Recognition of rock–coal interface in top coal caving through tail beam vibrations by using stacked sparse autoencoders
This paper provides a novel rock-coal interface recognition method based on stacked sparse autoencoders (SSAE). Given their different size and hardness, coal and rock generate different tail beam vibrations. Therefore, the rock-coal interface in top coal caving can be identified using an acceleratio...
Uloženo v:
| Vydáno v: | Journal of Vibroengineering Ročník 18; číslo 7; s. 4261 - 4275 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
15.11.2016
|
| ISSN: | 1392-8716, 2538-8460 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper provides a novel rock-coal interface recognition method based on stacked sparse autoencoders (SSAE). Given their different size and hardness, coal and rock generate different tail beam vibrations. Therefore, the rock-coal interface in top coal caving can be identified using an acceleration sensor to measure such vibrations. The end of the hydraulic support beam is an ideal location for installing the sensor, as proven by many experiments. To improve recognition accuracy, the following steps are performed. First, ensemble empirical mode decomposition method (EEMD) is used to decompose the vibration signals of the tail beam into several intrinsic mode functions to complete feature extraction. Second, the features extracted are preprocessed as the inputs of SSAE. Third, a greedy, layer-wise approach is employed to pretrain the weights of the entire deep network. Finally, fine tuning is employed to search the global optima by simultaneously altering the parameters of all layers. Test results indicate that the average recognition accuracy of coal and rock is 98.79 % under ideal caving conditions. The superiority of the proposed method is verified by comparing its performance with those of four other algorithms. |
|---|---|
| AbstractList | This paper provides a novel rock-coal interface recognition method based on stacked sparse autoencoders (SSAE). Given their different size and hardness, coal and rock generate different tail beam vibrations. Therefore, the rock-coal interface in top coal caving can be identified using an acceleration sensor to measure such vibrations. The end of the hydraulic support beam is an ideal location for installing the sensor, as proven by many experiments. To improve recognition accuracy, the following steps are performed. First, ensemble empirical mode decomposition method (EEMD) is used to decompose the vibration signals of the tail beam into several intrinsic mode functions to complete feature extraction. Second, the features extracted are preprocessed as the inputs of SSAE. Third, a greedy, layer-wise approach is employed to pretrain the weights of the entire deep network. Finally, fine tuning is employed to search the global optima by simultaneously altering the parameters of all layers. Test results indicate that the average recognition accuracy of coal and rock is 98.79 % under ideal caving conditions. The superiority of the proposed method is verified by comparing its performance with those of four other algorithms. |
| Author | Wang, Zengcai Zhang, Guoxin Zhao, Lei |
| Author_xml | – sequence: 1 givenname: Guoxin surname: Zhang fullname: Zhang, Guoxin – sequence: 2 givenname: Zengcai surname: Wang fullname: Wang, Zengcai – sequence: 3 givenname: Lei surname: Zhao fullname: Zhao, Lei |
| BookMark | eNp1kM1KAzEUhYNUsGrXbvMC0yaZ_M1Sin9QEETXQyZzp41tJyVJC935Dr6hT2I6uhJc3cvlnsP5ziUa9b4HhG4omTIqKjF7P8CUESqnVJVanqExE6UuNJdkhMa0rFihFZUXaBKjawjniktK-BgdX8D6Ze-S8z32HQ7err8-Pq03G-z6BKEzFvKGk9_h4WrNwfVLnFbB75crnIzb4AbMFh9cE8zJJ-LmiPfx9BWTsWtocdyZEAGbffLQW99CiNfovDObCJPfeYXe7u9e54_F4vnhaX67KCzTLBWlomAk6FY31lbWGtYylTMpzbkgHReKG1PlAFBVkvDOKp7pRMMyoaKtKK_Q7MfXBh9jgK7eBbc14VhTUg_l1bm8-lRePZSXFeKPwro0kKWQaf_VfQPy6noe |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3056110 crossref_primary_10_1177_00375497251337726 crossref_primary_10_3390_en14102877 crossref_primary_10_1016_j_measurement_2024_115730 crossref_primary_10_1007_s13369_020_05227_6 crossref_primary_10_1088_1361_6501_ac3709 crossref_primary_10_1038_s41598_024_51424_w crossref_primary_10_3390_s24237852 crossref_primary_10_3390_su14031340 crossref_primary_10_3233_JIFS_213506 crossref_primary_10_3390_app10217471 crossref_primary_10_1016_j_measurement_2020_108840 crossref_primary_10_1038_s41598_017_18625_y crossref_primary_10_1016_j_ijrmms_2018_02_004 crossref_primary_10_1016_j_heliyon_2024_e38725 crossref_primary_10_1093_jcde_qwac104 crossref_primary_10_3390_en11051106 crossref_primary_10_1155_2017_3809525 crossref_primary_10_1155_2021_8552247 |
| Cites_doi | 10.1109/ICOSP.2010.5656726 10.5370/JEET.2013.8.5.1049 10.1109/ADCOM.2007.104 10.1109/ICCASM.2010.5620422 10.1016/j.cagd.2012.03.004 10.1080/02664763.2014.1001728 10.1109/ICASSP.1999.758391 10.1109/ICGPR.2012.6254911 10.1109/TPWRS.2002.800906 10.3390/s16020189 10.1037/h0042519 10.1109/ISPA.2012.48 10.1109/TPS.2009.2037151 10.4028/www.scientific.net/AMM.556-562.2862 10.1109/28.222427 10.1016/j.sigpro.2015.01.001 10.1109/CISP.2010.5647389 10.1016/j.measurement.2016.04.051 10.1016/j.isatra.2014.06.008 10.1109/ICMLC.2002.1174412 10.3390/s16040479 10.1109/ICICISYS.2009.5357605 10.1109/ICINFA.2010.5512076 10.1109/ICNN.1994.374355 10.1098/rspa.2003.1221 10.1109/IHMSC.2015.154 10.1098/rspa.1998.0193 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.21595/jve.2016.17386 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2538-8460 |
| EndPage | 4275 |
| ExternalDocumentID | 10_21595_jve_2016_17386 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c282t-371ea6e8d8bcc9cca2d27ace784450f4574aa9beae99604fc744475b274671d53 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388743900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1392-8716 |
| IngestDate | Sat Nov 29 07:52:07 EST 2025 Tue Nov 18 20:52:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c282t-371ea6e8d8bcc9cca2d27ace784450f4574aa9beae99604fc744475b274671d53 |
| OpenAccessLink | https://www.jvejournals.com/article/17386/pdf |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_21595_jve_2016_17386 crossref_citationtrail_10_21595_jve_2016_17386 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-15 |
| PublicationDateYYYYMMDD | 2016-11-15 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of Vibroengineering |
| PublicationYear | 2016 |
| References | key-10.21595/jve.2016.17386-cit1 key-10.21595/jve.2016.17386-cit3 key-10.21595/jve.2016.17386-cit2 key-10.21595/jve.2016.17386-cit28 key-10.21595/jve.2016.17386-cit29 key-10.21595/jve.2016.17386-cit26 key-10.21595/jve.2016.17386-cit27 key-10.21595/jve.2016.17386-cit20 key-10.21595/jve.2016.17386-cit21 key-10.21595/jve.2016.17386-cit24 key-10.21595/jve.2016.17386-cit25 key-10.21595/jve.2016.17386-cit22 key-10.21595/jve.2016.17386-cit23 key-10.21595/jve.2016.17386-cit17 key-10.21595/jve.2016.17386-cit18 key-10.21595/jve.2016.17386-cit15 key-10.21595/jve.2016.17386-cit16 key-10.21595/jve.2016.17386-cit19 key-10.21595/jve.2016.17386-cit5 key-10.21595/jve.2016.17386-cit31 key-10.21595/jve.2016.17386-cit4 key-10.21595/jve.2016.17386-cit10 key-10.21595/jve.2016.17386-cit32 key-10.21595/jve.2016.17386-cit7 key-10.21595/jve.2016.17386-cit6 key-10.21595/jve.2016.17386-cit30 key-10.21595/jve.2016.17386-cit9 key-10.21595/jve.2016.17386-cit13 key-10.21595/jve.2016.17386-cit8 key-10.21595/jve.2016.17386-cit14 key-10.21595/jve.2016.17386-cit11 key-10.21595/jve.2016.17386-cit12 |
| References_xml | – ident: key-10.21595/jve.2016.17386-cit6 doi: 10.1109/ICOSP.2010.5656726 – ident: key-10.21595/jve.2016.17386-cit15 doi: 10.5370/JEET.2013.8.5.1049 – ident: key-10.21595/jve.2016.17386-cit16 – ident: key-10.21595/jve.2016.17386-cit21 doi: 10.1109/ADCOM.2007.104 – ident: key-10.21595/jve.2016.17386-cit11 doi: 10.1109/ICCASM.2010.5620422 – ident: key-10.21595/jve.2016.17386-cit26 doi: 10.1016/j.cagd.2012.03.004 – ident: key-10.21595/jve.2016.17386-cit27 doi: 10.1080/02664763.2014.1001728 – ident: key-10.21595/jve.2016.17386-cit4 doi: 10.1109/ICASSP.1999.758391 – ident: key-10.21595/jve.2016.17386-cit5 doi: 10.1109/ICGPR.2012.6254911 – ident: key-10.21595/jve.2016.17386-cit18 doi: 10.1109/TPWRS.2002.800906 – ident: key-10.21595/jve.2016.17386-cit29 – ident: key-10.21595/jve.2016.17386-cit19 doi: 10.3390/s16020189 – ident: key-10.21595/jve.2016.17386-cit2 – ident: key-10.21595/jve.2016.17386-cit17 doi: 10.1037/h0042519 – ident: key-10.21595/jve.2016.17386-cit23 doi: 10.1109/ISPA.2012.48 – ident: key-10.21595/jve.2016.17386-cit25 doi: 10.1109/TPS.2009.2037151 – ident: key-10.21595/jve.2016.17386-cit13 doi: 10.4028/www.scientific.net/AMM.556-562.2862 – ident: key-10.21595/jve.2016.17386-cit1 doi: 10.1109/28.222427 – ident: key-10.21595/jve.2016.17386-cit22 doi: 10.1016/j.sigpro.2015.01.001 – ident: key-10.21595/jve.2016.17386-cit31 doi: 10.1109/CISP.2010.5647389 – ident: key-10.21595/jve.2016.17386-cit20 doi: 10.1016/j.measurement.2016.04.051 – ident: key-10.21595/jve.2016.17386-cit14 doi: 10.1016/j.isatra.2014.06.008 – ident: key-10.21595/jve.2016.17386-cit9 – ident: key-10.21595/jve.2016.17386-cit3 – ident: key-10.21595/jve.2016.17386-cit7 doi: 10.1109/ICMLC.2002.1174412 – ident: key-10.21595/jve.2016.17386-cit12 doi: 10.3390/s16040479 – ident: key-10.21595/jve.2016.17386-cit8 doi: 10.1109/ICICISYS.2009.5357605 – ident: key-10.21595/jve.2016.17386-cit10 doi: 10.1109/ICINFA.2010.5512076 – ident: key-10.21595/jve.2016.17386-cit24 doi: 10.1109/ICNN.1994.374355 – ident: key-10.21595/jve.2016.17386-cit30 doi: 10.1098/rspa.2003.1221 – ident: key-10.21595/jve.2016.17386-cit32 doi: 10.1109/IHMSC.2015.154 – ident: key-10.21595/jve.2016.17386-cit28 doi: 10.1098/rspa.1998.0193 |
| SSID | ssib044746104 |
| Score | 2.188904 |
| Snippet | This paper provides a novel rock-coal interface recognition method based on stacked sparse autoencoders (SSAE). Given their different size and hardness, coal... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 4261 |
| Title | Recognition of rock–coal interface in top coal caving through tail beam vibrations by using stacked sparse autoencoders |
| Volume | 18 |
| WOSCitedRecordID | wos000388743900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2538-8460 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044746104 issn: 1392-8716 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELWWwoFLBQJEaYt84IAUpawTbxIfUVXgABVCBSouke040qKSrHaTaHup-Ae-gt_iS5ixnWworVQOXKJo5EyymZfxjHf8hpBn4OFmppQsZDxNQi4SESquRIi5h8qmShVa22YT6fFxdnoq3k8mP_u9MN1ZWlXZei0W_9XUIANj49bZfzD3oBQEcA5GhyOYHY43MvyHviTIRYJLdHi-oiHWteXYwNbUUlu6kKZeBFaqZed2Trm-PVhYGigjvwUdJtSuXg5C1XblFyDg6y8CcEfLlQlk29RIiFn4cvorot1PoAXGDOSHfy1Yv27r9XxA6mcv_QKXaDkfjbZLu2_NfLxcwRLct-c2bHoPCwFZiFmam4CsLEKvC4HQ9Gq33PbFxM7HYtI3mq955FqvXJ4LIJYRyJvxtUM2VJYcMOxvupn2-r_6L82GQ40iZEdWRQ4KclSQWwW3yG24ocDqwXcXR73r4jxF4nrXQtn_QEckZXW8-PMhRjHQKJg5uUe2vV3oS4ee-2RiqgfkfIQcWpcUkfPr-w9EBx0wA2cUMEOt1GGGesxQxAxFzNANZqg6pxYz1GOGOszQMWYeko-vjk4O34S-M0eoIUVvYFZiRiYmKzKltQAnEBVRCs-QZpzPpiWfpVxKATc0lvyn1ClHYkkVYXMbVsziR2SrqivzmFAdI8FTwaJS4-JCIrmIjRIs1ibmMit3yEH_rnLtaeuxe8pZfo2Bdsjz4YKFY2y5buiTmw_dJXc3aN4jW82yNfvkju6a-Wr51GLhN1xmkZQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognition+of+rock%E2%80%93coal+interface+in+top+coal+caving+through+tail+beam+vibrations+by+using+stacked+sparse+autoencoders&rft.jtitle=Journal+of+Vibroengineering&rft.au=Zhang%2C+Guoxin&rft.au=Wang%2C+Zengcai&rft.au=Zhao%2C+Lei&rft.date=2016-11-15&rft.issn=1392-8716&rft.eissn=2538-8460&rft.volume=18&rft.issue=7&rft.spage=4261&rft.epage=4275&rft_id=info:doi/10.21595%2Fjve.2016.17386&rft.externalDBID=n%2Fa&rft.externalDocID=10_21595_jve_2016_17386 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-8716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-8716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-8716&client=summon |