Recognition of rock–coal interface in top coal caving through tail beam vibrations by using stacked sparse autoencoders

This paper provides a novel rock-coal interface recognition method based on stacked sparse autoencoders (SSAE). Given their different size and hardness, coal and rock generate different tail beam vibrations. Therefore, the rock-coal interface in top coal caving can be identified using an acceleratio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Vibroengineering Ročník 18; číslo 7; s. 4261 - 4275
Hlavní autoři: Zhang, Guoxin, Wang, Zengcai, Zhao, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: 15.11.2016
ISSN:1392-8716, 2538-8460
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper provides a novel rock-coal interface recognition method based on stacked sparse autoencoders (SSAE). Given their different size and hardness, coal and rock generate different tail beam vibrations. Therefore, the rock-coal interface in top coal caving can be identified using an acceleration sensor to measure such vibrations. The end of the hydraulic support beam is an ideal location for installing the sensor, as proven by many experiments. To improve recognition accuracy, the following steps are performed. First, ensemble empirical mode decomposition method (EEMD) is used to decompose the vibration signals of the tail beam into several intrinsic mode functions to complete feature extraction. Second, the features extracted are preprocessed as the inputs of SSAE. Third, a greedy, layer-wise approach is employed to pretrain the weights of the entire deep network. Finally, fine tuning is employed to search the global optima by simultaneously altering the parameters of all layers. Test results indicate that the average recognition accuracy of coal and rock is 98.79 % under ideal caving conditions. The superiority of the proposed method is verified by comparing its performance with those of four other algorithms.
AbstractList This paper provides a novel rock-coal interface recognition method based on stacked sparse autoencoders (SSAE). Given their different size and hardness, coal and rock generate different tail beam vibrations. Therefore, the rock-coal interface in top coal caving can be identified using an acceleration sensor to measure such vibrations. The end of the hydraulic support beam is an ideal location for installing the sensor, as proven by many experiments. To improve recognition accuracy, the following steps are performed. First, ensemble empirical mode decomposition method (EEMD) is used to decompose the vibration signals of the tail beam into several intrinsic mode functions to complete feature extraction. Second, the features extracted are preprocessed as the inputs of SSAE. Third, a greedy, layer-wise approach is employed to pretrain the weights of the entire deep network. Finally, fine tuning is employed to search the global optima by simultaneously altering the parameters of all layers. Test results indicate that the average recognition accuracy of coal and rock is 98.79 % under ideal caving conditions. The superiority of the proposed method is verified by comparing its performance with those of four other algorithms.
Author Wang, Zengcai
Zhang, Guoxin
Zhao, Lei
Author_xml – sequence: 1
  givenname: Guoxin
  surname: Zhang
  fullname: Zhang, Guoxin
– sequence: 2
  givenname: Zengcai
  surname: Wang
  fullname: Wang, Zengcai
– sequence: 3
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
BookMark eNp1kM1KAzEUhYNUsGrXbvMC0yaZ_M1Sin9QEETXQyZzp41tJyVJC935Dr6hT2I6uhJc3cvlnsP5ziUa9b4HhG4omTIqKjF7P8CUESqnVJVanqExE6UuNJdkhMa0rFihFZUXaBKjawjniktK-BgdX8D6Ze-S8z32HQ7err8-Pq03G-z6BKEzFvKGk9_h4WrNwfVLnFbB75crnIzb4AbMFh9cE8zJJ-LmiPfx9BWTsWtocdyZEAGbffLQW99CiNfovDObCJPfeYXe7u9e54_F4vnhaX67KCzTLBWlomAk6FY31lbWGtYylTMpzbkgHReKG1PlAFBVkvDOKp7pRMMyoaKtKK_Q7MfXBh9jgK7eBbc14VhTUg_l1bm8-lRePZSXFeKPwro0kKWQaf_VfQPy6noe
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3056110
crossref_primary_10_1177_00375497251337726
crossref_primary_10_3390_en14102877
crossref_primary_10_1016_j_measurement_2024_115730
crossref_primary_10_1007_s13369_020_05227_6
crossref_primary_10_1088_1361_6501_ac3709
crossref_primary_10_1038_s41598_024_51424_w
crossref_primary_10_3390_s24237852
crossref_primary_10_3390_su14031340
crossref_primary_10_3233_JIFS_213506
crossref_primary_10_3390_app10217471
crossref_primary_10_1016_j_measurement_2020_108840
crossref_primary_10_1038_s41598_017_18625_y
crossref_primary_10_1016_j_ijrmms_2018_02_004
crossref_primary_10_1016_j_heliyon_2024_e38725
crossref_primary_10_1093_jcde_qwac104
crossref_primary_10_3390_en11051106
crossref_primary_10_1155_2017_3809525
crossref_primary_10_1155_2021_8552247
Cites_doi 10.1109/ICOSP.2010.5656726
10.5370/JEET.2013.8.5.1049
10.1109/ADCOM.2007.104
10.1109/ICCASM.2010.5620422
10.1016/j.cagd.2012.03.004
10.1080/02664763.2014.1001728
10.1109/ICASSP.1999.758391
10.1109/ICGPR.2012.6254911
10.1109/TPWRS.2002.800906
10.3390/s16020189
10.1037/h0042519
10.1109/ISPA.2012.48
10.1109/TPS.2009.2037151
10.4028/www.scientific.net/AMM.556-562.2862
10.1109/28.222427
10.1016/j.sigpro.2015.01.001
10.1109/CISP.2010.5647389
10.1016/j.measurement.2016.04.051
10.1016/j.isatra.2014.06.008
10.1109/ICMLC.2002.1174412
10.3390/s16040479
10.1109/ICICISYS.2009.5357605
10.1109/ICINFA.2010.5512076
10.1109/ICNN.1994.374355
10.1098/rspa.2003.1221
10.1109/IHMSC.2015.154
10.1098/rspa.1998.0193
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.21595/jve.2016.17386
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2538-8460
EndPage 4275
ExternalDocumentID 10_21595_jve_2016_17386
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c282t-371ea6e8d8bcc9cca2d27ace784450f4574aa9beae99604fc744475b274671d53
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388743900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1392-8716
IngestDate Sat Nov 29 07:52:07 EST 2025
Tue Nov 18 20:52:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c282t-371ea6e8d8bcc9cca2d27ace784450f4574aa9beae99604fc744475b274671d53
OpenAccessLink https://www.jvejournals.com/article/17386/pdf
PageCount 15
ParticipantIDs crossref_primary_10_21595_jve_2016_17386
crossref_citationtrail_10_21595_jve_2016_17386
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of Vibroengineering
PublicationYear 2016
References key-10.21595/jve.2016.17386-cit1
key-10.21595/jve.2016.17386-cit3
key-10.21595/jve.2016.17386-cit2
key-10.21595/jve.2016.17386-cit28
key-10.21595/jve.2016.17386-cit29
key-10.21595/jve.2016.17386-cit26
key-10.21595/jve.2016.17386-cit27
key-10.21595/jve.2016.17386-cit20
key-10.21595/jve.2016.17386-cit21
key-10.21595/jve.2016.17386-cit24
key-10.21595/jve.2016.17386-cit25
key-10.21595/jve.2016.17386-cit22
key-10.21595/jve.2016.17386-cit23
key-10.21595/jve.2016.17386-cit17
key-10.21595/jve.2016.17386-cit18
key-10.21595/jve.2016.17386-cit15
key-10.21595/jve.2016.17386-cit16
key-10.21595/jve.2016.17386-cit19
key-10.21595/jve.2016.17386-cit5
key-10.21595/jve.2016.17386-cit31
key-10.21595/jve.2016.17386-cit4
key-10.21595/jve.2016.17386-cit10
key-10.21595/jve.2016.17386-cit32
key-10.21595/jve.2016.17386-cit7
key-10.21595/jve.2016.17386-cit6
key-10.21595/jve.2016.17386-cit30
key-10.21595/jve.2016.17386-cit9
key-10.21595/jve.2016.17386-cit13
key-10.21595/jve.2016.17386-cit8
key-10.21595/jve.2016.17386-cit14
key-10.21595/jve.2016.17386-cit11
key-10.21595/jve.2016.17386-cit12
References_xml – ident: key-10.21595/jve.2016.17386-cit6
  doi: 10.1109/ICOSP.2010.5656726
– ident: key-10.21595/jve.2016.17386-cit15
  doi: 10.5370/JEET.2013.8.5.1049
– ident: key-10.21595/jve.2016.17386-cit16
– ident: key-10.21595/jve.2016.17386-cit21
  doi: 10.1109/ADCOM.2007.104
– ident: key-10.21595/jve.2016.17386-cit11
  doi: 10.1109/ICCASM.2010.5620422
– ident: key-10.21595/jve.2016.17386-cit26
  doi: 10.1016/j.cagd.2012.03.004
– ident: key-10.21595/jve.2016.17386-cit27
  doi: 10.1080/02664763.2014.1001728
– ident: key-10.21595/jve.2016.17386-cit4
  doi: 10.1109/ICASSP.1999.758391
– ident: key-10.21595/jve.2016.17386-cit5
  doi: 10.1109/ICGPR.2012.6254911
– ident: key-10.21595/jve.2016.17386-cit18
  doi: 10.1109/TPWRS.2002.800906
– ident: key-10.21595/jve.2016.17386-cit29
– ident: key-10.21595/jve.2016.17386-cit19
  doi: 10.3390/s16020189
– ident: key-10.21595/jve.2016.17386-cit2
– ident: key-10.21595/jve.2016.17386-cit17
  doi: 10.1037/h0042519
– ident: key-10.21595/jve.2016.17386-cit23
  doi: 10.1109/ISPA.2012.48
– ident: key-10.21595/jve.2016.17386-cit25
  doi: 10.1109/TPS.2009.2037151
– ident: key-10.21595/jve.2016.17386-cit13
  doi: 10.4028/www.scientific.net/AMM.556-562.2862
– ident: key-10.21595/jve.2016.17386-cit1
  doi: 10.1109/28.222427
– ident: key-10.21595/jve.2016.17386-cit22
  doi: 10.1016/j.sigpro.2015.01.001
– ident: key-10.21595/jve.2016.17386-cit31
  doi: 10.1109/CISP.2010.5647389
– ident: key-10.21595/jve.2016.17386-cit20
  doi: 10.1016/j.measurement.2016.04.051
– ident: key-10.21595/jve.2016.17386-cit14
  doi: 10.1016/j.isatra.2014.06.008
– ident: key-10.21595/jve.2016.17386-cit9
– ident: key-10.21595/jve.2016.17386-cit3
– ident: key-10.21595/jve.2016.17386-cit7
  doi: 10.1109/ICMLC.2002.1174412
– ident: key-10.21595/jve.2016.17386-cit12
  doi: 10.3390/s16040479
– ident: key-10.21595/jve.2016.17386-cit8
  doi: 10.1109/ICICISYS.2009.5357605
– ident: key-10.21595/jve.2016.17386-cit10
  doi: 10.1109/ICINFA.2010.5512076
– ident: key-10.21595/jve.2016.17386-cit24
  doi: 10.1109/ICNN.1994.374355
– ident: key-10.21595/jve.2016.17386-cit30
  doi: 10.1098/rspa.2003.1221
– ident: key-10.21595/jve.2016.17386-cit32
  doi: 10.1109/IHMSC.2015.154
– ident: key-10.21595/jve.2016.17386-cit28
  doi: 10.1098/rspa.1998.0193
SSID ssib044746104
Score 2.188904
Snippet This paper provides a novel rock-coal interface recognition method based on stacked sparse autoencoders (SSAE). Given their different size and hardness, coal...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 4261
Title Recognition of rock–coal interface in top coal caving through tail beam vibrations by using stacked sparse autoencoders
Volume 18
WOSCitedRecordID wos000388743900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2538-8460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044746104
  issn: 1392-8716
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELWWwoFLBQJEaYt84IAUpawTbxIfUVXgABVCBSouke040qKSrHaTaHup-Ae-gt_iS5ixnWworVQOXKJo5EyymZfxjHf8hpBn4OFmppQsZDxNQi4SESquRIi5h8qmShVa22YT6fFxdnoq3k8mP_u9MN1ZWlXZei0W_9XUIANj49bZfzD3oBQEcA5GhyOYHY43MvyHviTIRYJLdHi-oiHWteXYwNbUUlu6kKZeBFaqZed2Trm-PVhYGigjvwUdJtSuXg5C1XblFyDg6y8CcEfLlQlk29RIiFn4cvorot1PoAXGDOSHfy1Yv27r9XxA6mcv_QKXaDkfjbZLu2_NfLxcwRLct-c2bHoPCwFZiFmam4CsLEKvC4HQ9Gq33PbFxM7HYtI3mq955FqvXJ4LIJYRyJvxtUM2VJYcMOxvupn2-r_6L82GQ40iZEdWRQ4KclSQWwW3yG24ocDqwXcXR73r4jxF4nrXQtn_QEckZXW8-PMhRjHQKJg5uUe2vV3oS4ee-2RiqgfkfIQcWpcUkfPr-w9EBx0wA2cUMEOt1GGGesxQxAxFzNANZqg6pxYz1GOGOszQMWYeko-vjk4O34S-M0eoIUVvYFZiRiYmKzKltQAnEBVRCs-QZpzPpiWfpVxKATc0lvyn1ClHYkkVYXMbVsziR2SrqivzmFAdI8FTwaJS4-JCIrmIjRIs1ibmMit3yEH_rnLtaeuxe8pZfo2Bdsjz4YKFY2y5buiTmw_dJXc3aN4jW82yNfvkju6a-Wr51GLhN1xmkZQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+rock%E2%80%93coal+interface+in+top+coal+caving+through+tail+beam+vibrations+by+using+stacked+sparse+autoencoders&rft.jtitle=Journal+of+Vibroengineering&rft.au=Zhang%2C+Guoxin&rft.au=Wang%2C+Zengcai&rft.au=Zhao%2C+Lei&rft.date=2016-11-15&rft.issn=1392-8716&rft.eissn=2538-8460&rft.volume=18&rft.issue=7&rft.spage=4261&rft.epage=4275&rft_id=info:doi/10.21595%2Fjve.2016.17386&rft.externalDBID=n%2Fa&rft.externalDocID=10_21595_jve_2016_17386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-8716&client=summon