Learning a reduced basis of dynamical systems using an autoencoder
Machine learning models have emerged as powerful tools in physics and engineering. In this work, we use an autoencoder with latent space penalization to discover approximate finite-dimensional manifolds of two canonical partial differential equations. We test this method on the Kuramoto-Sivashinsky...
Saved in:
| Published in: | Physical review. E Vol. 104; no. 3-1; p. 034202 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.09.2021
|
| ISSN: | 2470-0053, 2470-0053 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Machine learning models have emerged as powerful tools in physics and engineering. In this work, we use an autoencoder with latent space penalization to discover approximate finite-dimensional manifolds of two canonical partial differential equations. We test this method on the Kuramoto-Sivashinsky (K-S), Korteweg-de Vries (KdV), and damped KdV equations. We show that the resulting optimal latent space of the K-S equation is consistent with the dimension of the inertial manifold. We then uncover a nonlinear basis representing the manifold of the latent space for the K-S equation. The results for the KdV equation show that it is more difficult to recover a reduced latent space, which is consistent with the truly infinite-dimensional dynamics of the KdV equation. In the case of the damped KdV equation, we find that the number of active dimensions decreases with increasing damping coefficient.Machine learning models have emerged as powerful tools in physics and engineering. In this work, we use an autoencoder with latent space penalization to discover approximate finite-dimensional manifolds of two canonical partial differential equations. We test this method on the Kuramoto-Sivashinsky (K-S), Korteweg-de Vries (KdV), and damped KdV equations. We show that the resulting optimal latent space of the K-S equation is consistent with the dimension of the inertial manifold. We then uncover a nonlinear basis representing the manifold of the latent space for the K-S equation. The results for the KdV equation show that it is more difficult to recover a reduced latent space, which is consistent with the truly infinite-dimensional dynamics of the KdV equation. In the case of the damped KdV equation, we find that the number of active dimensions decreases with increasing damping coefficient. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2470-0053 2470-0053 |
| DOI: | 10.1103/PhysRevE.104.034202 |