Online quantitative monitoring of milling cutter health condition based on deep convolutional autoencoder
The health condition of milling cutters (HCOMC) could heavily affect workpiece quality. However, it is extremely difficult to be quantified online. To solve this problem, an online quantitative monitoring method (OQM) is proposed based on a deep convolutional autoencoder (CAE). In this method, a hea...
Uložené v:
| Vydané v: | International journal of advanced manufacturing technology Ročník 125; číslo 9-10; s. 4739 - 4752 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.04.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0268-3768, 1433-3015 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!