Online quantitative monitoring of milling cutter health condition based on deep convolutional autoencoder

The health condition of milling cutters (HCOMC) could heavily affect workpiece quality. However, it is extremely difficult to be quantified online. To solve this problem, an online quantitative monitoring method (OQM) is proposed based on a deep convolutional autoencoder (CAE). In this method, a hea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology Jg. 125; H. 9-10; S. 4739 - 4752
Hauptverfasser: Lei, Yuncong, Li, Changgen, Guo, Liang, Gao, Hongli, Liang, Junhua, Sun, Yi, He, Jigang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.04.2023
Springer Nature B.V
Schlagworte:
ISSN:0268-3768, 1433-3015
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!