Learning a reduced basis of dynamical systems using an autoencoder

Machine learning models have emerged as powerful tools in physics and engineering. In this work, we use an autoencoder with latent space penalization to discover approximate finite-dimensional manifolds of two canonical partial differential equations. We test this method on the Kuramoto-Sivashinsky...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E Jg. 104; H. 3-1; S. 034202
Hauptverfasser: Sondak, David, Protopapas, Pavlos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.09.2021
ISSN:2470-0053, 2470-0053
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning models have emerged as powerful tools in physics and engineering. In this work, we use an autoencoder with latent space penalization to discover approximate finite-dimensional manifolds of two canonical partial differential equations. We test this method on the Kuramoto-Sivashinsky (K-S), Korteweg-de Vries (KdV), and damped KdV equations. We show that the resulting optimal latent space of the K-S equation is consistent with the dimension of the inertial manifold. We then uncover a nonlinear basis representing the manifold of the latent space for the K-S equation. The results for the KdV equation show that it is more difficult to recover a reduced latent space, which is consistent with the truly infinite-dimensional dynamics of the KdV equation. In the case of the damped KdV equation, we find that the number of active dimensions decreases with increasing damping coefficient.Machine learning models have emerged as powerful tools in physics and engineering. In this work, we use an autoencoder with latent space penalization to discover approximate finite-dimensional manifolds of two canonical partial differential equations. We test this method on the Kuramoto-Sivashinsky (K-S), Korteweg-de Vries (KdV), and damped KdV equations. We show that the resulting optimal latent space of the K-S equation is consistent with the dimension of the inertial manifold. We then uncover a nonlinear basis representing the manifold of the latent space for the K-S equation. The results for the KdV equation show that it is more difficult to recover a reduced latent space, which is consistent with the truly infinite-dimensional dynamics of the KdV equation. In the case of the damped KdV equation, we find that the number of active dimensions decreases with increasing damping coefficient.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-0053
2470-0053
DOI:10.1103/PhysRevE.104.034202