Online quantitative monitoring of milling cutter health condition based on deep convolutional autoencoder

The health condition of milling cutters (HCOMC) could heavily affect workpiece quality. However, it is extremely difficult to be quantified online. To solve this problem, an online quantitative monitoring method (OQM) is proposed based on a deep convolutional autoencoder (CAE). In this method, a hea...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 125; no. 9-10; pp. 4739 - 4752
Main Authors: Lei, Yuncong, Li, Changgen, Guo, Liang, Gao, Hongli, Liang, Junhua, Sun, Yi, He, Jigang
Format: Journal Article
Language:English
Published: London Springer London 01.04.2023
Springer Nature B.V
Subjects:
ISSN:0268-3768, 1433-3015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The health condition of milling cutters (HCOMC) could heavily affect workpiece quality. However, it is extremely difficult to be quantified online. To solve this problem, an online quantitative monitoring method (OQM) is proposed based on a deep convolutional autoencoder (CAE). In this method, a health indicator (HI) is constructed for fast HCOMC monitoring. The OQM is composed of two parts, offline training and online monitoring. In the offline stage, the multi-sensor monitoring data that record in the cutter normal wear stage (named normal wear data, NWD) are selected from a subsampled life testing dataset to train a deep CAE. In the online stage, each monitoring data segment (MDS) is directly input into the trained CAE to obtain deep representations. Then, the HI is constructed by the mean square error (MSE) between the MDS and the deep representations to monitor the HCOMC. It is called convolutional-autoencoder-reconstruction-error-based health indicator (CARE-HI). In addition to the above-mentioned method, a new metric named isometric fusion metric (IFM) is also designed to assess HI. IFM is able to address the uneven problem of property contribution when using some widely used HI metrics. In the experiment, 28 milling cutters were subjected to cutting experiments under different working conditions. The experimental result demonstrates that the proposed OQM can efficiently improve feature quality and precisely monitor HCOMC. It also illustrates that the CARE-HI outperformed some existing ones in five metric dimensions. Therefore, the proposed CARE-HI can provide more accurate guidance for tool changing in machining.
AbstractList The health condition of milling cutters (HCOMC) could heavily affect workpiece quality. However, it is extremely difficult to be quantified online. To solve this problem, an online quantitative monitoring method (OQM) is proposed based on a deep convolutional autoencoder (CAE). In this method, a health indicator (HI) is constructed for fast HCOMC monitoring. The OQM is composed of two parts, offline training and online monitoring. In the offline stage, the multi-sensor monitoring data that record in the cutter normal wear stage (named normal wear data, NWD) are selected from a subsampled life testing dataset to train a deep CAE. In the online stage, each monitoring data segment (MDS) is directly input into the trained CAE to obtain deep representations. Then, the HI is constructed by the mean square error (MSE) between the MDS and the deep representations to monitor the HCOMC. It is called convolutional-autoencoder-reconstruction-error-based health indicator (CARE-HI). In addition to the above-mentioned method, a new metric named isometric fusion metric (IFM) is also designed to assess HI. IFM is able to address the uneven problem of property contribution when using some widely used HI metrics. In the experiment, 28 milling cutters were subjected to cutting experiments under different working conditions. The experimental result demonstrates that the proposed OQM can efficiently improve feature quality and precisely monitor HCOMC. It also illustrates that the CARE-HI outperformed some existing ones in five metric dimensions. Therefore, the proposed CARE-HI can provide more accurate guidance for tool changing in machining.
Author He, Jigang
Gao, Hongli
Liang, Junhua
Lei, Yuncong
Guo, Liang
Sun, Yi
Li, Changgen
Author_xml – sequence: 1
  givenname: Yuncong
  surname: Lei
  fullname: Lei, Yuncong
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Engineering Research Center of Advanced Drive Energy saving Technologies, Ministry of Education, Southwest Jiaotong University
– sequence: 2
  givenname: Changgen
  surname: Li
  fullname: Li, Changgen
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Engineering Research Center of Advanced Drive Energy saving Technologies, Ministry of Education, Southwest Jiaotong University
– sequence: 3
  givenname: Liang
  surname: Guo
  fullname: Guo, Liang
  email: guoliang@swjtu.edu.cn
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Engineering Research Center of Advanced Drive Energy saving Technologies, Ministry of Education, Southwest Jiaotong University
– sequence: 4
  givenname: Hongli
  surname: Gao
  fullname: Gao, Hongli
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Engineering Research Center of Advanced Drive Energy saving Technologies, Ministry of Education, Southwest Jiaotong University
– sequence: 5
  givenname: Junhua
  surname: Liang
  fullname: Liang, Junhua
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Engineering Research Center of Advanced Drive Energy saving Technologies, Ministry of Education, Southwest Jiaotong University
– sequence: 6
  givenname: Yi
  surname: Sun
  fullname: Sun, Yi
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Engineering Research Center of Advanced Drive Energy saving Technologies, Ministry of Education, Southwest Jiaotong University
– sequence: 7
  givenname: Jigang
  surname: He
  fullname: He, Jigang
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Engineering Research Center of Advanced Drive Energy saving Technologies, Ministry of Education, Southwest Jiaotong University
BookMark eNp9kE1LAzEQhoNUsFb_gKeA59VJ0s2mRyl-QaEXPYc0O9HINqlJtuC_d9cKgoeeMmTeZ5h5zskkxICEXDG4YQDNbQZgDVTARcVgIUWlTsiUzYWoBLB6QqbApapEI9UZOc_5Y4hLJtWU-HXofED62ZtQfDHF75FuY_AlJh_eaHR067tuLG1fCib6jqYr79TG0PriY6Abk7GlQ9Ei7sb_fez6sWM6avoSMdjYYrogp850GS9_3xl5fbh_WT5Vq_Xj8_JuVVmueKnmG4aicco5tPPWCCkAbM0QBTonHfKaz6GFGhfKQMu4kRIXyEwNarOxTStm5Powd5fiZ4-56I_Yp2GZrHmjFnWtBmFDSh1SNsWcEzptf66PoSTjO81Aj2L1QawexOofsVoNKP-H7pLfmvR1HBIHKO9Gr5j-tjpCfQNQX5AL
CitedBy_id crossref_primary_10_1016_j_engappai_2025_110059
crossref_primary_10_1109_TIM_2024_3374301
crossref_primary_10_1007_s10845_024_02459_3
crossref_primary_10_1016_j_jmrt_2025_03_103
Cites_doi 10.1016/j.ymssp.2017.11.021
10.1016/j.ymssp.2017.11.016
10.1016/j.isatra.2017.03.024
10.1016/j.measurement.2020.108153
10.1016/j.wear.2020.203479
10.1088/1757-899X/520/1/012009
10.1016/j.ijmachtools.2006.11.007
10.1109/TII.2021.3118994
10.1007/s00170-018-3157-5
10.1016/S0890-6955(97)00023-0
10.1016/j.ymssp.2022.108904
10.1109/TIE.2014.2327917
10.1016/S0924-0136(01)00878-0
10.3390/ma11101977
10.1016/j.jmrt.2019.10.031
10.1016/j.ymssp.2021.108573
10.3901/JME.2019.11.001
10.1016/j.measurement.2021.110072
10.3390/s22218416
10.1007/s00170-020-05354-2
10.1007/s00170-020-05890-x
10.1016/j.measurement.2016.05.022
10.1016/S0166-3615(96)00075-9
10.1016/j.precisioneng.2021.07.019
10.1007/s10845-017-1334-2
10.1109/TIE.2021.3139202
10.1016/j.neucom.2020.07.088
10.1016/S0890-6955(03)00023-3
10.1016/j.ijmachtools.2014.10.011
10.1016/j.jmsy.2021.03.025
10.1016/j.ymssp.2005.09.012
10.1016/j.wear.2022.204468
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-023-10963-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 4752
ExternalDocumentID 10_1007_s00170_023_10963_8
GrantInformation_xml – fundername: Local Development Foundation guided by the Central Government
  grantid: 2020ZYD012
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2682022CX058
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 51905452
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Science Fund for Distinguished Young Scholars
  grantid: 52105562
  funderid: http://dx.doi.org/10.13039/501100014219
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c282t-4b1e37f8ffec4da36300c51ee3eff6fe25240d05e98a0d12a66e9e1a508bbc7d3
IEDL.DBID M7S
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936551800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-3768
IngestDate Wed Nov 05 00:59:16 EST 2025
Sat Nov 29 03:17:21 EST 2025
Tue Nov 18 21:11:09 EST 2025
Fri Feb 21 02:43:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9-10
Keywords Milling cutters
Online quantitative monitoring
Convolutional autoencoder
Fusion metric
Health indicator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-4b1e37f8ffec4da36300c51ee3eff6fe25240d05e98a0d12a66e9e1a508bbc7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2789558007
PQPubID 2044010
PageCount 14
ParticipantIDs proquest_journals_2789558007
crossref_citationtrail_10_1007_s00170_023_10963_8
crossref_primary_10_1007_s00170_023_10963_8
springer_journals_10_1007_s00170_023_10963_8
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Kong, Chen, Li (CR6) 2018; 104
Li, Liu, Yue, Liu, Zhang, Li, Liang, Wang (CR30) 2021; 185
Sun, Yeh (CR15) 2018; 11
Kurada, Bradley (CR5) 1997; 34
Ou, Li, Huang, Yang (CR26) 2021; 167
Abu-Mahfouz (CR20) 2003; 43
Javed, Gouriveau, Zerhouni, Nectoux (CR33) 2015; 62
Lanzetta (CR9) 2001; 119
CR12
Chen, Luo (CR16) 2020; 109
Nouri, Fussell, Ziniti, Linder (CR29) 2015; 89
Jin, Siegel, Weiss, Gamel, Wang, Lee, Ni (CR2) 2016; 3
Jindal (CR11) 2012; 11
Twardowski, Tabaszewski, Wiciak-Pikuła, Felusiak-Czyryca (CR27) 2021; 72
Schwenzer, Miura, Bergs (CR22) 2019; 520
You, Gao, Guo, Liu, Li (CR17) 2020; 460
Bhat, Dutta, Pal, Pal (CR21) 2016; 90
Lei, Li, Guo, Li, Yan, Lin (CR35) 2018; 104
Guo, Yu, Liu, Gao, Chen (CR3) 2022; 71
You, Gao, Li, Guo, Liu, Li (CR19) 2022; 69
Lim, Son, Wong, Rahman (CR10) 2007; 47
Li, Wang, He, Hao, Yang, Wei (CR24) 2020; 110
Jain, Lad (CR7) 2019; 30
Jardine, Lin, Banjevic (CR1) 2006; 20
Hanachi, Yu, Kim, Liu, Mechefske (CR4) 2019; 101
Mohanraj, Shankar, Rajasekar, Sakthivel, Pramanik (CR8) 2020; 9
Yang, Duan, Li, Hu, Liang, Shi (CR28) 2022; 22
Li, Hao, Dai, Yang (CR23) 2019; 55
Karandikar, Schmitz, Smith (CR25) 2021; 59
Guo, Yu, Gao, Feng, Liu (CR31) 2022; 18
Karthik, Chandra, Ramamoorthy, Das (CR13) 1997; 37
Jiao, Zhao, Lin, Liang (CR32) 2020; 417
Guo, Yu, Duan, Gao, Zhang (CR34) 2022; 167
You, Gao, Guo, Liu, Li, Li (CR18) 2022; 171
Yu, Lin, Dai, Zhu (CR14) 2017; 69
A Karthik (10963_CR13) 1997; 37
S Chen (10963_CR16) 2020; 109
T Mohanraj (10963_CR8) 2020; 9
Z You (10963_CR19) 2022; 69
X Li (10963_CR30) 2021; 185
L Guo (10963_CR34) 2022; 167
X Jin (10963_CR2) 2016; 3
S Kurada (10963_CR5) 1997; 34
X Yu (10963_CR14) 2017; 69
J Ou (10963_CR26) 2021; 167
H Lim (10963_CR10) 2007; 47
J Yang (10963_CR28) 2022; 22
M Nouri (10963_CR29) 2015; 89
P Twardowski (10963_CR27) 2021; 72
K Javed (10963_CR33) 2015; 62
J Karandikar (10963_CR25) 2021; 59
Y Lei (10963_CR35) 2018; 104
L Guo (10963_CR3) 2022; 71
A Jardine (10963_CR1) 2006; 20
A Jain (10963_CR7) 2019; 30
10963_CR12
M Schwenzer (10963_CR22) 2019; 520
J Jiao (10963_CR32) 2020; 417
M Lanzetta (10963_CR9) 2001; 119
L Guo (10963_CR31) 2022; 18
I Abu-Mahfouz (10963_CR20) 2003; 43
A Jindal (10963_CR11) 2012; 11
Z You (10963_CR18) 2022; 171
H Li (10963_CR23) 2019; 55
W Sun (10963_CR15) 2018; 11
Z You (10963_CR17) 2020; 460
N Bhat (10963_CR21) 2016; 90
H Hanachi (10963_CR4) 2019; 101
D Kong (10963_CR6) 2018; 104
G Li (10963_CR24) 2020; 110
References_xml – volume: 104
  start-page: 556
  year: 2018
  end-page: 574
  ident: CR6
  article-title: Gaussian process regression for tool wear prediction
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.021
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: CR35
  article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 69
  start-page: 315
  year: 2017
  end-page: 322
  ident: CR14
  article-title: Image edge detection based tool condition monitoring with morphological component analysis
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.03.024
– volume: 167
  year: 2021
  ident: CR26
  article-title: Intelligent analysis of tool wear state using stacked denoising autoencoder with online sequential-extreme learning machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108153
– volume: 460
  year: 2020
  ident: CR17
  article-title: On-line milling cutter wear monitoring in a wide field-of-view camera
  publication-title: Wear
  doi: 10.1016/j.wear.2020.203479
– volume: 520
  year: 2019
  ident: CR22
  article-title: Machine learning for tool wear classification in milling based on force and current sensors
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/520/1/012009
– volume: 47
  start-page: 1556
  issue: 10
  year: 2007
  end-page: 1562
  ident: CR10
  article-title: Development and evaluation of an on-machine optical measurement device
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2006.11.007
– volume: 18
  start-page: 5199
  issue: 8
  year: 2022
  end-page: 5208
  ident: CR31
  article-title: Online remaining useful life prediction of milling cutters based on multisource data and feature learning
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2021.3118994
– volume: 101
  start-page: 2861
  year: 2019
  end-page: 2872
  ident: CR4
  article-title: Hybrid data-driven physics-based model fusion framework for tool wear prediction
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-3157-5
– volume: 37
  start-page: 1573
  issue: 11
  year: 1997
  end-page: 1581
  ident: CR13
  article-title: 3D tool wear measurement and visualisation using stereo imaging
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(97)00023-0
– volume: 171
  year: 2022
  ident: CR18
  article-title: Machine vision based adaptive online condition monitoring for milling cutter under spindle rotation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.108904
– volume: 62
  start-page: 647
  issue: 1
  year: 2015
  end-page: 656
  ident: CR33
  article-title: Enabling health monitoring approach based on vibration data for accurate prognostics
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2327917
– volume: 119
  start-page: 73
  issue: 1–3
  year: 2001
  end-page: 82
  ident: CR9
  article-title: A new flexible high-resolution vision sensor for tool condition monitoring
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(01)00878-0
– ident: CR12
– volume: 11
  start-page: 1977
  issue: 10
  year: 2018
  ident: CR15
  article-title: Using the machine vision method to develop an on-machine insert condition monitoring system for computer numerical control turning machine tools
  publication-title: Materials
  doi: 10.3390/ma11101977
– volume: 9
  start-page: 1032
  issue: 1
  year: 2020
  end-page: 1042
  ident: CR8
  article-title: Tool condition monitoring techniques in milling process-a review
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2019.10.031
– volume: 167
  year: 2022
  ident: CR34
  article-title: An unsupervised feature learning based health indicator construction method for performance assessment of machines
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108573
– volume: 55
  start-page: 1
  issue: 14
  year: 2019
  end-page: 10
  ident: CR23
  article-title: Wear status recognition for milling cutter based on compressed sensing and noise stacking sparse auto-encoder
  publication-title: J Mech Eng
  doi: 10.3901/JME.2019.11.001
– volume: 185
  year: 2021
  ident: CR30
  article-title: A data-driven approach for tool wear recognition and quantitative prediction based on radar map feature fusion
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110072
– volume: 22
  start-page: 8416
  year: 2022
  ident: CR28
  article-title: Tool wear monitoring in milling based on fine-grained image classification of machined surface images
  publication-title: Sensors
  doi: 10.3390/s22218416
– volume: 109
  start-page: 823
  year: 2020
  end-page: 839
  ident: CR16
  article-title: Study of using cutting chip color to the tool wear prediction
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05354-2
– volume: 110
  start-page: 511
  year: 2020
  end-page: 522
  ident: CR24
  article-title: Tool wear state recognition based on gradient boosting decision tree and hybrid classification RBM
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05890-x
– volume: 90
  start-page: 500
  year: 2016
  end-page: 509
  ident: CR21
  article-title: Tool condition classification in turning process using hidden Markov model based on texture analysis of machined surface images
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.022
– volume: 3
  start-page: 10
  year: 2016
  ident: CR2
  article-title: The present status and future growth of maintenance in US manufacturing: results from a pilot survey
  publication-title: Manuf Rev
– volume: 34
  start-page: 55
  issue: 1
  year: 1997
  end-page: 72
  ident: CR5
  article-title: A review of machine vision sensors for tool condition monitoring
  publication-title: Comput Ind
  doi: 10.1016/S0166-3615(96)00075-9
– volume: 72
  start-page: 738
  year: 2021
  end-page: 744
  ident: CR27
  article-title: Identification of tool wear using acoustic emission signal and machine learning methods
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2021.07.019
– volume: 30
  start-page: 1423
  year: 2019
  end-page: 1436
  ident: CR7
  article-title: A novel integrated tool condition monitoring system
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1334-2
– volume: 69
  start-page: 13656
  issue: 12
  year: 2022
  end-page: 13664
  ident: CR19
  article-title: Multiple activation functions and data augmentation based light weight network for in-situ tool condition monitoring
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2021.3139202
– volume: 71
  start-page: 1
  year: 2022
  end-page: 10
  ident: CR3
  article-title: Reconstruction domain adaptation transfer network for partial transfer learning of machinery fault diagnostics
  publication-title: IEEE Trans Instrum Meas
– volume: 11
  start-page: 43
  issue: 1
  year: 2012
  end-page: 54
  ident: CR11
  article-title: Analysis of tool wear rate in drilling operation using scanning electron microscope (SEM)
  publication-title: J Miner Mater Charact Eng
– volume: 417
  start-page: 36
  year: 2020
  end-page: 63
  ident: CR32
  article-title: A comprehensive review on convolutional neural network in machine fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
– volume: 43
  start-page: 707
  issue: 7
  year: 2003
  end-page: 720
  ident: CR20
  article-title: Drilling wear detection and classification using vibration signals and artificial neural network
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(03)00023-3
– volume: 89
  start-page: 1
  year: 2015
  end-page: 13
  ident: CR29
  article-title: Real-time tool wear monitoring in milling using a cutting condition independent method
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2014.10.011
– volume: 59
  start-page: 522
  year: 2021
  end-page: 534
  ident: CR25
  article-title: Physics-guided logistic classification for tool life modeling and process parameter optimization in machining
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.03.025
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  end-page: 1510
  ident: CR1
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 101
  start-page: 2861
  year: 2019
  ident: 10963_CR4
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-3157-5
– volume: 43
  start-page: 707
  issue: 7
  year: 2003
  ident: 10963_CR20
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(03)00023-3
– volume: 167
  year: 2022
  ident: 10963_CR34
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108573
– volume: 104
  start-page: 556
  year: 2018
  ident: 10963_CR6
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.021
– volume: 34
  start-page: 55
  issue: 1
  year: 1997
  ident: 10963_CR5
  publication-title: Comput Ind
  doi: 10.1016/S0166-3615(96)00075-9
– volume: 30
  start-page: 1423
  year: 2019
  ident: 10963_CR7
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1334-2
– volume: 69
  start-page: 315
  year: 2017
  ident: 10963_CR14
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2017.03.024
– volume: 71
  start-page: 1
  year: 2022
  ident: 10963_CR3
  publication-title: IEEE Trans Instrum Meas
– volume: 22
  start-page: 8416
  year: 2022
  ident: 10963_CR28
  publication-title: Sensors
  doi: 10.3390/s22218416
– volume: 3
  start-page: 10
  year: 2016
  ident: 10963_CR2
  publication-title: Manuf Rev
– volume: 11
  start-page: 1977
  issue: 10
  year: 2018
  ident: 10963_CR15
  publication-title: Materials
  doi: 10.3390/ma11101977
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10963_CR1
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 110
  start-page: 511
  year: 2020
  ident: 10963_CR24
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05890-x
– volume: 69
  start-page: 13656
  issue: 12
  year: 2022
  ident: 10963_CR19
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2021.3139202
– volume: 104
  start-page: 799
  year: 2018
  ident: 10963_CR35
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 18
  start-page: 5199
  issue: 8
  year: 2022
  ident: 10963_CR31
  publication-title: IEEE Trans Ind Informatics
  doi: 10.1109/TII.2021.3118994
– volume: 9
  start-page: 1032
  issue: 1
  year: 2020
  ident: 10963_CR8
  publication-title: J Mater Res Technol
  doi: 10.1016/j.jmrt.2019.10.031
– volume: 520
  year: 2019
  ident: 10963_CR22
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/520/1/012009
– volume: 72
  start-page: 738
  year: 2021
  ident: 10963_CR27
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2021.07.019
– ident: 10963_CR12
  doi: 10.1016/j.wear.2022.204468
– volume: 62
  start-page: 647
  issue: 1
  year: 2015
  ident: 10963_CR33
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2327917
– volume: 417
  start-page: 36
  year: 2020
  ident: 10963_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.088
– volume: 89
  start-page: 1
  year: 2015
  ident: 10963_CR29
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2014.10.011
– volume: 47
  start-page: 1556
  issue: 10
  year: 2007
  ident: 10963_CR10
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/j.ijmachtools.2006.11.007
– volume: 11
  start-page: 43
  issue: 1
  year: 2012
  ident: 10963_CR11
  publication-title: J Miner Mater Charact Eng
– volume: 37
  start-page: 1573
  issue: 11
  year: 1997
  ident: 10963_CR13
  publication-title: Int J Mach Tools Manuf
  doi: 10.1016/S0890-6955(97)00023-0
– volume: 55
  start-page: 1
  issue: 14
  year: 2019
  ident: 10963_CR23
  publication-title: J Mech Eng
  doi: 10.3901/JME.2019.11.001
– volume: 460
  year: 2020
  ident: 10963_CR17
  publication-title: Wear
  doi: 10.1016/j.wear.2020.203479
– volume: 109
  start-page: 823
  year: 2020
  ident: 10963_CR16
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-020-05354-2
– volume: 90
  start-page: 500
  year: 2016
  ident: 10963_CR21
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.022
– volume: 167
  year: 2021
  ident: 10963_CR26
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108153
– volume: 185
  year: 2021
  ident: 10963_CR30
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110072
– volume: 119
  start-page: 73
  issue: 1–3
  year: 2001
  ident: 10963_CR9
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(01)00878-0
– volume: 171
  year: 2022
  ident: 10963_CR18
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.108904
– volume: 59
  start-page: 522
  year: 2021
  ident: 10963_CR25
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.03.025
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.389213
Snippet The health condition of milling cutters (HCOMC) could heavily affect workpiece quality. However, it is extremely difficult to be quantified online. To solve...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4739
SubjectTerms Adhesive wear
Advanced manufacturing technologies
CAE) and Design
Classification
Computer-Aided Engineering (CAD
Decision trees
Engineering
Fault diagnosis
Industrial and Production Engineering
Manufacturing
Mechanical Engineering
Media Management
Methods
Milling cutters
Original Article
Representations
Sensors
Tool changing
Wear
Workpieces
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbRIqTOHZGhKiYKsRL3SInPkuVIC1t2t_P2XkUECDBZiVOopzP99D5vo-Qcy24wmhIeDpiEhMUwb0k98HzswiMMlIqLR3ZhBgM5HCY3NVNYbPmtHtTknSWum12c1AvHvoYNB2oNp5cJWvo7qQlbLh_eG60iCXCMmG2WhYkln5-qcVhxMOqtlXXGmLmGuYwGZF2u8m6teb7b352X8uY9EsZ1Xmn_vb__muHbNXRKL2q1GeXrECxRzY_YBTuk1EFRkrf5qpwDWloHumrswR2Ah0bapmL7DB3pNe0aq2kmGhrdx6MWk-pKQ40wMReX9T6jp9W83JssTQ1TA_IU__m8frWq_kZvBwTtdKLMgahMNIePIm0Ci16V84ZQAjGxAYCjuGC9jkkUvmaBSqOIQGmMCbMslzo8JB0inEBR4TmATAItG-YNBGAQr8pQKs4YwFICWGXsEbsaV6Dl1sOjZe0hV12YkxRjKkTYyq75KJ9ZlJBd_w6u9esZlpv41lq24Q5x5hadMlls3rL2z-_7fhv00_IhqWxr04E9UinnM7hlKzni3I0m5459X4H7C7xNA
  priority: 102
  providerName: Springer Nature
Title Online quantitative monitoring of milling cutter health condition based on deep convolutional autoencoder
URI https://link.springer.com/article/10.1007/s00170-023-10963-8
https://www.proquest.com/docview/2789558007
Volume 125
WOSCitedRecordID wos000936551800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOBQqIbUvlA7fWIs7LzglR1IrTqmqh6i1y7LFUie5u99Hfz4zj7LZI9MIlshLHUTTjmbE9830An72uLEVDWvpSGVqg6Eo2LkOZdSUGG4yx3kSyCT0em-vr5jxtuC1SWuVgE6Oh9lPHe-RfuGKzqii80V9nd5JZo_h0NVFoPIdtRklQMXXvctAn1WjmxFzrW94wEf1Gn4uyKvpTrnTqUKtYOkfLEsMTz6Qim1hqF4FmJHk4MlyktNI8dmSb6PSvA9Xop85e_-8fvoGdFKGKb71KvYVnONmFVw9wC9_BTQ9QKu5WdhKL1MhkittoHbiDmAbBbEbcdJEIW_TlloIW3z7miAn2nl5QwyPO-P59mgP0abtaThlf0-P8Pfw6O_35_YdMnA3S0eJtKctOYaGD4WSU0tuCEb1cpRALDKEOmFcUQviswsbYzKvc1jU2qCzFiV3ntC8-wNZkOsGPIFyOCnOfBWVCiWjJl2r0tu5UjsZgMQI1CKB1CdCceTV-t2so5ii0loTWRqG1ZgRH63dmPZzHk70PBkm1aWov2o2YRnA8yHrz-N-j7T092j68ZCr7PivoALaW8xV-ghfufnmzmB_C9snp-PziMCo4XS8ur_4AJ9X-Gw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQ58EZdKOADnCBq7DzsHBBCQNWqZYVEkXoLjj2WKsFmu48i_hS_kRkn2QUkeuuBW5Q4jhJ_84pn5gN45nVhyRvSic-loQBFF0nlUkzSJsdggzHWm0g2ocdjc3JSfdyAn0MtDKdVDjoxKmrfOv5HvssVm0VB7o1-PT1LmDWKd1cHCo0OFof44zuFbPNXB-9ofZ8rtff--O1-0rMKJI7Ci0WSNxIzHQynS-TeZtxzyhUSMcMQyoCqICPn0wIrY1MvlS1LrFBa8mSaxmmf0bxX4Cq5EaqKqYKfBvzKSjMH5wrfqmLi-7X8ZHmRdbtq_S5HKWOpHoVBhgXd9EU9sbQvNrZJyKKSoiQhScyfhnPtDf-1gRvt4t6t_-2L3oabvQcu3nQicwc2cHIXbvzWl_EenHYNWMXZ0k5iER6ZBPEtaj8eINogmK2JD10k-hZdOalwLWcAENQFewde0IFHnPL5817G6dF2uWi5f6jH2X34fCnv-gA2J-0Et0E4hRKVT4M0IUe05Cto9LZspEJjMBuBHBa8dn3DduYN-VqvWk1HkNQEkjqCpDYjeLG6Z9q1K7lw9M6AjLpXXfN6DYsRvBywtb7879keXjzbU7i-f_zhqD46GB8-gi3F0I4ZUDuwuZgt8TFcc-eL0_nsSRQqAV8uG3O_AGp0WsY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BQQgOy2sRXV4-cIOIOC87xxW7FQhUIfEQt8iJxxISm5aS9vfjcZIWEKyEuFmJEyf22DOjmfk-gEMtYmWtIeHpiEvroIjYSwsfPT-P0CgjpdLSkU2Ifl_e36dXr6r4XbZ7G5KsaxoIpamsTobanEwL3xzsi2f1jT1GrAh5ch4WIkqkJ3_9-q6VKJ4KYsWcSlyQEhX9TKLDKA7rOFcTd0i4K56zjomkrSebMpuPx3yrymb26buQqtNUvdXv_-Ma_GisVPa7Fqt1mMNyA1ZeYRduwkMNUsqexqp0hWr22GT_3AlBHdjAMGI0ombhyLBZXXLJ7FdolyfGSINqZhsacUjXJ80-sEOrcTUgjE2No59w2_t7c3rmNbwNXmEduMqLco6hMJISUiKtQkL1KmKOGKIxicEgtmaE9mNMpfI1D1SSYIpcWVsxzwuhwy3olIMSt4EVAXIMtG-4NBGisvpUoFZJzgOUEsMu8HYJsqIBNSdujcdsCsfspjGz05i5acxkF46mzwxrSI__9t5tVzZrtvdzRuXDcWxtbdGF43YlZ7c_f9uvr3U_gKWrP73s8rx_sQPLxHRfJw3tQqcajXEPFotJ9fA82ndS_wK2Ovz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+quantitative+monitoring+of+milling+cutter+health+condition+based+on+deep+convolutional+autoencoder&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Lei%2C+Yuncong&rft.au=Li%2C+Changgen&rft.au=Guo%2C+Liang&rft.au=Gao%2C+Hongli&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=125&rft.issue=9-10&rft.spage=4739&rft.epage=4752&rft_id=info:doi/10.1007%2Fs00170-023-10963-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon