Study of bioconvective couple-stress nanofluid flow subject to stratified conditions by using numerical and Levenberg Marquardt back-propagation algorithms
The heterogeneous fluid model is expressed for the nanofluid flow to study the consequence of Fourier's and Fick's laws. The magnetohydrodynamics couple-stress bioconvective nanofluid flow is considered across an extending surface with the impact of heat source/sink and stratified boundary...
Uložené v:
| Vydané v: | International communications in heat and mass transfer Ročník 164; s. 108947 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.05.2025
|
| Predmet: | |
| ISSN: | 0735-1933 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The heterogeneous fluid model is expressed for the nanofluid flow to study the consequence of Fourier's and Fick's laws. The magnetohydrodynamics couple-stress bioconvective nanofluid flow is considered across an extending surface with the impact of heat source/sink and stratified boundary conditions. The solid nano particulates and concentrations of motile microorganisms are added to the nonlinear system of differential equations conveying the non-Newtonian nanoliquid flow model. The similarity transformations are employed to transfigure the system of partial differential equations into the lowest order of ordinary differential equations. The artificial neural network (ANN) based on the LMBP (Levenberg Marquardt Back-propagation) algorithm is employed to solve these equations. The dataset is formed using the MATLAB package bvp4c. The dataset is created for diverse circumstances of flow factors, as well as validation and testing of the ANN. The accuracy of the problem is assessed through numerous statistical results (histogram, curve fitting, regression measures, and performance plots). The relative percent error between present outcomes and published studies is 0.00486 % at Pr = 2.0 (Prandtl number), where it gradually decreases up to 0.00069 % at Pr = 7.0. The outcomes are presented through the table and figures. It has been noticed that the Couple-stress nanofluid (CSNF) flow drops with the effect of the magnetic field. The CSNF temperature augments with the improvement of the thermophoresis effect, buoyancy ratio factor, Rayleigh number, and thermal radiation. Moreover, the concentration curve lessens under the impact of the Lewis number while enriched with the outcome of the concentration stratification parameter. The absolute error of reference and targeted date is attained within 10−3–10−6 which proves the exceptional precision of the results.
•Numerical study of bioconvective couple-stress nanofluid under stratification.•Effects of heat source/sink, thermophoresis, and radiation are investigated.•Governing equations solved using ANN with the Levenberg-Marquardt algorithm.•MATLAB's bvp4c solver generates high-accuracy dataset for ANN validation.•Magnetic field reduces flow, while thermophoresis and radiation enhance heat transfer. |
|---|---|
| AbstractList | The heterogeneous fluid model is expressed for the nanofluid flow to study the consequence of Fourier's and Fick's laws. The magnetohydrodynamics couple-stress bioconvective nanofluid flow is considered across an extending surface with the impact of heat source/sink and stratified boundary conditions. The solid nano particulates and concentrations of motile microorganisms are added to the nonlinear system of differential equations conveying the non-Newtonian nanoliquid flow model. The similarity transformations are employed to transfigure the system of partial differential equations into the lowest order of ordinary differential equations. The artificial neural network (ANN) based on the LMBP (Levenberg Marquardt Back-propagation) algorithm is employed to solve these equations. The dataset is formed using the MATLAB package bvp4c. The dataset is created for diverse circumstances of flow factors, as well as validation and testing of the ANN. The accuracy of the problem is assessed through numerous statistical results (histogram, curve fitting, regression measures, and performance plots). The relative percent error between present outcomes and published studies is 0.00486 % at Pr = 2.0 (Prandtl number), where it gradually decreases up to 0.00069 % at Pr = 7.0. The outcomes are presented through the table and figures. It has been noticed that the Couple-stress nanofluid (CSNF) flow drops with the effect of the magnetic field. The CSNF temperature augments with the improvement of the thermophoresis effect, buoyancy ratio factor, Rayleigh number, and thermal radiation. Moreover, the concentration curve lessens under the impact of the Lewis number while enriched with the outcome of the concentration stratification parameter. The absolute error of reference and targeted date is attained within 10−3–10−6 which proves the exceptional precision of the results.
•Numerical study of bioconvective couple-stress nanofluid under stratification.•Effects of heat source/sink, thermophoresis, and radiation are investigated.•Governing equations solved using ANN with the Levenberg-Marquardt algorithm.•MATLAB's bvp4c solver generates high-accuracy dataset for ANN validation.•Magnetic field reduces flow, while thermophoresis and radiation enhance heat transfer. |
| ArticleNumber | 108947 |
| Author | Yuan, Shuai Cheng, Dapeng |
| Author_xml | – sequence: 1 givenname: Shuai surname: Yuan fullname: Yuan, Shuai organization: Educational Technology Information Center, Shandong College of Traditional Chinese Medicine, Yantai 264199, China – sequence: 2 givenname: Dapeng surname: Cheng fullname: Cheng, Dapeng email: dapengchengcn@163.com organization: School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China |
| BookMark | eNqNkD1PwzAQhj0UiRb4Dx5ZUuwkTpoNVPGpIgZgji72OXVJ7WI7Qf0t_FlSlY2F6Yb33udOz4xMrLNIyCVnc854cbWZG7lGiFsIIXqwQaOfpywVY7yo8nJCpqzMRMKrLDslsxA2jDG-4Isp-X6NvdpTp2ljnHR2QBnNgFS6ftdhMuIwBGrBOt31RlHduS8a-mYz7tHo6OFeNNqgGitWmWicDbTZ0z4Y21Lbb9EbCR0Fq-gKB7QN-pY-g__swatIG5Afyc67HbRwKFPoWudNXG_DOTnR0AW8-J1n5P3u9m35kKxe7h-XN6tEpgseE8yVwKpIBRN5jqLAhkNVYAqqBK4KVKUUkEIulM54JjMGTIg0S6VGledVkZ2R6yNXeheCR13vvNmC39ec1QfB9ab-K7g-CK6PgkfE0xGB45-DGdMgDVqJyvjRVK2c-T_sB-edmsc |
| Cites_doi | 10.1016/j.icheatmasstransfer.2009.01.003 10.18280/ijht.390122 10.1016/j.icheatmasstransfer.2020.104655 10.1016/j.triboint.2023.109038 10.1016/j.triboint.2024.110182 10.1016/j.heliyon.2024.e36169 10.1016/j.icheatmasstransfer.2024.108195 10.3390/sym12030393 10.1080/02286203.2022.2084007 10.1371/journal.pone.0145332 10.1016/j.rineng.2023.101536 10.1039/D3NA00503H 10.1016/j.aej.2021.06.047 10.1016/j.ijthermalsci.2025.109765 10.1063/5.0200401 10.1038/s41598-023-49481-8 10.1515/jnet-2020-0092 10.1038/s41598-023-29702-w 10.1016/j.icheatmasstransfer.2023.106956 10.1038/s41598-023-27562-y 10.1007/s13369-022-06945-9 10.1016/j.ijheatfluidflow.2024.109360 10.1002/htj.22730 10.1002/anie.196904381 10.1016/j.icheatmasstransfer.2024.107564 10.1016/j.icheatmasstransfer.2024.107314 10.1016/j.aej.2022.02.013 10.1007/s10973-023-12699-9 10.1016/j.ijhydene.2024.12.422 10.1038/s41598-024-84480-3 10.1007/s12043-023-02702-1 10.1063/5.0082942 10.1016/j.rineng.2023.100905 10.1142/S0217984924500039 10.1016/j.csite.2021.101412 10.1142/S0217979225500444 10.1016/0376-7388(94)00230-V |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.icheatmasstransfer.2025.108947 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| ExternalDocumentID | 10_1016_j_icheatmasstransfer_2025_108947 S0735193325003732 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K WUQ XPP ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c281t-e4d5e96250544e56eb1a96e2ad7a1d6ed7c5a2a45df313c30a055232cfed44963 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001469454300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0735-1933 |
| IngestDate | Sat Nov 29 07:28:36 EST 2025 Sun Oct 19 01:43:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ANN Bioconvection Cattaneo-Christov heat flux Couple-stress nanofluid Modified mass flux Exponential heat source/sink |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c281t-e4d5e96250544e56eb1a96e2ad7a1d6ed7c5a2a45df313c30a055232cfed44963 |
| ParticipantIDs | crossref_primary_10_1016_j_icheatmasstransfer_2025_108947 elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2025_108947 |
| PublicationCentury | 2000 |
| PublicationDate | May 2025 2025-05-00 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | International communications in heat and mass transfer |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gul, Saeed (bb0035) 2022 Shafiq, Çolak, Sindhu (bb0105) 2023; 48 Ali, Jubair, Aluraikan, Abd El-Rahman, Eldin, Khalifa (bb0190) 2023; 20 Bilal, Farooq, Benghanem, Ahmad (bb0085) 2025; 212 Eladeb, Sambas, Bilal, Alshammari, Kolsi (bb0175) 2025; 18 Rehman, Chen, Hamid, Qi (bb0040) 2023; 830 Sarfraz, Khan (bb0070) 2024; 38 Rehman, Chen, Hamid, Alsallami, Al-Zubaidi, Saleem (bb0075) 2023; 190 Bilal, Maiz, Farooq, Ahmad, Nasrat, Ghazwani (bb0130) 2025; 15 Alabdan, Khan, Al-Qawasmi, Vakkar, Tlili (bb0030) 2021; 28 Mandal, Biswas, Manna, Gayen, Gorla, Chamkha (bb0100) 2022; 34 Ullah, Ali, Nawab, Abdussatar, Muhammad, Nisar (bb0145) 2022; 47 Sarfraz, Muhammad, Alrihieli, Abdelmohimen (bb0165) 2025; 105 Sarfraz, Khan (bb0170) 2024; 31 Xin, Ganie, Alwuthaynani, Bonyah, El-Wahed Khalifa, Fathima, Bilal (bb0065) 2024; 14 Alharbi, Alhawiti, Usman, Ullah, Alam, Bilal (bb0160) 2024; 107 Sarfraz, Khan (bb0220) 2024; 155 Rehman, Chen, Hamid (bb0060) 2025; 100 Bilal, Saeed, Gul, Rehman, Khan (bb0055) 2021; 4 Ur Rehman, Chen, Hamid (bb0215) 2023; 148 Hardesty (bb0080) 2017; 14 Ram, Ashok, Salawu, Shamshuddin (bb0225) 2023; 43 Jagadeesh, Reddy (bb0045) 2023; 52 Tarakaramu, Satya Narayana, Babu, Sarojamma, Makinde (bb0020) 2021; 39 Fick (bb0240) 1995; 100 Mahesh, Mahabaleshwar, Kumar, Öztop, Abu-Hamdeh (bb0050) 2023; 17 Sarfraz, Khan (bb0195) 2024; 10 Fourier (bb0245) 1822 Asjad, Zahid, Inc, Baleanu, Almohsen (bb0140) 2022; 61 Alqahtani, Bilal, Ali, Khalifa, Alqahtani (bb0155) 2023; 104 Rehman, Chen, Khan, Hamid, Masmoudi (bb0115) 2024; 200 Sithole, Mondal, Goqo, Sibanda, Motsa (bb0230) 2018; 339 Menzinger, Wolfgang (bb0135) 1969; 8 Ur Rehman, Chen, Duraihem, Hussien, Hamid, Qi (bb0205) 2024 Hayat, Aziz, Muhammad, Ahmad (bb0005) 2015; 10 Li, Raghunath, Alfaleh, Ali, Zaib, Khan, Puneeth (bb0150) 2023; 13 Nisar, Hayat, Alsaedi, Ahmad (bb0180) 2020; 116 Bilal, Waqas, Shafi, Eldin, Alaoui (bb0185) 2023; 13 Gholami, Bonakdari, Akhtari, Ebtehaj (bb0090) 2019; 26 Adnan, Alqahtani, Mahmood, Ould Beinane, Bilal (bb0110) 2024; 39 Bilal, Abouel Nasr, Rahman, Waqas (bb0015) 2024 Gul, Rehman, Saeed, Khan, Khan, Nasir, Bariq (bb0025) 2021; 2021 Waqas, Almutiri, Yagoob, Ahmad, Bilal (bb0210) 2024; 98 Sarfraz, Yasir, Khan (bb0200) 2023; 5 Shilpa, Leela (bb0125) 2023; 147 Cheng (bb0010) 2009; 36 Li, Waqas, Imran, Farooq, Mallawi, Tlili (bb0255) 2020; 12 Alsedias, Aly (bb0095) 2024; 152 Algehyne, Saeed, Arif, Bilal, Kumam, Galal (bb0250) 2023; 13 Ahmmed, Ali, Reza-E-Rabbi (bb0260) 2024; 11 Khan, Ghodhbani, Taha, Al-Yarimi, Zeeshan, Ijaz, Khedher (bb0120) 2024; 159 Waqas, Wakif, Al-Mdallal, Zaydan, Farooq, Hussain (bb0235) 2022; 61 Ali (10.1016/j.icheatmasstransfer.2025.108947_bb0190) 2023; 20 Tarakaramu (10.1016/j.icheatmasstransfer.2025.108947_bb0020) 2021; 39 Waqas (10.1016/j.icheatmasstransfer.2025.108947_bb0235) 2022; 61 Nisar (10.1016/j.icheatmasstransfer.2025.108947_bb0180) 2020; 116 Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0170) 2024; 31 Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0115) 2024; 200 Ur Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0215) 2023; 148 Xin (10.1016/j.icheatmasstransfer.2025.108947_bb0065) 2024; 14 Alharbi (10.1016/j.icheatmasstransfer.2025.108947_bb0160) 2024; 107 Gholami (10.1016/j.icheatmasstransfer.2025.108947_bb0090) 2019; 26 Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0070) 2024; 38 Algehyne (10.1016/j.icheatmasstransfer.2025.108947_bb0250) 2023; 13 Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0055) 2021; 4 Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0220) 2024; 155 Menzinger (10.1016/j.icheatmasstransfer.2025.108947_bb0135) 1969; 8 Waqas (10.1016/j.icheatmasstransfer.2025.108947_bb0210) 2024; 98 Gul (10.1016/j.icheatmasstransfer.2025.108947_bb0025) 2021; 2021 Shilpa (10.1016/j.icheatmasstransfer.2025.108947_bb0125) 2023; 147 Cheng (10.1016/j.icheatmasstransfer.2025.108947_bb0010) 2009; 36 Mandal (10.1016/j.icheatmasstransfer.2025.108947_bb0100) 2022; 34 Asjad (10.1016/j.icheatmasstransfer.2025.108947_bb0140) 2022; 61 Ullah (10.1016/j.icheatmasstransfer.2025.108947_bb0145) 2022; 47 Mahesh (10.1016/j.icheatmasstransfer.2025.108947_bb0050) 2023; 17 Shafiq (10.1016/j.icheatmasstransfer.2025.108947_bb0105) 2023; 48 Gul (10.1016/j.icheatmasstransfer.2025.108947_bb0035) 2022 Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0195) 2024; 10 Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0060) 2025; 100 Fick (10.1016/j.icheatmasstransfer.2025.108947_bb0240) 1995; 100 Li (10.1016/j.icheatmasstransfer.2025.108947_bb0150) 2023; 13 Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0200) 2023; 5 Alabdan (10.1016/j.icheatmasstransfer.2025.108947_bb0030) 2021; 28 Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0040) 2023; 830 Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0130) 2025; 15 Hayat (10.1016/j.icheatmasstransfer.2025.108947_bb0005) 2015; 10 Alsedias (10.1016/j.icheatmasstransfer.2025.108947_bb0095) 2024; 152 Li (10.1016/j.icheatmasstransfer.2025.108947_bb0255) 2020; 12 Eladeb (10.1016/j.icheatmasstransfer.2025.108947_bb0175) 2025; 18 Ur Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0205) 2024 Adnan (10.1016/j.icheatmasstransfer.2025.108947_bb0110) 2024; 39 Sarfraz (10.1016/j.icheatmasstransfer.2025.108947_bb0165) 2025; 105 Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0185) 2023; 13 Ram (10.1016/j.icheatmasstransfer.2025.108947_bb0225) 2023; 43 Alqahtani (10.1016/j.icheatmasstransfer.2025.108947_bb0155) 2023; 104 Khan (10.1016/j.icheatmasstransfer.2025.108947_bb0120) 2024; 159 Rehman (10.1016/j.icheatmasstransfer.2025.108947_bb0075) 2023; 190 Ahmmed (10.1016/j.icheatmasstransfer.2025.108947_bb0260) 2024; 11 Hardesty (10.1016/j.icheatmasstransfer.2025.108947_bb0080) 2017; 14 Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0015) 2024 Bilal (10.1016/j.icheatmasstransfer.2025.108947_bb0085) 2025; 212 Jagadeesh (10.1016/j.icheatmasstransfer.2025.108947_bb0045) 2023; 52 Sithole (10.1016/j.icheatmasstransfer.2025.108947_bb0230) 2018; 339 Fourier (10.1016/j.icheatmasstransfer.2025.108947_bb0245) 1822 |
| References_xml | – volume: 26 start-page: 726 year: 2019 end-page: 741 ident: bb0090 article-title: A combination of computational fluid dynamics, artificial neural network, and support vectors machines models to predict flow variables in curved channel publication-title: Scientia Iranica – volume: 10 year: 2024 ident: bb0195 article-title: Influence of engine oil-infused multi-walled carbon nanotubes and titania nanoparticles on a vertically inclined porous surface publication-title: Heliyon – volume: 200 year: 2024 ident: bb0115 article-title: Modeling and predicting heat transfer performance in bioconvection flow around a circular cylinder using an artificial neural network approach publication-title: Tribol. Int. – year: 1822 ident: bb0245 article-title: Th’eorie Analytique de la Chaleur – volume: 38 year: 2024 ident: bb0070 article-title: Rheology of gyrotactic microorganisms in Jeffrey fluid flow: a stability analysis publication-title: Mod. Phys. Lett. B – start-page: 1 year: 2024 end-page: 19 ident: bb0205 article-title: Darcy-Forchheimer aspect on unsteady bioconvection flow of Reiner-Philippoff nanofluid along a wedge with swimming microorganisms and Arrhenius activation energy publication-title: Numerical Heat Transfer, Part A: Applications – volume: 39 start-page: 2550044 year: 2024 ident: bb0110 article-title: Numerical heat featuring in radiative convective ternary nanofluid under induced magnetic field and heat generating source publication-title: Int. J. Mod. Phys. B. – volume: 104 year: 2023 ident: bb0155 article-title: Numerical calculation of unsteady MHD nanofluid flow across two fluctuating discs with chemical reaction and zero mass flux publication-title: ZAMM J. Appl. Math. Mechan./Zeitschrift für Angewandte Mathematik und Mechanik – volume: 830 year: 2023 ident: bb0040 article-title: Numerical analysis of unsteady non-linear mixed convection flow of reiner-philippoff nanofluid along Falkner-Skan wedge with new mass flux condition publication-title: Chem. Phys. Lett. – volume: 159 year: 2024 ident: bb0120 article-title: Advanced intelligent computing ANN for momentum, thermal, and concentration boundary layers in plasma electro hydrodynamics burgers fluid publication-title: Int. Commun. Heat Mass Transf. – volume: 339 start-page: 820 year: 2018 end-page: 836 ident: bb0230 article-title: Numerical simulation of couple-stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction publication-title: Appl. Math. Comput. – start-page: 1 year: 2024 end-page: 15 ident: bb0015 article-title: Numerical investigation of MHD hybrid nanofluid flow with heat transfer subject to thermal radiation across two coaxial cylinders publication-title: Numerical Heat Transfer, Part A: Applications – volume: 116 year: 2020 ident: bb0180 article-title: Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid publication-title: Int. Commun. Heat Mass Transf. – volume: 13 start-page: 13675 year: 2023 ident: bb0250 article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach publication-title: Sci. Rep. – volume: 8 start-page: 438 year: 1969 end-page: 444 ident: bb0135 article-title: The meaning and use of the Arrhenius activation energy publication-title: Angew. Chem. Int. Ed. Eng. – volume: 98 start-page: 27 year: 2024 ident: bb0210 article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink publication-title: Pramana – volume: 17 year: 2023 ident: bb0050 article-title: Impact of radiation on the MHD couple stress hybrid nanofluid flow over a porous sheet with viscous dissipation publication-title: Results Eng. – volume: 18 year: 2025 ident: bb0175 article-title: Radiative Darcy-Forchheimer hybrid nanofluid flow with thermal and bioconvection impacts over a stretching/shrinking sheet publication-title: J. Radiat. Res. Appl. Sci. – volume: 28 year: 2021 ident: bb0030 article-title: Applications of temperature dependent viscosity for Cattaneo–Christov bioconvection flow of couple stress nanofluid over oscillatory stretching surface: a generalized thermal model publication-title: Case Stud. Therm. Eng. – volume: 100 start-page: 33 year: 1995 end-page: 38 ident: bb0240 article-title: On liquid diffusion publication-title: J. Membr. Sci. – volume: 48 start-page: 2807 year: 2023 end-page: 2820 ident: bb0105 article-title: Modeling of Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with artificial neural network publication-title: Arab. J. Sci. Eng. – volume: 10 year: 2015 ident: bb0005 article-title: Influence of magnetic field in three-dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition publication-title: PLoS One – volume: 14 year: 2024 ident: bb0065 article-title: Parametric analysis of pollutant discharge concentration in non-Newtonian nanofluid flow across a permeable Riga sheet with thermal radiation publication-title: AIP Adv. – volume: 107 year: 2024 ident: bb0160 article-title: Enhancement of heat transfer in thin-film flow of a hybrid nanofluid over an inclined rotating disk subject to thermal radiation and viscous dissipation publication-title: Int. J. Heat Fluid Flow – volume: 2021 start-page: 1 year: 2021 end-page: 10 ident: bb0025 article-title: Magnetohydrodynamic impact on Carreau thin film couple stress nanofluid flow over an unsteady stretching sheet publication-title: Math. Probl. Eng. – volume: 152 year: 2024 ident: bb0095 article-title: Combined artificial neural networks and numerical simulation for fractional-time derivatives systems of circular cylinder rotations and magnetic field on heat and mass transfer in an H-shaped cavity publication-title: Int. Commun. Heat Mass Transf. – volume: 155 year: 2024 ident: bb0220 article-title: Entropy generation and efficiency assessment in axisymmetric Homann-Agrawal flows with logarithmic spiraling publication-title: Int. Commun. Heat Mass Transf. – volume: 190 year: 2023 ident: bb0075 article-title: Thermal and solutal slip impacts of tribological coatings on the flow and heat transfer of reiner-philippoff nanofluid lubrication toward a stretching surface: the applications of Darcy-Forchheimer theory publication-title: Tribol. Int. – volume: 147 year: 2023 ident: bb0125 article-title: An artificial intelligence model for heat and mass transfer in an inclined cylindrical annulus with heat generation/absorption and chemical reaction publication-title: Int. Commun. Heat Mass Transf. – volume: 11 year: 2024 ident: bb0260 article-title: Comparative analysis with data prediction of non-linear radiative nano second-grade and Newtonian fluid in presence of sinusoidal magnetic force publication-title: Part. Different. Eq. Appl. Math. – volume: 31 start-page: 71 year: 2024 end-page: 82 ident: bb0170 article-title: Energy optimization of water-based hybrid nanomaterials over a wedge-shaped channel publication-title: Scientia Iranica – volume: 105 year: 2025 ident: bb0165 article-title: Heat and mass transfer analysis in flow of Walter’s B nanofluid: A numerical study of dual solutions publication-title: ZAMM J. Appl. Math. Mechan./Zeitschrift für Angewandte Mathematik und Mechanik – volume: 34 year: 2022 ident: bb0100 article-title: Thermo-fluidic transport process in a novel M-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: application of artificial neural network (ANN) publication-title: Phys. Fluids – volume: 61 start-page: 8715 year: 2022 end-page: 8727 ident: bb0140 article-title: Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection publication-title: Alex. Eng. J. – volume: 61 start-page: 1425 year: 2022 end-page: 1436 ident: bb0235 article-title: Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms publication-title: Alex. Eng. J. – volume: 20 year: 2023 ident: bb0190 article-title: Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface publication-title: Results Eng. – volume: 13 start-page: 1 year: 2023 end-page: 15 ident: bb0185 article-title: Energy transmission through radiative ternary nanofluid flow with exponential heat source/sink across an inclined permeable cylinder/plate: numerical computing publication-title: Sci. Rep. – volume: 5 start-page: 6695 year: 2023 end-page: 6704 ident: bb0200 article-title: Exploring dual solutions and thermal conductivity in hybrid nanofluids: a comparative study of Xue and Hamilton–Crosser models publication-title: Nanoscale Advances – volume: 39 year: 2021 ident: bb0020 article-title: Joule heating and dissipation effects on Magnetohydrodynamic couple stress nanofluid flow over a bidirectional stretching surface publication-title: Int. J. Heat Technol. – volume: 13 start-page: 2666 year: 2023 ident: bb0150 article-title: Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy–Forchheimer squeezed flow of Casson fluid over horizontal channel publication-title: Sci. Rep. – volume: 36 start-page: 351 year: 2009 end-page: 356 ident: bb0010 article-title: Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification publication-title: Int. Commun. Heat Mass Transf. – volume: 100 start-page: 1219 year: 2025 end-page: 1230 ident: bb0060 article-title: Numerical investigation of Cattaneo–Christov double diffusion and mixed convection effects in non-Darcian Sutterby nanofluid using multi objective optimization through RSM publication-title: Int. J. Hydrog. Energy – volume: 212 year: 2025 ident: bb0085 article-title: Entropy optimization in non-newtonian prandtl-eyring fluid using ANN over a curved Riga surface publication-title: Int. J. Therm. Sci. – volume: 15 start-page: 759 year: 2025 ident: bb0130 article-title: Novel numerical and artificial neural computing with experimental validation towards unsteady micropolar nanofluid flow across a Riga plate publication-title: Sci. Rep. – volume: 43 start-page: 347 year: 2023 end-page: 361 ident: bb0225 article-title: Significance of cross diffusion and uneven heat source/sink on the variable reactive 2D Casson flowing fluid through an infinite plate with heat and Ohmic dissipation publication-title: Int. J. Model. Simul – volume: 14 year: 2017 ident: bb0080 article-title: Explained: neural networks publication-title: MIT News – start-page: 1 year: 2022 end-page: 18 ident: bb0035 article-title: Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface publication-title: Waves Random Complex Media – volume: 148 start-page: 13883 year: 2023 end-page: 13894 ident: bb0215 article-title: Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena publication-title: J. Therm. Anal. Calorim. – volume: 52 start-page: 1081 year: 2023 end-page: 1096 ident: bb0045 article-title: Convection of 3D MHD non-Newtonian couple stress nanofluid flow via stretching surface publication-title: Heat Transf. – volume: 4 year: 2021 ident: bb0055 article-title: Thin-film flow of Carreau fluid over a stretching surface including the couple stress and uniform magnetic field publication-title: Part. Different. Eq. Appl. Math. – volume: 47 start-page: 1 year: 2022 end-page: 12 ident: bb0145 article-title: Theoretical analysis of activation energy effect on Prandtl–Eyring nanoliquid flow subject to melting condition publication-title: J. Non-Equilib. Thermodyn. – volume: 12 start-page: 393 year: 2020 ident: bb0255 article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu’s slip publication-title: Symmetry – volume: 36 start-page: 351 issue: 4 year: 2009 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0010 article-title: Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2009.01.003 – volume: 39 issue: 1 year: 2021 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0020 article-title: Joule heating and dissipation effects on Magnetohydrodynamic couple stress nanofluid flow over a bidirectional stretching surface publication-title: Int. J. Heat Technol. doi: 10.18280/ijht.390122 – volume: 116 year: 2020 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0180 article-title: Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104655 – volume: 190 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0075 article-title: Thermal and solutal slip impacts of tribological coatings on the flow and heat transfer of reiner-philippoff nanofluid lubrication toward a stretching surface: the applications of Darcy-Forchheimer theory publication-title: Tribol. Int. doi: 10.1016/j.triboint.2023.109038 – volume: 200 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0115 article-title: Modeling and predicting heat transfer performance in bioconvection flow around a circular cylinder using an artificial neural network approach publication-title: Tribol. Int. doi: 10.1016/j.triboint.2024.110182 – volume: 14 year: 2017 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0080 article-title: Explained: neural networks publication-title: MIT News – volume: 10 issue: 16 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0195 article-title: Influence of engine oil-infused multi-walled carbon nanotubes and titania nanoparticles on a vertically inclined porous surface publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e36169 – volume: 18 issue: 1 year: 2025 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0175 article-title: Radiative Darcy-Forchheimer hybrid nanofluid flow with thermal and bioconvection impacts over a stretching/shrinking sheet publication-title: J. Radiat. Res. Appl. Sci. – volume: 159 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0120 article-title: Advanced intelligent computing ANN for momentum, thermal, and concentration boundary layers in plasma electro hydrodynamics burgers fluid publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2024.108195 – volume: 12 start-page: 393 issue: 3 year: 2020 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0255 article-title: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu’s slip publication-title: Symmetry doi: 10.3390/sym12030393 – volume: 43 start-page: 347 issue: 4 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0225 article-title: Significance of cross diffusion and uneven heat source/sink on the variable reactive 2D Casson flowing fluid through an infinite plate with heat and Ohmic dissipation publication-title: Int. J. Model. Simul. doi: 10.1080/02286203.2022.2084007 – volume: 10 issue: 12 year: 2015 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0005 article-title: Influence of magnetic field in three-dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition publication-title: PLoS One doi: 10.1371/journal.pone.0145332 – volume: 830 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0040 article-title: Numerical analysis of unsteady non-linear mixed convection flow of reiner-philippoff nanofluid along Falkner-Skan wedge with new mass flux condition publication-title: Chem. Phys. Lett. – volume: 20 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0190 article-title: Numerical investigation of heat source induced thermal slip effect on trihybrid nanofluid flow over a stretching surface publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101536 – volume: 105 issue: 1 year: 2025 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0165 article-title: Heat and mass transfer analysis in flow of Walter’s B nanofluid: A numerical study of dual solutions publication-title: ZAMM J. Appl. Math. Mechan./Zeitschrift für Angewandte Mathematik und Mechanik – volume: 5 start-page: 6695 issue: 23 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0200 article-title: Exploring dual solutions and thermal conductivity in hybrid nanofluids: a comparative study of Xue and Hamilton–Crosser models publication-title: Nanoscale Advances doi: 10.1039/D3NA00503H – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0025 article-title: Magnetohydrodynamic impact on Carreau thin film couple stress nanofluid flow over an unsteady stretching sheet publication-title: Math. Probl. Eng. – volume: 61 start-page: 1425 issue: 2 year: 2022 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0235 article-title: Significance of magnetic field and activation energy on the features of stratified mixed radiative-convective couple-stress nanofluid flows with motile microorganisms publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.06.047 – volume: 212 year: 2025 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0085 article-title: Entropy optimization in non-newtonian prandtl-eyring fluid using ANN over a curved Riga surface publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2025.109765 – year: 1822 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0245 – volume: 14 issue: 4 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0065 article-title: Parametric analysis of pollutant discharge concentration in non-Newtonian nanofluid flow across a permeable Riga sheet with thermal radiation publication-title: AIP Adv. doi: 10.1063/5.0200401 – volume: 13 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0185 article-title: Energy transmission through radiative ternary nanofluid flow with exponential heat source/sink across an inclined permeable cylinder/plate: numerical computing publication-title: Sci. Rep. doi: 10.1038/s41598-023-49481-8 – volume: 47 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0145 article-title: Theoretical analysis of activation energy effect on Prandtl–Eyring nanoliquid flow subject to melting condition publication-title: J. Non-Equilib. Thermodyn. doi: 10.1515/jnet-2020-0092 – volume: 13 start-page: 2666 issue: 1 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0150 article-title: Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy–Forchheimer squeezed flow of Casson fluid over horizontal channel publication-title: Sci. Rep. doi: 10.1038/s41598-023-29702-w – volume: 147 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0125 article-title: An artificial intelligence model for heat and mass transfer in an inclined cylindrical annulus with heat generation/absorption and chemical reaction publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2023.106956 – volume: 13 start-page: 13675 issue: 1 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0250 article-title: Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach publication-title: Sci. Rep. doi: 10.1038/s41598-023-27562-y – volume: 104 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0155 article-title: Numerical calculation of unsteady MHD nanofluid flow across two fluctuating discs with chemical reaction and zero mass flux publication-title: ZAMM J. Appl. Math. Mechan./Zeitschrift für Angewandte Mathematik und Mechanik – volume: 48 start-page: 2807 issue: 3 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0105 article-title: Modeling of Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with artificial neural network publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-022-06945-9 – volume: 107 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0160 article-title: Enhancement of heat transfer in thin-film flow of a hybrid nanofluid over an inclined rotating disk subject to thermal radiation and viscous dissipation publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2024.109360 – volume: 52 start-page: 1081 issue: 2 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0045 article-title: Convection of 3D MHD non-Newtonian couple stress nanofluid flow via stretching surface publication-title: Heat Transf. doi: 10.1002/htj.22730 – volume: 8 start-page: 438 issue: 6 year: 1969 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0135 article-title: The meaning and use of the Arrhenius activation energy publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.196904381 – volume: 155 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0220 article-title: Entropy generation and efficiency assessment in axisymmetric Homann-Agrawal flows with logarithmic spiraling publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2024.107564 – volume: 152 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0095 article-title: Combined artificial neural networks and numerical simulation for fractional-time derivatives systems of circular cylinder rotations and magnetic field on heat and mass transfer in an H-shaped cavity publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2024.107314 – start-page: 1 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0015 article-title: Numerical investigation of MHD hybrid nanofluid flow with heat transfer subject to thermal radiation across two coaxial cylinders – volume: 4 year: 2021 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0055 article-title: Thin-film flow of Carreau fluid over a stretching surface including the couple stress and uniform magnetic field publication-title: Part. Different. Eq. Appl. Math. – volume: 61 start-page: 8715 issue: 11 year: 2022 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0140 article-title: Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.02.013 – volume: 148 start-page: 13883 issue: 24 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0215 article-title: Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12699-9 – volume: 339 start-page: 820 year: 2018 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0230 article-title: Numerical simulation of couple-stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction publication-title: Appl. Math. Comput. – volume: 100 start-page: 1219 year: 2025 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0060 article-title: Numerical investigation of Cattaneo–Christov double diffusion and mixed convection effects in non-Darcian Sutterby nanofluid using multi objective optimization through RSM publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2024.12.422 – volume: 31 start-page: 71 issue: 1 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0170 article-title: Energy optimization of water-based hybrid nanomaterials over a wedge-shaped channel publication-title: Scientia Iranica – volume: 11 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0260 article-title: Comparative analysis with data prediction of non-linear radiative nano second-grade and Newtonian fluid in presence of sinusoidal magnetic force publication-title: Part. Different. Eq. Appl. Math. – volume: 15 start-page: 759 issue: 1 year: 2025 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0130 article-title: Novel numerical and artificial neural computing with experimental validation towards unsteady micropolar nanofluid flow across a Riga plate publication-title: Sci. Rep. doi: 10.1038/s41598-024-84480-3 – volume: 98 start-page: 27 issue: 1 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0210 article-title: Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink publication-title: Pramana doi: 10.1007/s12043-023-02702-1 – start-page: 1 year: 2022 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0035 article-title: Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface publication-title: Waves Random Complex Media – start-page: 1 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0205 article-title: Darcy-Forchheimer aspect on unsteady bioconvection flow of Reiner-Philippoff nanofluid along a wedge with swimming microorganisms and Arrhenius activation energy – volume: 34 issue: 3 year: 2022 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0100 article-title: Thermo-fluidic transport process in a novel M-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: application of artificial neural network (ANN) publication-title: Phys. Fluids doi: 10.1063/5.0082942 – volume: 17 year: 2023 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0050 article-title: Impact of radiation on the MHD couple stress hybrid nanofluid flow over a porous sheet with viscous dissipation publication-title: Results Eng. doi: 10.1016/j.rineng.2023.100905 – volume: 38 issue: 05 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0070 article-title: Rheology of gyrotactic microorganisms in Jeffrey fluid flow: a stability analysis publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984924500039 – volume: 28 year: 2021 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0030 article-title: Applications of temperature dependent viscosity for Cattaneo–Christov bioconvection flow of couple stress nanofluid over oscillatory stretching surface: a generalized thermal model publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101412 – volume: 39 start-page: 2550044 issue: 7 year: 2024 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0110 article-title: Numerical heat featuring in radiative convective ternary nanofluid under induced magnetic field and heat generating source publication-title: Int. J. Mod. Phys. B. doi: 10.1142/S0217979225500444 – volume: 100 start-page: 33 year: 1995 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0240 article-title: On liquid diffusion publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)00230-V – volume: 26 start-page: 726 issue: 2 year: 2019 ident: 10.1016/j.icheatmasstransfer.2025.108947_bb0090 article-title: A combination of computational fluid dynamics, artificial neural network, and support vectors machines models to predict flow variables in curved channel publication-title: Scientia Iranica |
| SSID | ssj0001818 |
| Score | 2.4205043 |
| Snippet | The heterogeneous fluid model is expressed for the nanofluid flow to study the consequence of Fourier's and Fick's laws. The magnetohydrodynamics couple-stress... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 108947 |
| SubjectTerms | ANN Bioconvection Cattaneo-Christov heat flux Couple-stress nanofluid Exponential heat source/sink Modified mass flux |
| Title | Study of bioconvective couple-stress nanofluid flow subject to stratified conditions by using numerical and Levenberg Marquardt back-propagation algorithms |
| URI | https://dx.doi.org/10.1016/j.icheatmasstransfer.2025.108947 |
| Volume | 164 |
| WOSCitedRecordID | wos001469454300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0735-1933 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001818 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWqDtB4QDBAjC_5gQekKlOabz9OYwgQmpA2pPIUObbDUkLStckYv4QH_iz32kncbggNCV6iKmpiq_fU9-Tm3GNCXuS5H03z2AfwetIJJBMO5HXmQK5HtxWBnid6s4n46CiZzdiH0ehH3wtzXsZVlVxcsMV_DTWcg2Bj6-xfhHu4KZyAzxB0OELY4XitwB_3NtFZUWtNuV7RJqJuF6Vyut6Qild1XraFnORl_W2yajOsxyARNT66OTJTuFoaRReS1FZXFarWvOIxDgPv0f8JFWLY83OGaGsmGRdfHFiXYaUy4OLl53pZNKedL_rcaudtKVKs96loiS4mCT3GV6D3uJMF8GurJP7UdoXb05YXVqKgzMr1ii9Ul5G7goYXWvmgqbL1nTZW1oSLYeyHDpBNf2PlNgboV7KAKUjM91BMyxucZj_LPRwQdZXM-Hxe8to-xmFwFCCGAFIfcvuWF4csGZOt_beHs3dDkgdipJN8P61b5KWVDv553N8zoDVWc3KX3OkeR-i-gdE9MlLVDrm9ZlK5Q25qkbBY3Sc_NbRondMNaNENaNEBWhShRTto0aamFlrUQotm36mGFh2gRSHsdIAWHaBFL0OLWmg9IB9fH54cvHG6zT0c4SXTxlGBDBWLkIEHgQoj4AycRcrjMuZTGSkZi5B7PAhl7k994bvcDUOg_yJXMgggbTwk46qu1CNClcwkZC64HN-puyxzIxG5Pk8YfDmIsl3C-h88XRgPl7QXN87Tq8FKMVipCdYuOegjlHac1HDNFMB27bs8_id3eUK27f_lKRk3y1Y9IzfEeVOsls87hP4C_6fLvA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+bioconvective+couple-stress+nanofluid+flow+subject+to+stratified+conditions+by+using+numerical+and+Levenberg+Marquardt+back-propagation+algorithms&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Yuan%2C+Shuai&rft.au=Cheng%2C+Dapeng&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0735-1933&rft.volume=164&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2025.108947&rft.externalDocID=S0735193325003732 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon |