.1016/j.amc.2023.128483_br0150 – volume: 267 start-page: 139 year: 1997 ident: 10.1016/j.amc.2023.128483_br0190 article-title: The extension of the concept of the generating function to a class of preconditioned Toeplitz matrices publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(97)82204-5 – volume: 25 start-page: 35 issue: 6 year: 1993 ident: 10.1016/j.amc.2023.128483_br0170 article-title: C.G. preconditioning for Toeplitz matrices publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(93)90297-9 – volume: 282 start-page: 161 issue: 1–3 year: 1998 ident: 10.1016/j.amc.2023.128483_br0220 article-title: An ergodic theorem for classes of preconditioned matrices publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(98)80002-5 – year: 2018 ident: 10.1016/j.amc.2023.128483_br0160 – volume: 80 start-page: 115 year: 1986 ident: 10.1016/j.amc.2023.128483_br0310 article-title: On the distribution of the singular values of Toeplitz matrices publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(86)90280-6 – ident: 10.1016/j.amc.2023.128483_br0330 – volume: 259 start-page: 179 year: 2017 ident: 10.1016/j.amc.2023.128483_br0080 article-title: Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness publication-title: Oper. Theory, Adv. Appl. – year: 1999 ident: 10.1016/j.amc.2023.128483_br0120 article-title: Introduction to Large Truncated Toeplitz Matrices doi: 10.1007/978-1-4612-1426-7 – volume: 53 start-page: 28 year: 2020 ident: 10.1016/j.amc.2023.128483_br0140 article-title: Block generalized locally Toeplitz sequences: theory and applications in the unidimensional case publication-title: Electron. Trans. Numer. Anal. doi: 10.1553/etna_vol53s28 – volume: 80 start-page: 819 year: 2019 ident: 10.1016/j.amc.2023.128483_br0050 article-title: A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices publication-title: Numer. Algebra doi: 10.1007/s11075-018-0508-0 – volume: 208 start-page: 4 issue: 11 year: 2017 ident: 10.1016/j.amc.2023.128483_br0090 article-title: Asymptotics of the eigenvalues and eigenvectors of Toeplitz matrices publication-title: Sb. Math. – volume: 270 start-page: 15 year: 1998 ident: 10.1016/j.amc.2023.128483_br0240 article-title: Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(97)80001-8 – volume: 422 start-page: 1308 year: 2015 ident: 10.1016/j.amc.2023.128483_br0060 article-title: Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.09.057 – volume: 27 start-page: 478 issue: 4 year: 2018 ident: 10.1016/j.amc.2023.128483_br0010 article-title: Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? publication-title: Exp. Math. doi: 10.1080/10586458.2017.1320241 – year: 2010 ident: 10.1016/j.amc.2023.128483_br0270 – volume: 196 start-page: 79 year: 2015 ident: 10.1016/j.amc.2023.128483_br0290 article-title: Maximum norm versions of the Szegő and Avram–Parter theorems for Toeplitz matrices publication-title: J. Approx. Theory doi: 10.1016/j.jat.2015.03.003 – volume: 493 start-page: 606 year: 2016 ident: 10.1016/j.amc.2023.128483_br0070 article-title: Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2015.12.017 |
| SSID | ssj0007614 |
| Score | 2.4329886 |
| Snippet | Under appropriate technical assumptions, the simple-loop theory allows to derive various types of asymptotic expansions for the eigenvalues of Toeplitz... |
| SourceID | swepub crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 128483 |
| SubjectTerms | Asymptotic expansion Beräkningsvetenskap med inriktning mot numerisk analys Numerical algorithm Preconditioned matrix Scientific Computing with specialization in Numerical Analysis Spectra Toeplitz matrix |
| Title | Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop theory: The preconditioned setting |
| URI | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-519370 |
| Volume | 466 |
| WOSCitedRecordID | wos001128886300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1873-5649 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007614 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlgMcKj5FKaA9wIXgyF9Z29yi0goQrSoRotysYb0OiZzYcpwqze_gR_Azmd31Ok4RFT1wsRxnM17lPc_OrGffEvI69DHGR69nOdAHy4-cvgVB6FgsSrw-MJb0lZD26Etwfh6Ox9FFp_PLrIW5zILFIlyvo-K_Qo3XEGy5dPYWcDdG8QKeI-h4RNjx-E_An8Ky6g5zgdFltekKqbYpFb2Fqh5f6TfvCrxZrjaHUIoRZZHrojgLnXUJ5lN3LhX811Ym_SFkk7ycVj_mWtZ5OZXCwlaW54VeDnllKjgKlWUnWgUJGwpVW90Og03sO29EY5dmgZ3pYjNPkE_yKxXhnvWa6SBRlmAdQzHdbEDtHd792nw5wnQAMl09eNFrz2q47WKY2lNHsibP9tqe2mdtXytHVr0Jzh_DgJ6RmPVgLlUqXa-3bbsruX1tKGwKFE3t2yxGE7E0EWsTd8i-G_Qj9J_7g08n48_NqB8wrSNv-m3eoKtawmv92ImBdhRqVVQzfEAO6nSEDjSNHpKOWDwi98-2sDwmPyWhqCEU3RKKtgn1jtZ0ojfQibboRLd0ogg9bdGJajq9p0gmuksmWpPpCfl2ejI8_mjVe3lYHJP6ymKuz1IeQuJzFgKk7DuPhCMch3E34czlNne4B56TgG1znoY80mJ2qcdTkdreU7K3wPs8IzTwIgA7gDSFwGccokAORMLDVF-gWfuQ2ObfjXktdC_3W8niv6J6SN42Pym0ystNjd9oyJqmUqL9w3Q0iPNyEq9WscyKAvv5bYwekXvbx-AF2avKlXhJ7vLLarosX9Vk-w3S6LdX |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Toeplitz+eigenvalue+computations%2C+joining+interpolation-extrapolation+matrix-less+algorithms+and+simple-loop+theory%3A+The+preconditioned+setting&rft.jtitle=Applied+mathematics+and+computation&rft.au=Bogoya%2C+M.&rft.au=Serra-Capizzano%2C+S.&rft.au=Vassalos%2C+P.&rft.date=2024-04-01&rft.issn=0096-3003&rft.volume=466&rft.spage=128483&rft_id=info:doi/10.1016%2Fj.amc.2023.128483&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2023_128483 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |