Learning a reduced basis of dynamical systems using an autoencoder
Machine learning models have emerged as powerful tools in physics and engineering. In this work, we use an autoencoder with latent space penalization to discover approximate finite-dimensional manifolds of two canonical partial differential equations. We test this method on the Kuramoto-Sivashinsky...
Uloženo v:
| Vydáno v: | Physical review. E Ročník 104; číslo 3-1; s. 034202 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.09.2021
|
| ISSN: | 2470-0053, 2470-0053 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!