Two Convergent Primal–Dual Hybrid Gradient Type Methods for Convex Programming with Linear Constraints

As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field. However, the PDHG method may be divergent without further assumption. Based on the projection and contraction methods for monotone variationa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bulletin of the Iranian Mathematical Society Ročník 49; číslo 3
Hlavní autoři: Sun, Min, Liu, Jing, Tian, Maoying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.06.2023
Témata:
ISSN:1017-060X, 1735-8515
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field. However, the PDHG method may be divergent without further assumption. Based on the projection and contraction methods for monotone variational inequalities, this paper presents two convergent PDHG-type (C-PDHG) methods for the convex programming with linear constraints, whose proximal parameters r and s only need to satisfy r > 0 , s > 0 , r s > 1 4 ‖ A T A ‖ and r > 0 , s > 0 , respectively. The global convergence of the two new C-PDHG methods is proved. Furthermore, the convergence rate for linearly equality constrained programming is also studied. Finally, some numerical results on the linear support vector machine and the image reconstruction are reported to show the efficiency of the two C-PDHG methods.
AbstractList As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field. However, the PDHG method may be divergent without further assumption. Based on the projection and contraction methods for monotone variational inequalities, this paper presents two convergent PDHG-type (C-PDHG) methods for the convex programming with linear constraints, whose proximal parameters r and s only need to satisfy r > 0 , s > 0 , r s > 1 4 ‖ A T A ‖ and r > 0 , s > 0 , respectively. The global convergence of the two new C-PDHG methods is proved. Furthermore, the convergence rate for linearly equality constrained programming is also studied. Finally, some numerical results on the linear support vector machine and the image reconstruction are reported to show the efficiency of the two C-PDHG methods.
ArticleNumber 29
Author Liu, Jing
Sun, Min
Tian, Maoying
Author_xml – sequence: 1
  givenname: Min
  surname: Sun
  fullname: Sun, Min
  email: ziyouxiaodou@163.com
  organization: School of Mathematics and Statistics, Zaozhuang University
– sequence: 2
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: School of Data Sciences, Zhejiang University of Finance and Economics
– sequence: 3
  givenname: Maoying
  surname: Tian
  fullname: Tian, Maoying
  organization: Department of Physiology, Shandong Coal Mining Health School
BookMark eNp9kM9OAjEQxhujiYi8gKe-QLXT3bbL0aCCCUYPmHhrutuy1EBL2kXk5jv4hj6JBTx7mj_f_CYz3wU69cFbhK6AXgOl8iaVMKwooawguZQVKU9QD2TBScWBn-acgiRU0LdzNEjJ1ZQXFQPORA8tZtuAR8F_2Nha3-GX6FZ6-fP1fbfRSzzZ1dEZPI7auL06260tfrLdIpiE5yEeyc9MhTbq1cr5Fm9dt8BT560-yKmL2vkuXaKzuV4mO_iLffT6cD8bTcj0efw4up2ShlXQEWuttqCpKA0vQdq6AtPUIEwJADWzUuS-kTUXDRM146waWm6gFFwAk5wVfcSOe5sYUop2rtb7l-JOAVV7u9TRLpXtUge7VJmh4gilPOxbG9V72ESf7_yP-gVzQ3FQ
Cites_doi 10.1515/9781400873173
10.1007/s10851-022-01089-9
10.1007/s10851-010-0251-1
10.1007/s40305-015-0108-9
10.1007/s10589-007-9109-x
10.1007/s40314-016-0371-3
10.1007/s10589-013-9564-5
10.1137/100814494
10.1007/s11075-018-0618-8
10.3934/jimo.2021174
10.1017/CBO9780511801389
10.1016/j.amc.2012.11.093
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Iranian Mathematical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Iranian Mathematical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41980-023-00778-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1735-8515
ExternalDocumentID 10_1007_s41980_023_00778_4
GrantInformation_xml – fundername: the Ministry of Education’s Industry-university-research Collaborative Education Project
  grantid: 220903654122624
– fundername: the Natural Science Foundation of Shan- dong Province
  grantid: ZR2022MA081
GroupedDBID -EM
0R~
23N
406
5GY
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIPV
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AENEX
AEOHA
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
C1A
CSCUP
DPUIP
E3Z
EBLON
EBS
EJD
EOJEC
ESX
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
IAO
IKXTQ
ITC
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OBODZ
OK1
P2P
PT4
RLLFE
RNS
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c281t-eeeae1a064d5417eb81dcb16d4111b2e76d54d7b56c26b25289e5d14656127523
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000974579800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-060X
IngestDate Sat Nov 29 02:52:38 EST 2025
Fri Feb 21 02:43:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Convergence rate
Primal–dual hybrid gradient method
Global convergence
90C30
90C25
Convex programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-eeeae1a064d5417eb81dcb16d4111b2e76d54d7b56c26b25289e5d14656127523
ParticipantIDs crossref_primary_10_1007_s41980_023_00778_4
springer_journals_10_1007_s41980_023_00778_4
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Bulletin of the Iranian Mathematical Society
PublicationTitleAbbrev Bull. Iran. Math. Soc
PublicationYear 2023
Publisher Springer Nature Singapore
Publisher_xml – name: Springer Nature Singapore
References You, Jiang (CR8) 2023; 19
He, Xu, Yuan (CR13) 2022; 64
Rockafellar (CR14) 1970
Cai, Gu, He (CR18) 2014; 57
Ma, Bi, Gao (CR9) 2019; 82
Zhu, Chan (CR5) 2008
You, Fu, He (CR7) 2014; 10
CR4
Ma, Ni (CR19) 2018; 37
CR3
He (CR16) 2009; 42
Hou (CR17) 2013; 219
CR15
Chambolle, Pock (CR11) 2011; 40
CR10
Facchinei, Pang (CR20) 2003
He (CR6) 2016; 38
He, Yuan, Zhang (CR1) 2013; 56
He (CR2) 2015; 3
He, Yuan (CR12) 2012; 5
M Zhu (778_CR5) 2008
LS Hou (778_CR17) 2013; 219
BS He (778_CR1) 2013; 56
YF You (778_CR7) 2014; 10
BS He (778_CR2) 2015; 3
YF You (778_CR8) 2023; 19
778_CR4
F Ma (778_CR9) 2019; 82
A Chambolle (778_CR11) 2011; 40
RT Rockafellar (778_CR14) 1970
BS He (778_CR12) 2012; 5
778_CR3
F Ma (778_CR19) 2018; 37
F Facchinei (778_CR20) 2003
BS He (778_CR6) 2016; 38
BS He (778_CR16) 2009; 42
778_CR10
BS He (778_CR13) 2022; 64
778_CR15
XJ Cai (778_CR18) 2014; 57
References_xml – year: 1970
  ident: CR14
  publication-title: Convex Analysis
  doi: 10.1515/9781400873173
– volume: 64
  start-page: 662
  issue: 6
  year: 2022
  end-page: 671
  ident: CR13
  article-title: On convergence of the Arrow-Hurwicz method for saddle point problems
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-022-01089-9
– ident: CR3
– ident: CR4
– ident: CR15
– year: 2003
  ident: CR20
  publication-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
– volume: 40
  start-page: 120
  year: 2011
  end-page: 145
  ident: CR11
  article-title: A first-order primal-dual algorithm for convex problems with applications to imaging
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 3
  start-page: 391
  year: 2015
  end-page: 420
  ident: CR2
  article-title: PPA-like contraction methods for convex optimization: a framework using variation inequality approach
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-015-0108-9
– ident: CR10
– volume: 42
  start-page: 195
  year: 2009
  end-page: 212
  ident: CR16
  article-title: Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9109-x
– volume: 219
  start-page: 5862
  year: 2013
  end-page: 5869
  ident: CR17
  article-title: On the (1/ ) convergence rate of the parallel descent-like method and parallel splitting augmented Lagrangian method for solving a class of variational inequalities
  publication-title: Appl. Math. Comput.
– volume: 37
  start-page: 896
  issue: 2
  year: 2018
  end-page: 911
  ident: CR19
  article-title: A class of customized proximal point algorithms for linearly constrained convex optimization
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-016-0371-3
– volume: 56
  start-page: 559
  year: 2013
  end-page: 572
  ident: CR1
  article-title: A customized proximal point algorithm for convex minimization with linear constraints
  publication-title: Comput. Optimiz. Appl.
  doi: 10.1007/s10589-013-9564-5
– year: 2008
  ident: CR5
  publication-title: An Efficient Primal-dual Hybrid Gradient Algorithm for Total Variation Image Restoration, CAM Report 08–34
– volume: 38
  start-page: 74
  issue: 1
  year: 2016
  end-page: 96
  ident: CR6
  article-title: From the projection and contraction methods for variational inequalities to the splitting contraction methods for convex optimization
  publication-title: Numer. Math. J. Chin. Univ.
– volume: 10
  start-page: 199
  year: 2014
  end-page: 213
  ident: CR7
  article-title: Lagrangian-PPA based contraction methods for linearly constrained convex optimization
  publication-title: Pacific J. Optimiz.
– volume: 5
  start-page: 119
  issue: 1
  year: 2012
  end-page: 149
  ident: CR12
  article-title: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/100814494
– volume: 57
  start-page: 339
  year: 2014
  end-page: 363
  ident: CR18
  article-title: On the (1/ ) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators
  publication-title: Comput. Appl. Math.
– volume: 82
  start-page: 641
  year: 2019
  end-page: 662
  ident: CR9
  article-title: A prediction-correction-based primal-dual hybrid gradient method for linearly constrained convex minimization
  publication-title: Numeric. Algorithms
  doi: 10.1007/s11075-018-0618-8
– volume: 19
  start-page: 56
  issue: 1
  year: 2023
  end-page: 68
  ident: CR8
  article-title: Improved Lagrangian-PPA based prediction correction method for linearly constrained convex optimization
  publication-title: J. Ind. Manage. Optimiz.
  doi: 10.3934/jimo.2021174
– volume-title: Finite-Dimensional Variational Inequalities and Complementarity Problems
  year: 2003
  ident: 778_CR20
– ident: 778_CR15
– ident: 778_CR3
  doi: 10.1017/CBO9780511801389
– volume: 56
  start-page: 559
  year: 2013
  ident: 778_CR1
  publication-title: Comput. Optimiz. Appl.
  doi: 10.1007/s10589-013-9564-5
– volume-title: An Efficient Primal-dual Hybrid Gradient Algorithm for Total Variation Image Restoration, CAM Report 08–34
  year: 2008
  ident: 778_CR5
– ident: 778_CR10
– volume: 38
  start-page: 74
  issue: 1
  year: 2016
  ident: 778_CR6
  publication-title: Numer. Math. J. Chin. Univ.
– volume: 3
  start-page: 391
  year: 2015
  ident: 778_CR2
  publication-title: J. Oper. Res. Soc. China
  doi: 10.1007/s40305-015-0108-9
– volume: 42
  start-page: 195
  year: 2009
  ident: 778_CR16
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9109-x
– volume: 219
  start-page: 5862
  year: 2013
  ident: 778_CR17
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.11.093
– volume: 40
  start-page: 120
  year: 2011
  ident: 778_CR11
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 57
  start-page: 339
  year: 2014
  ident: 778_CR18
  publication-title: Comput. Appl. Math.
– volume: 19
  start-page: 56
  issue: 1
  year: 2023
  ident: 778_CR8
  publication-title: J. Ind. Manage. Optimiz.
  doi: 10.3934/jimo.2021174
– ident: 778_CR4
– volume: 10
  start-page: 199
  year: 2014
  ident: 778_CR7
  publication-title: Pacific J. Optimiz.
– volume-title: Convex Analysis
  year: 1970
  ident: 778_CR14
  doi: 10.1515/9781400873173
– volume: 82
  start-page: 641
  year: 2019
  ident: 778_CR9
  publication-title: Numeric. Algorithms
  doi: 10.1007/s11075-018-0618-8
– volume: 5
  start-page: 119
  issue: 1
  year: 2012
  ident: 778_CR12
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/100814494
– volume: 37
  start-page: 896
  issue: 2
  year: 2018
  ident: 778_CR19
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-016-0371-3
– volume: 64
  start-page: 662
  issue: 6
  year: 2022
  ident: 778_CR13
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-022-01089-9
SSID ssib053821526
ssj0000395730
Score 2.2473586
Snippet As an effective tool for convex programming, the primal–dual hybrid gradient (PDHG) method has been widely applied in science and engineering computing field....
SourceID crossref
springer
SourceType Index Database
Publisher
SubjectTerms Mathematics
Mathematics and Statistics
Original Paper
Title Two Convergent Primal–Dual Hybrid Gradient Type Methods for Convex Programming with Linear Constraints
URI https://link.springer.com/article/10.1007/s41980-023-00778-4
Volume 49
WOSCitedRecordID wos000974579800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1735-8515
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000395730
  issn: 1017-060X
  databaseCode: RSV
  dateStart: 20180201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6Js8oEbWKoTL-kRFQqXVpUoqLcoThyBBC1qUpYb_8Af8iXMOItUCSHBNfFE1mTGfmPPvCHkxDcxj3QqmREiYcIqwYzVmqWq7VuuAxWpxDWb0P1-MBq1B2VRWFZlu1dXkm6lrovdBMTHLQZ7DEMOmoCJRbIkkW0GY_Sbu8qKwIOxV6uqT1paeBXlF7QEHHO9WqOyeubnz87vUPPXo27X6a7_b74bZK1EmfS8MItNsmDHW2S1V1O0Ztvkfvg6oR3MOcfyy5wOkHbi8evj82IGktfvWMlFr6YuIyynGK7Snus2nVHAuYXkG0i59K4nmBjFI10KsS34Dr7OXPeJPNsht93LYeealW0XWOwFPGfW2sjyCLBKIgXX1gCkjQ1XiYB10XhWK3ieaCNV7CnjSQjZrEw4Eq8hW7zn75LGeDK2e4SmgY5gSUgBVShhTRIBYDPtVMogTWPf6CY5rVQdPhfsGmHNo-z0F4L-Qqe_UDTJWaXpsPS07Jfh-38bfkBWPPez8ITlkDTy6cwekeX4JX_IpsfOxL4Be5DK3w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNA0ubJt2jTOfEbQycsrfStCkKusnaeXnzP_gP_SWek7YDQQR9bXNKOM3lXL-PkCNXRzxUice0EDETRgqmjVIskXXXcOXLUMaWbEJ1u_5gUO8VTWFpWe1epiTtST1tdhPgH9cY3DEMMWh8JmbJnECaHfTRr2_LVQQ7GLla5TTSUsNUlJvDEnCs9aoNiu6Znz_7_Yb6nh61t05z5X_zXSXLhZVJT_NlsUZmzHCdLHWmEK3pBrnrv4xoA2vOsf0yoz2EnXj4fP84m4Bk6w07uejF2FaEZRTdVdqxbNMpBTs3l3wFKVve9QgToxjSpeDbwt7B16lln8jSTXLTPO83WqygXWCR4_OMGWNCw0OwVWJPcGU0mLSR5jIWcC5qxygJz2OlPRk5UjseuGzGizkCryFavONukcpwNDTbhCa-CuFISMCqkMLoOASDTdcTz_OTJHK1qpLjUtXBU46uEUxxlK3-AtBfYPUXiCo5KTUdFDst_WX4zt-GH5KFVr_TDtqX3atdsujYH4fRlj1SycYTs0_mo-fsPh0f2OX2BQgVzcM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIAQH3ojxzIEbRFvbNOmOaGMMwaYJBtqtatpEIEE3rR2PG_-Bf8gvwUnbiUkICXFt4ypy7fgR-zNCR44IrYArlwhKI0Ilo0RIzoliNUda3GMBi8ywCd7peP1-rfuti99UuxdXkllPg0ZpitPKMFKVSeMbhVi5SsDeEI1H4xE6i-YoRDK6qOv65q6QKNBmPbeVTbIuVX0t5WQQBZau-6r2806anz87ba2mr0qNBWqu_H_vq2g59z7xaSYua2hGxutoqT2Bbk020H3vZYDruhZdt2WmuKvhKB4_3z8aY6BsvekOL3w-MpViKdZhLG6bKdQJBv83o3wFKlP29QSbxDrViyHmBZ3SrxMzlSJNNtFt86xXb5F8HAMJbc9KiZQykFYAPkzkUotLAa5uKCwWUTgvhS05g-cRFy4LbSZsF0I56UaWBmTTKPK2s4VK8SCW2wgrjwdwVCjwNhiVIgrAkRM15bqeUqEjeBkdF2z3hxnqhj_BVzb884F_vuGfT8vopOC6n2tg8svynb8tP0QL3UbTv7roXO6iRdv8N52E2UOldDSW-2g-fE4fktGBkbwvaHXWpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Convergent+Primal%E2%80%93Dual+Hybrid+Gradient+Type+Methods+for+Convex+Programming+with+Linear+Constraints&rft.jtitle=Bulletin+of+the+Iranian+Mathematical+Society&rft.au=Sun%2C+Min&rft.au=Liu%2C+Jing&rft.au=Tian%2C+Maoying&rft.date=2023-06-01&rft.pub=Springer+Nature+Singapore&rft.issn=1017-060X&rft.eissn=1735-8515&rft.volume=49&rft.issue=3&rft_id=info:doi/10.1007%2Fs41980-023-00778-4&rft.externalDocID=10_1007_s41980_023_00778_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-060X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-060X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-060X&client=summon