Unsupervised Feature Selection With Constrained ℓ₂,₀-Norm and Optimized Graph

In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm (row-sparsity constrained) and optimized graph (RSOGFS), w...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 33; no. 4; pp. 1702 - 1713
Main Authors: Nie, Feiping, Dong, Xia, Tian, Lai, Wang, Rong, Li, Xuelong
Format: Journal Article
Language:English
Published: United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems.
AbstractList In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems.
In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained l2,0 -norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original l2,0 -norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems.In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained l2,0 -norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original l2,0 -norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems.
In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained ℓ2,0-norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original ℓ2,0-norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems.
In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained [Formula Omitted]-norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original [Formula Omitted]-norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems.
Author Wang, Rong
Li, Xuelong
Tian, Lai
Dong, Xia
Nie, Feiping
Author_xml – sequence: 1
  givenname: Feiping
  orcidid: 0000-0002-0871-6519
  surname: Nie
  fullname: Nie, Feiping
  email: feipingnie@gmail.com
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Xia
  orcidid: 0000-0003-2412-3120
  surname: Dong
  fullname: Dong, Xia
  email: xiadongpgh@gmail.com
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Lai
  orcidid: 0000-0002-0328-2651
  surname: Tian
  fullname: Tian, Lai
  email: tianlai.cs@gmail.com
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Rong
  orcidid: 0000-0001-9240-6726
  surname: Wang
  fullname: Wang, Rong
  email: wangrong07@tsinghua.org.cn
  organization: Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Xuelong
  orcidid: 0000-0003-2924-946X
  surname: Li
  fullname: Li, Xuelong
  email: li@nwpu.edu.cn
  organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33361007$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFO4zAQhq1VV0sXeIFdCUXisgdSHDtx4iOqtgWpKoeC4GY5zkQYJU6wEyQ4rap9g33DPgnOtvTAAV_G1nz_jPX_39HINAYQ-hHhSRRhfn6zXC5WE4IJnlAcU8rIFzQmESMhoVk22t_T-wN07Nwj9ofhhMX8Gzqgno8wTsdodWtc34J91g6KYAay6y0EK6hAdboxwZ3uHoJpY1xnpTYe2fz9t1mvzzbrP-GysXUgTRFct52u9avvzq1sH47Q11JWDo539RDdzn7fTC_DxfX8anqxCBXJoi4scJ6UhWSyUCzOlOJUkVwCS5OkzHNQHFhJSshzLjNacBn7F6VKAZelTBNKD9Gv7dzWNk89uE7U2imoKmmg6Z0gcUrjiHM-oKcf0Memt8b_ThAWpzFJMc48dbKj-ryGQrRW19K-iHe7PEC2gLKNcxbKPRJhMcQi_scihljELhYvyj6IlO7k4O7gafW59OdWqgFgv4tTzDFP6RtzcZ1h
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3333737
crossref_primary_10_1109_TII_2022_3180070
crossref_primary_10_1016_j_patcog_2024_110512
crossref_primary_10_3389_fnins_2025_1592070
crossref_primary_10_1109_TNNLS_2023_3325556
crossref_primary_10_1016_j_knosys_2023_111105
crossref_primary_10_1016_j_engappai_2023_107136
crossref_primary_10_1002_mp_18078
crossref_primary_10_1007_s40745_023_00481_5
crossref_primary_10_1109_TKDE_2024_3397878
crossref_primary_10_1109_TNNLS_2023_3263684
crossref_primary_10_1177_14759217251361728
crossref_primary_10_1016_j_compbiomed_2023_107309
crossref_primary_10_1109_TNNLS_2022_3224577
crossref_primary_10_1016_j_neucom_2024_128069
crossref_primary_10_1049_ipr2_12828
crossref_primary_10_1016_j_ins_2024_120121
crossref_primary_10_1016_j_neucom_2024_127533
crossref_primary_10_1109_TKDE_2025_3561046
crossref_primary_10_1109_TNNLS_2024_3389029
crossref_primary_10_1002_cta_3861
crossref_primary_10_1109_TNNLS_2022_3202719
crossref_primary_10_1007_s13042_024_02243_y
crossref_primary_10_3390_cancers17172738
crossref_primary_10_1109_TNNLS_2022_3222466
crossref_primary_10_1002_mp_70026
crossref_primary_10_1016_j_knosys_2023_111317
crossref_primary_10_1016_j_eswa_2024_123867
crossref_primary_10_1016_j_compbiomed_2024_109567
crossref_primary_10_1109_TNNLS_2022_3201881
crossref_primary_10_1007_s10462_025_11282_y
crossref_primary_10_1109_TETCI_2024_3369313
crossref_primary_10_1109_TNNLS_2022_3208418
crossref_primary_10_1109_TKDE_2025_3583718
crossref_primary_10_1109_TPAMI_2022_3160205
crossref_primary_10_1016_j_eswa_2024_124919
crossref_primary_10_1109_TNNLS_2022_3194896
crossref_primary_10_1016_j_knosys_2024_112379
crossref_primary_10_1016_j_procs_2023_08_129
crossref_primary_10_1016_j_neunet_2024_106840
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_1016_j_artmed_2024_103042
crossref_primary_10_1109_JSEN_2023_3245832
Cites_doi 10.1145/2783258.2783345
10.1016/S0004-3702(97)00043-X
10.1016/j.patcog.2020.107673
10.1016/j.eswa.2017.05.002
10.1145/1835804.1835848
10.1609/aaai.v26i1.8289
10.1109/ICCV.2011.6126288
10.1109/TNNLS.2020.2984958
10.1109/TKDE.2018.2847685
10.1109/TNNLS.2018.2837100
10.24963/ijcai.2017/306
10.1109/IJCNN.2015.7280307
10.1145/2623330.2623726
10.1109/ICDM.2011.105
10.1017/cbo9780511810817
10.1609/aaai.v30i1.10168
10.2307/2347842
10.1016/j.neucom.2012.05.031
10.1111/j.2517-6161.1996.tb02080.x
10.1609/aaai.v30i1.10082
10.1162/153244303322753751
10.1609/aaai.v31i1.11208
10.24963/ijcai.2020/416
10.1109/TCBB.2015.2478454
10.1109/TCYB.2020.3025205
10.1609/aaai.v32i1.11904
10.1109/TPAMI.2019.2961877
10.1002/cpa.20131
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3043362
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1713
ExternalDocumentID 33361007
10_1109_TNNLS_2020_3043362
9309097
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0101902
  funderid: 10.13039/501100012166
– fundername: Fundamental Research Funds for the Central Universities
  grantid: G2019KY0501
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61871470; 61936014; 61772427; 61751202
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c281t-d0b5fda6adc648cc93c2bae6755fbbec9e6f2febb9a83d9a4f2f33cce9afa7533
IEDL.DBID RIE
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778930100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 11:16:32 EDT 2025
Sun Nov 30 04:14:42 EST 2025
Thu Jan 02 22:58:29 EST 2025
Sat Nov 29 01:40:10 EST 2025
Tue Nov 18 21:45:11 EST 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-d0b5fda6adc648cc93c2bae6755fbbec9e6f2febb9a83d9a4f2f33cce9afa7533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0871-6519
0000-0003-2412-3120
0000-0001-9240-6726
0000-0003-2924-946X
0000-0002-0328-2651
PMID 33361007
PQID 2647427008
PQPubID 85436
PageCount 12
ParticipantIDs crossref_primary_10_1109_TNNLS_2020_3043362
proquest_journals_2647427008
ieee_primary_9309097
pubmed_primary_33361007
crossref_citationtrail_10_1109_TNNLS_2020_3043362
proquest_miscellaneous_2473419993
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref36
Roth (ref12)
ref31
ref11
ref33
ref10
ref32
ref2
Huang (ref39)
ref1
He (ref9)
ref17
ref38
ref18
Nie (ref30)
Li (ref4) 2016; 50
Strehl (ref41) 2002; 3
ref24
Zelnik-Manor (ref40)
ref23
ref26
ref25
ref20
ref22
Von Neumann (ref37) 1937; 1
ref28
ref27
Cai (ref21)
ref29
ref8
ref7
ref3
ref6
ref5
Dy (ref35) 2004; 5
Wei (ref19)
Yang (ref14)
Qian (ref16)
References_xml – volume: 1
  start-page: 286
  issue: 11
  year: 1937
  ident: ref37
  article-title: Some matrix-inequalities and metrization of matric space
  publication-title: Tomsk Univ. Rev.
– ident: ref18
  doi: 10.1145/2783258.2783345
– ident: ref11
  doi: 10.1016/S0004-3702(97)00043-X
– start-page: 1813
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Efficient and robust feature selection via joint ℓ₂,₁-norms minimization
– start-page: 1601
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref40
  article-title: Self-tuning spectral clustering
– ident: ref2
  doi: 10.1016/j.patcog.2020.107673
– volume: 3
  start-page: 583
  year: 2002
  ident: ref41
  article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– ident: ref6
  doi: 10.1016/j.eswa.2017.05.002
– ident: ref10
  doi: 10.1145/1835804.1835848
– ident: ref15
  doi: 10.1609/aaai.v26i1.8289
– ident: ref32
  doi: 10.1109/ICCV.2011.6126288
– ident: ref5
  doi: 10.1109/TNNLS.2020.2984958
– start-page: 473
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Feature selection in clustering problems
– ident: ref22
  doi: 10.1109/TKDE.2018.2847685
– ident: ref23
  doi: 10.1109/TNNLS.2018.2837100
– start-page: 3569
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  ident: ref39
  article-title: A new simplex sparse learning model to measure data similarity for clustering
– ident: ref3
  doi: 10.24963/ijcai.2017/306
– ident: ref20
  doi: 10.1109/IJCNN.2015.7280307
– ident: ref38
  doi: 10.1145/2623330.2623726
– ident: ref31
  doi: 10.1109/ICDM.2011.105
– ident: ref36
  doi: 10.1017/cbo9780511810817
– ident: ref17
  doi: 10.1609/aaai.v30i1.10168
– ident: ref8
  doi: 10.2307/2347842
– ident: ref27
  doi: 10.1016/j.neucom.2012.05.031
– volume: 5
  start-page: 845
  year: 2004
  ident: ref35
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– ident: ref29
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– start-page: 1621
  volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell.
  ident: ref16
  article-title: Robust unsupervised feature selection
– ident: ref13
  doi: 10.1609/aaai.v30i1.10082
– start-page: 1589
  volume-title: Proc. 22nd Int. Joint Conf. Artif. Intell.
  ident: ref14
  article-title: ℓ₂, 1-norm regularized discriminative feature selection for unsupervised learning
– start-page: 1240
  volume-title: Proc. 23rd International Joint Conference on Artificial Intelligence
  ident: ref21
  article-title: Exact top-k feature selection via ℓ₂, 0-norm constraint
– volume: 50
  start-page: 94
  issue: 6
  year: 2016
  ident: ref4
  article-title: Feature selection: A data perspective
  publication-title: ACM Comput. Surv.
– ident: ref28
  doi: 10.1162/153244303322753751
– ident: ref34
  doi: 10.1609/aaai.v31i1.11208
– ident: ref26
  doi: 10.24963/ijcai.2020/416
– start-page: 507
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: Laplacian score for feature selection
– ident: ref7
  doi: 10.1109/TCBB.2015.2478454
– ident: ref25
  doi: 10.1109/TCYB.2020.3025205
– start-page: 995
  volume-title: Proc. 19th Int. Conf. Artif. Intell. Statist.
  ident: ref19
  article-title: Unsupervised feature selection by preserving stochastic neighbors
– ident: ref24
  doi: 10.1609/aaai.v32i1.11904
– ident: ref1
  doi: 10.1109/TPAMI.2019.2961877
– ident: ref33
  doi: 10.1002/cpa.20131
SSID ssj0000605649
Score 2.558229
Snippet In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained <inline-formula> <tex-math...
In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained ℓ2,0-norm (row-sparsity constrained) and...
In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained [Formula Omitted]-norm (row-sparsity...
In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained l2,0 -norm (row-sparsity constrained) and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1702
SubjectTerms Algorithms
Approximation
Approximation algorithms
Computer applications
Feature extraction
Feature selection
group feature selection
Image color analysis
Manifolds
Mathematical analysis
Noise measurement
norm
Objective function
Optimization
optimized graph
Regularization
Similarity
Sparse matrices
Sparsity
unsupervised learning
Title Unsupervised Feature Selection With Constrained ℓ₂,₀-Norm and Optimized Graph
URI https://ieeexplore.ieee.org/document/9309097
https://www.ncbi.nlm.nih.gov/pubmed/33361007
https://www.proquest.com/docview/2647427008
https://www.proquest.com/docview/2473419993
Volume 33
WOSCitedRecordID wos000778930100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB61FQcuFCg_KaUyEjdqmrUTOz4iROGAAtK2Ym-Rf8VKkK12Nxx6QivegDfcJ2HsTSIhARKnJPIkTjzj-BvbMx_Ac5-L3CFMpXJiHC0ks7SyoaBKq0IaFdATcolsQtZ1NZupj3twNsbCeO_T5jP_Mp6mtXy3sF2cKjtXPFe5kvuwL6XYxWqN8ylYZykS2mUTwSjjcjbEyOTq_LKu30_RG2TopMaUXSKy2HA8xk0Cvw1JiWPl73AzDTsXh__3wnfhTg8vyaudPdyDPd_eh8OBuoH0PfkIplftqruO_4mVdyTiwG7pyTSR4qCmyKf5-jOJZJ6JQgJFtj9-bjebs-3mO60R5hLdOvIBfzdf5zdY-jamvX4AVxdvLl-_oz2_ArWsmqypy00ZnBbaWVFU1ipumdEeXYgyGNSt8iKw4I1RuuJO6QKvOLfWKx00ujn8IRy0i9Y_BuKksQE9RalKVtjSmMCEVqbiuRcISMoMJkMTN7ZPPh4_4EuTnJBcNUlDTdRQ02sogxfjPde71Bv_lD6K7T9K9k2fwcmgyabvnasGQaAs4op7lcGzsRj7VVws0a1fdChTyJjqDuFbBo92FjA-ezCc4z_X-QRusxgkkfb3nMDBetn5p3DLflvPV8tTNN5ZdZqM9xcxKOus
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwEB4tCxJcWGD5CSxgJG6s2dRx4viIEMsiSkBqV_QW-VdUgnTVNhw4oYo34A37JIzdJBISIHFKIk_ixDOOv7E98wE8dWmRWoSpVIy0pVwwQ0vjOZVKcqGlR0_IRrIJUVXlbCY_7MHxEAvjnIubz9zzcBrX8u3CtGGq7ERmqUyluASXc85ZuovWGmZUsNa8iHiXjQpGWSZmfZRMKk-mVTWeoD_I0E0NSbuKwGOT4TFsE_htUIosK38HnHHgOT34v1e-Adc7gEle7CziJuy55hYc9OQNpOvLhzA5b1btRfhTrJwlAQm2S0cmkRYHdUU-ztefSKDzjCQSKLL98XO72RxvN99phUCXqMaS9_jD-TL_hqWvQ-Lr23B--mr68ox2DAvUsHK0pjbVubeqUNYUvDRGZoZp5dCJyL1G7UpXeOad1lKVmZWK41WWGeOk8godnewO7DeLxt0DYoU2Hn1FIXPGTa61Z4WSusxSVyAkyRMY9U1cmy79ePiAz3V0Q1JZRw3VQUN1p6EEng33XOySb_xT-jC0_yDZNX0CR70m665_rmqEgYKHNfcygSdDMfassFyiGrdoUYaLkOwOAVwCd3cWMDy7N5z7f67zMVw9m74b1-M31dsHcI2FkIm42-cI9tfL1j2EK-brer5aPoom_AsHDe4L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Feature+Selection+With+Constrained+%E2%84%93%E2%82%82%2C%E2%82%80-Norm+and+Optimized+Graph&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Nie%2C+Feiping&rft.au=Xia+Dong&rft.au=Lai%2C+Tian&rft.au=Wang%2C+Rong&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=4&rft.spage=1702&rft_id=info:doi/10.1109%2FTNNLS.2020.3043362&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon