Two Convergent Primal–Dual Hybrid Gradient Type Methods for Convex Programming with Linear Constraints
As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field. However, the PDHG method may be divergent without further assumption. Based on the projection and contraction methods for monotone variationa...
Uloženo v:
| Vydáno v: | Bulletin of the Iranian Mathematical Society Ročník 49; číslo 3 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.06.2023
|
| Témata: | |
| ISSN: | 1017-060X, 1735-8515 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field. However, the PDHG method may be divergent without further assumption. Based on the projection and contraction methods for monotone variational inequalities, this paper presents two convergent PDHG-type (C-PDHG) methods for the convex programming with linear constraints, whose proximal parameters
r
and
s
only need to satisfy
r
>
0
,
s
>
0
,
r
s
>
1
4
‖
A
T
A
‖
and
r
>
0
,
s
>
0
, respectively. The global convergence of the two new C-PDHG methods is proved. Furthermore, the convergence rate for linearly equality constrained programming is also studied. Finally, some numerical results on the linear support vector machine and the image reconstruction are reported to show the efficiency of the two C-PDHG methods. |
|---|---|
| AbstractList | As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field. However, the PDHG method may be divergent without further assumption. Based on the projection and contraction methods for monotone variational inequalities, this paper presents two convergent PDHG-type (C-PDHG) methods for the convex programming with linear constraints, whose proximal parameters
r
and
s
only need to satisfy
r
>
0
,
s
>
0
,
r
s
>
1
4
‖
A
T
A
‖
and
r
>
0
,
s
>
0
, respectively. The global convergence of the two new C-PDHG methods is proved. Furthermore, the convergence rate for linearly equality constrained programming is also studied. Finally, some numerical results on the linear support vector machine and the image reconstruction are reported to show the efficiency of the two C-PDHG methods. |
| ArticleNumber | 29 |
| Author | Liu, Jing Sun, Min Tian, Maoying |
| Author_xml | – sequence: 1 givenname: Min surname: Sun fullname: Sun, Min email: ziyouxiaodou@163.com organization: School of Mathematics and Statistics, Zaozhuang University – sequence: 2 givenname: Jing surname: Liu fullname: Liu, Jing organization: School of Data Sciences, Zhejiang University of Finance and Economics – sequence: 3 givenname: Maoying surname: Tian fullname: Tian, Maoying organization: Department of Physiology, Shandong Coal Mining Health School |
| BookMark | eNp9kM9OAjEQxhujiYi8gKe-QLXT3bbL0aCCCUYPmHhrutuy1EBL2kXk5jv4hj6JBTx7mj_f_CYz3wU69cFbhK6AXgOl8iaVMKwooawguZQVKU9QD2TBScWBn-acgiRU0LdzNEjJ1ZQXFQPORA8tZtuAR8F_2Nha3-GX6FZ6-fP1fbfRSzzZ1dEZPI7auL06260tfrLdIpiE5yEeyc9MhTbq1cr5Fm9dt8BT560-yKmL2vkuXaKzuV4mO_iLffT6cD8bTcj0efw4up2ShlXQEWuttqCpKA0vQdq6AtPUIEwJADWzUuS-kTUXDRM146waWm6gFFwAk5wVfcSOe5sYUop2rtb7l-JOAVV7u9TRLpXtUge7VJmh4gilPOxbG9V72ESf7_yP-gVzQ3FQ |
| Cites_doi | 10.1515/9781400873173 10.1007/s10851-022-01089-9 10.1007/s10851-010-0251-1 10.1007/s40305-015-0108-9 10.1007/s10589-007-9109-x 10.1007/s40314-016-0371-3 10.1007/s10589-013-9564-5 10.1137/100814494 10.1007/s11075-018-0618-8 10.3934/jimo.2021174 10.1017/CBO9780511801389 10.1016/j.amc.2012.11.093 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to Iranian Mathematical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to Iranian Mathematical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s41980-023-00778-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1735-8515 |
| ExternalDocumentID | 10_1007_s41980_023_00778_4 |
| GrantInformation_xml | – fundername: the Ministry of Education’s Industry-university-research Collaborative Education Project grantid: 220903654122624 – fundername: the Natural Science Foundation of Shan- dong Province grantid: ZR2022MA081 |
| GroupedDBID | -EM 0R~ 23N 406 5GY AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDBF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIPV ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AENEX AEOHA AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA C1A CSCUP DPUIP E3Z EBLON EBS EJD EOJEC ESX FIGPU FINBP FNLPD FSGXE GGCAI IAO IKXTQ ITC IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J OBODZ OK1 P2P PT4 RLLFE RNS ROL RSV SISQX SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG TUS UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c281t-eeeae1a064d5417eb81dcb16d4111b2e76d54d7b56c26b25289e5d14656127523 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000974579800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-060X |
| IngestDate | Sat Nov 29 02:52:38 EST 2025 Fri Feb 21 02:43:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Convergence rate Primal–dual hybrid gradient method Global convergence 90C30 90C25 Convex programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c281t-eeeae1a064d5417eb81dcb16d4111b2e76d54d7b56c26b25289e5d14656127523 |
| ParticipantIDs | crossref_primary_10_1007_s41980_023_00778_4 springer_journals_10_1007_s41980_023_00778_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Bulletin of the Iranian Mathematical Society |
| PublicationTitleAbbrev | Bull. Iran. Math. Soc |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore |
| Publisher_xml | – name: Springer Nature Singapore |
| References | You, Jiang (CR8) 2023; 19 He, Xu, Yuan (CR13) 2022; 64 Rockafellar (CR14) 1970 Cai, Gu, He (CR18) 2014; 57 Ma, Bi, Gao (CR9) 2019; 82 Zhu, Chan (CR5) 2008 You, Fu, He (CR7) 2014; 10 CR4 Ma, Ni (CR19) 2018; 37 CR3 He (CR16) 2009; 42 Hou (CR17) 2013; 219 CR15 Chambolle, Pock (CR11) 2011; 40 CR10 Facchinei, Pang (CR20) 2003 He (CR6) 2016; 38 He, Yuan, Zhang (CR1) 2013; 56 He (CR2) 2015; 3 He, Yuan (CR12) 2012; 5 M Zhu (778_CR5) 2008 LS Hou (778_CR17) 2013; 219 BS He (778_CR1) 2013; 56 YF You (778_CR7) 2014; 10 BS He (778_CR2) 2015; 3 YF You (778_CR8) 2023; 19 778_CR4 F Ma (778_CR9) 2019; 82 A Chambolle (778_CR11) 2011; 40 RT Rockafellar (778_CR14) 1970 BS He (778_CR12) 2012; 5 778_CR3 F Ma (778_CR19) 2018; 37 F Facchinei (778_CR20) 2003 BS He (778_CR6) 2016; 38 BS He (778_CR16) 2009; 42 778_CR10 BS He (778_CR13) 2022; 64 778_CR15 XJ Cai (778_CR18) 2014; 57 |
| References_xml | – year: 1970 ident: CR14 publication-title: Convex Analysis doi: 10.1515/9781400873173 – volume: 64 start-page: 662 issue: 6 year: 2022 end-page: 671 ident: CR13 article-title: On convergence of the Arrow-Hurwicz method for saddle point problems publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-022-01089-9 – ident: CR3 – ident: CR4 – ident: CR15 – year: 2003 ident: CR20 publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems – volume: 40 start-page: 120 year: 2011 end-page: 145 ident: CR11 article-title: A first-order primal-dual algorithm for convex problems with applications to imaging publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – volume: 3 start-page: 391 year: 2015 end-page: 420 ident: CR2 article-title: PPA-like contraction methods for convex optimization: a framework using variation inequality approach publication-title: J. Oper. Res. Soc. China doi: 10.1007/s40305-015-0108-9 – ident: CR10 – volume: 42 start-page: 195 year: 2009 end-page: 212 ident: CR16 article-title: Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9109-x – volume: 219 start-page: 5862 year: 2013 end-page: 5869 ident: CR17 article-title: On the (1/ ) convergence rate of the parallel descent-like method and parallel splitting augmented Lagrangian method for solving a class of variational inequalities publication-title: Appl. Math. Comput. – volume: 37 start-page: 896 issue: 2 year: 2018 end-page: 911 ident: CR19 article-title: A class of customized proximal point algorithms for linearly constrained convex optimization publication-title: Comput. Appl. Math. doi: 10.1007/s40314-016-0371-3 – volume: 56 start-page: 559 year: 2013 end-page: 572 ident: CR1 article-title: A customized proximal point algorithm for convex minimization with linear constraints publication-title: Comput. Optimiz. Appl. doi: 10.1007/s10589-013-9564-5 – year: 2008 ident: CR5 publication-title: An Efficient Primal-dual Hybrid Gradient Algorithm for Total Variation Image Restoration, CAM Report 08–34 – volume: 38 start-page: 74 issue: 1 year: 2016 end-page: 96 ident: CR6 article-title: From the projection and contraction methods for variational inequalities to the splitting contraction methods for convex optimization publication-title: Numer. Math. J. Chin. Univ. – volume: 10 start-page: 199 year: 2014 end-page: 213 ident: CR7 article-title: Lagrangian-PPA based contraction methods for linearly constrained convex optimization publication-title: Pacific J. Optimiz. – volume: 5 start-page: 119 issue: 1 year: 2012 end-page: 149 ident: CR12 article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective publication-title: SIAM J. Imag. Sci. doi: 10.1137/100814494 – volume: 57 start-page: 339 year: 2014 end-page: 363 ident: CR18 article-title: On the (1/ ) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators publication-title: Comput. Appl. Math. – volume: 82 start-page: 641 year: 2019 end-page: 662 ident: CR9 article-title: A prediction-correction-based primal-dual hybrid gradient method for linearly constrained convex minimization publication-title: Numeric. Algorithms doi: 10.1007/s11075-018-0618-8 – volume: 19 start-page: 56 issue: 1 year: 2023 end-page: 68 ident: CR8 article-title: Improved Lagrangian-PPA based prediction correction method for linearly constrained convex optimization publication-title: J. Ind. Manage. Optimiz. doi: 10.3934/jimo.2021174 – volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems year: 2003 ident: 778_CR20 – ident: 778_CR15 – ident: 778_CR3 doi: 10.1017/CBO9780511801389 – volume: 56 start-page: 559 year: 2013 ident: 778_CR1 publication-title: Comput. Optimiz. Appl. doi: 10.1007/s10589-013-9564-5 – volume-title: An Efficient Primal-dual Hybrid Gradient Algorithm for Total Variation Image Restoration, CAM Report 08–34 year: 2008 ident: 778_CR5 – ident: 778_CR10 – volume: 38 start-page: 74 issue: 1 year: 2016 ident: 778_CR6 publication-title: Numer. Math. J. Chin. Univ. – volume: 3 start-page: 391 year: 2015 ident: 778_CR2 publication-title: J. Oper. Res. Soc. China doi: 10.1007/s40305-015-0108-9 – volume: 42 start-page: 195 year: 2009 ident: 778_CR16 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-007-9109-x – volume: 219 start-page: 5862 year: 2013 ident: 778_CR17 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.11.093 – volume: 40 start-page: 120 year: 2011 ident: 778_CR11 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-010-0251-1 – volume: 57 start-page: 339 year: 2014 ident: 778_CR18 publication-title: Comput. Appl. Math. – volume: 19 start-page: 56 issue: 1 year: 2023 ident: 778_CR8 publication-title: J. Ind. Manage. Optimiz. doi: 10.3934/jimo.2021174 – ident: 778_CR4 – volume: 10 start-page: 199 year: 2014 ident: 778_CR7 publication-title: Pacific J. Optimiz. – volume-title: Convex Analysis year: 1970 ident: 778_CR14 doi: 10.1515/9781400873173 – volume: 82 start-page: 641 year: 2019 ident: 778_CR9 publication-title: Numeric. Algorithms doi: 10.1007/s11075-018-0618-8 – volume: 5 start-page: 119 issue: 1 year: 2012 ident: 778_CR12 publication-title: SIAM J. Imag. Sci. doi: 10.1137/100814494 – volume: 37 start-page: 896 issue: 2 year: 2018 ident: 778_CR19 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-016-0371-3 – volume: 64 start-page: 662 issue: 6 year: 2022 ident: 778_CR13 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-022-01089-9 |
| SSID | ssib053821526 ssj0000395730 |
| Score | 2.2473586 |
| Snippet | As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field.... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| SubjectTerms | Mathematics Mathematics and Statistics Original Paper |
| Title | Two Convergent Primal–Dual Hybrid Gradient Type Methods for Convex Programming with Linear Constraints |
| URI | https://link.springer.com/article/10.1007/s41980-023-00778-4 |
| Volume | 49 |
| WOSCitedRecordID | wos000974579800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1735-8515 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000395730 issn: 1017-060X databaseCode: RSV dateStart: 20180201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6Js8oEbWKoTL-kRFQqXVpUoqLcoThyBBC1qUpYb_8Af8iXMOItUCSHBNfFE1mTGfmPPvCHkxDcxj3QqmREiYcIqwYzVmqWq7VuuAxWpxDWb0P1-MBq1B2VRWFZlu1dXkm6lrovdBMTHLQZ7DEMOmoCJRbIkkW0GY_Sbu8qKwIOxV6uqT1paeBXlF7QEHHO9WqOyeubnz87vUPPXo27X6a7_b74bZK1EmfS8MItNsmDHW2S1V1O0Ztvkfvg6oR3MOcfyy5wOkHbi8evj82IGktfvWMlFr6YuIyynGK7Snus2nVHAuYXkG0i59K4nmBjFI10KsS34Dr7OXPeJPNsht93LYeealW0XWOwFPGfW2sjyCLBKIgXX1gCkjQ1XiYB10XhWK3ieaCNV7CnjSQjZrEw4Eq8hW7zn75LGeDK2e4SmgY5gSUgBVShhTRIBYDPtVMogTWPf6CY5rVQdPhfsGmHNo-z0F4L-Qqe_UDTJWaXpsPS07Jfh-38bfkBWPPez8ITlkDTy6cwekeX4JX_IpsfOxL4Be5DK3w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNA0ubJt2jTOfEbQycsrfStCkKusnaeXnzP_gP_SWek7YDQQR9bXNKOM3lXL-PkCNXRzxUice0EDETRgqmjVIskXXXcOXLUMaWbEJ1u_5gUO8VTWFpWe1epiTtST1tdhPgH9cY3DEMMWh8JmbJnECaHfTRr2_LVQQ7GLla5TTSUsNUlJvDEnCs9aoNiu6Znz_7_Yb6nh61t05z5X_zXSXLhZVJT_NlsUZmzHCdLHWmEK3pBrnrv4xoA2vOsf0yoz2EnXj4fP84m4Bk6w07uejF2FaEZRTdVdqxbNMpBTs3l3wFKVve9QgToxjSpeDbwt7B16lln8jSTXLTPO83WqygXWCR4_OMGWNCw0OwVWJPcGU0mLSR5jIWcC5qxygJz2OlPRk5UjseuGzGizkCryFavONukcpwNDTbhCa-CuFISMCqkMLoOASDTdcTz_OTJHK1qpLjUtXBU46uEUxxlK3-AtBfYPUXiCo5KTUdFDst_WX4zt-GH5KFVr_TDtqX3atdsujYH4fRlj1SycYTs0_mo-fsPh0f2OX2BQgVzcM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIAQH3ojxzIEbRFvbNOmOaGMMwaYJBtqtatpEIEE3rR2PG_-Bf8gvwUnbiUkICXFt4ypy7fgR-zNCR44IrYArlwhKI0Ilo0RIzoliNUda3GMBi8ywCd7peP1-rfuti99UuxdXkllPg0ZpitPKMFKVSeMbhVi5SsDeEI1H4xE6i-YoRDK6qOv65q6QKNBmPbeVTbIuVX0t5WQQBZau-6r2806anz87ba2mr0qNBWqu_H_vq2g59z7xaSYua2hGxutoqT2Bbk020H3vZYDruhZdt2WmuKvhKB4_3z8aY6BsvekOL3w-MpViKdZhLG6bKdQJBv83o3wFKlP29QSbxDrViyHmBZ3SrxMzlSJNNtFt86xXb5F8HAMJbc9KiZQykFYAPkzkUotLAa5uKCwWUTgvhS05g-cRFy4LbSZsF0I56UaWBmTTKPK2s4VK8SCW2wgrjwdwVCjwNhiVIgrAkRM15bqeUqEjeBkdF2z3hxnqhj_BVzb884F_vuGfT8vopOC6n2tg8svynb8tP0QL3UbTv7roXO6iRdv8N52E2UOldDSW-2g-fE4fktGBkbwvaHXWpw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Convergent+Primal%E2%80%93Dual+Hybrid+Gradient+Type+Methods+for+Convex+Programming+with+Linear+Constraints&rft.jtitle=Bulletin+of+the+Iranian+Mathematical+Society&rft.au=Sun%2C+Min&rft.au=Liu%2C+Jing&rft.au=Tian%2C+Maoying&rft.date=2023-06-01&rft.pub=Springer+Nature+Singapore&rft.issn=1017-060X&rft.eissn=1735-8515&rft.volume=49&rft.issue=3&rft_id=info:doi/10.1007%2Fs41980-023-00778-4&rft.externalDocID=10_1007_s41980_023_00778_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-060X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-060X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-060X&client=summon |