Online quantitative monitoring of milling cutter health condition based on deep convolutional autoencoder
The health condition of milling cutters (HCOMC) could heavily affect workpiece quality. However, it is extremely difficult to be quantified online. To solve this problem, an online quantitative monitoring method (OQM) is proposed based on a deep convolutional autoencoder (CAE). In this method, a hea...
Uloženo v:
| Vydáno v: | International journal of advanced manufacturing technology Ročník 125; číslo 9-10; s. 4739 - 4752 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.04.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0268-3768, 1433-3015 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!