Unsupervised Feature Selection With Constrained ℓ₂,₀-Norm and Optimized Graph
In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm (row-sparsity constrained) and optimized graph (RSOGFS), w...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 33; no. 4; pp. 1702 - 1713 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems. |
|---|---|
| AbstractList | In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original <inline-formula> <tex-math notation="LaTeX">\ell _{2,0} </tex-math></inline-formula>-norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems. In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained l2,0 -norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original l2,0 -norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems.In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained l2,0 -norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original l2,0 -norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems. In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained ℓ2,0-norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original ℓ2,0-norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems. In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained [Formula Omitted]-norm (row-sparsity constrained) and optimized graph (RSOGFS), which unifies feature selection and similarity matrix construction into a general framework instead of independently performing the two-stage process; thus, the similarity matrix preserving the local manifold structure of data can be determined adaptively. Unlike those sparse learning-based feature selection methods that can only solve the relaxation or approximation problems by introducing sparsity regularization term into the objective function, the proposed method directly tackles the original [Formula Omitted]-norm constrained problem to achieve group feature selection. Two optimization strategies are provided to solve the original sparse constrained problem. The convergence and approximation guarantees for the new algorithms are rigorously proved, and the computational complexity and parameter determination are theoretically analyzed. Experimental results on real-world data sets show that the proposed method for solving a nonconvex problem is superior to the state of the arts for solving the relaxed or approximate convex problems. |
| Author | Wang, Rong Li, Xuelong Tian, Lai Dong, Xia Nie, Feiping |
| Author_xml | – sequence: 1 givenname: Feiping orcidid: 0000-0002-0871-6519 surname: Nie fullname: Nie, Feiping email: feipingnie@gmail.com organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Xia orcidid: 0000-0003-2412-3120 surname: Dong fullname: Dong, Xia email: xiadongpgh@gmail.com organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Lai orcidid: 0000-0002-0328-2651 surname: Tian fullname: Tian, Lai email: tianlai.cs@gmail.com organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Rong orcidid: 0000-0001-9240-6726 surname: Wang fullname: Wang, Rong email: wangrong07@tsinghua.org.cn organization: Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China – sequence: 5 givenname: Xuelong orcidid: 0000-0003-2924-946X surname: Li fullname: Li, Xuelong email: li@nwpu.edu.cn organization: School of Computer Science, Northwestern Polytechnical University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33361007$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFO4zAQhq1VV0sXeIFdCUXisgdSHDtx4iOqtgWpKoeC4GY5zkQYJU6wEyQ4rap9g33DPgnOtvTAAV_G1nz_jPX_39HINAYQ-hHhSRRhfn6zXC5WE4IJnlAcU8rIFzQmESMhoVk22t_T-wN07Nwj9ofhhMX8Gzqgno8wTsdodWtc34J91g6KYAay6y0EK6hAdboxwZ3uHoJpY1xnpTYe2fz9t1mvzzbrP-GysXUgTRFct52u9avvzq1sH47Q11JWDo539RDdzn7fTC_DxfX8anqxCBXJoi4scJ6UhWSyUCzOlOJUkVwCS5OkzHNQHFhJSshzLjNacBn7F6VKAZelTBNKD9Gv7dzWNk89uE7U2imoKmmg6Z0gcUrjiHM-oKcf0Memt8b_ThAWpzFJMc48dbKj-ryGQrRW19K-iHe7PEC2gLKNcxbKPRJhMcQi_scihljELhYvyj6IlO7k4O7gafW59OdWqgFgv4tTzDFP6RtzcZ1h |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3333737 crossref_primary_10_1109_TII_2022_3180070 crossref_primary_10_1016_j_patcog_2024_110512 crossref_primary_10_3389_fnins_2025_1592070 crossref_primary_10_1109_TNNLS_2023_3325556 crossref_primary_10_1016_j_knosys_2023_111105 crossref_primary_10_1016_j_engappai_2023_107136 crossref_primary_10_1002_mp_18078 crossref_primary_10_1007_s40745_023_00481_5 crossref_primary_10_1109_TKDE_2024_3397878 crossref_primary_10_1109_TNNLS_2023_3263684 crossref_primary_10_1177_14759217251361728 crossref_primary_10_1016_j_compbiomed_2023_107309 crossref_primary_10_1109_TNNLS_2022_3224577 crossref_primary_10_1016_j_neucom_2024_128069 crossref_primary_10_1049_ipr2_12828 crossref_primary_10_1016_j_ins_2024_120121 crossref_primary_10_1016_j_neucom_2024_127533 crossref_primary_10_1109_TKDE_2025_3561046 crossref_primary_10_1109_TNNLS_2024_3389029 crossref_primary_10_1002_cta_3861 crossref_primary_10_1109_TNNLS_2022_3202719 crossref_primary_10_1007_s13042_024_02243_y crossref_primary_10_3390_cancers17172738 crossref_primary_10_1109_TNNLS_2022_3222466 crossref_primary_10_1002_mp_70026 crossref_primary_10_1016_j_knosys_2023_111317 crossref_primary_10_1016_j_eswa_2024_123867 crossref_primary_10_1016_j_compbiomed_2024_109567 crossref_primary_10_1109_TNNLS_2022_3201881 crossref_primary_10_1007_s10462_025_11282_y crossref_primary_10_1109_TETCI_2024_3369313 crossref_primary_10_1109_TNNLS_2022_3208418 crossref_primary_10_1109_TKDE_2025_3583718 crossref_primary_10_1109_TPAMI_2022_3160205 crossref_primary_10_1016_j_eswa_2024_124919 crossref_primary_10_1109_TNNLS_2022_3194896 crossref_primary_10_1016_j_knosys_2024_112379 crossref_primary_10_1016_j_procs_2023_08_129 crossref_primary_10_1016_j_neunet_2024_106840 crossref_primary_10_1016_j_swevo_2024_101661 crossref_primary_10_1016_j_artmed_2024_103042 crossref_primary_10_1109_JSEN_2023_3245832 |
| Cites_doi | 10.1145/2783258.2783345 10.1016/S0004-3702(97)00043-X 10.1016/j.patcog.2020.107673 10.1016/j.eswa.2017.05.002 10.1145/1835804.1835848 10.1609/aaai.v26i1.8289 10.1109/ICCV.2011.6126288 10.1109/TNNLS.2020.2984958 10.1109/TKDE.2018.2847685 10.1109/TNNLS.2018.2837100 10.24963/ijcai.2017/306 10.1109/IJCNN.2015.7280307 10.1145/2623330.2623726 10.1109/ICDM.2011.105 10.1017/cbo9780511810817 10.1609/aaai.v30i1.10168 10.2307/2347842 10.1016/j.neucom.2012.05.031 10.1111/j.2517-6161.1996.tb02080.x 10.1609/aaai.v30i1.10082 10.1162/153244303322753751 10.1609/aaai.v31i1.11208 10.24963/ijcai.2020/416 10.1109/TCBB.2015.2478454 10.1109/TCYB.2020.3025205 10.1609/aaai.v32i1.11904 10.1109/TPAMI.2019.2961877 10.1002/cpa.20131 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2020.3043362 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 1713 |
| ExternalDocumentID | 33361007 10_1109_TNNLS_2020_3043362 9309097 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018AAA0101902 funderid: 10.13039/501100012166 – fundername: Fundamental Research Funds for the Central Universities grantid: G2019KY0501 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61871470; 61936014; 61772427; 61751202 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c281t-d0b5fda6adc648cc93c2bae6755fbbec9e6f2febb9a83d9a4f2f33cce9afa7533 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778930100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 11:16:32 EDT 2025 Sun Nov 30 04:14:42 EST 2025 Thu Jan 02 22:58:29 EST 2025 Sat Nov 29 01:40:10 EST 2025 Tue Nov 18 21:45:11 EST 2025 Wed Aug 27 02:40:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c281t-d0b5fda6adc648cc93c2bae6755fbbec9e6f2febb9a83d9a4f2f33cce9afa7533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0871-6519 0000-0003-2412-3120 0000-0001-9240-6726 0000-0003-2924-946X 0000-0002-0328-2651 |
| PMID | 33361007 |
| PQID | 2647427008 |
| PQPubID | 85436 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2020_3043362 proquest_journals_2647427008 ieee_primary_9309097 pubmed_primary_33361007 crossref_citationtrail_10_1109_TNNLS_2020_3043362 proquest_miscellaneous_2473419993 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref15 ref36 Roth (ref12) ref31 ref11 ref33 ref10 ref32 ref2 Huang (ref39) ref1 He (ref9) ref17 ref38 ref18 Nie (ref30) Li (ref4) 2016; 50 Strehl (ref41) 2002; 3 ref24 Zelnik-Manor (ref40) ref23 ref26 ref25 ref20 ref22 Von Neumann (ref37) 1937; 1 ref28 ref27 Cai (ref21) ref29 ref8 ref7 ref3 ref6 ref5 Dy (ref35) 2004; 5 Wei (ref19) Yang (ref14) Qian (ref16) |
| References_xml | – volume: 1 start-page: 286 issue: 11 year: 1937 ident: ref37 article-title: Some matrix-inequalities and metrization of matric space publication-title: Tomsk Univ. Rev. – ident: ref18 doi: 10.1145/2783258.2783345 – ident: ref11 doi: 10.1016/S0004-3702(97)00043-X – start-page: 1813 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref30 article-title: Efficient and robust feature selection via joint ℓ₂,₁-norms minimization – start-page: 1601 volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS) ident: ref40 article-title: Self-tuning spectral clustering – ident: ref2 doi: 10.1016/j.patcog.2020.107673 – volume: 3 start-page: 583 year: 2002 ident: ref41 article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res. – ident: ref6 doi: 10.1016/j.eswa.2017.05.002 – ident: ref10 doi: 10.1145/1835804.1835848 – ident: ref15 doi: 10.1609/aaai.v26i1.8289 – ident: ref32 doi: 10.1109/ICCV.2011.6126288 – ident: ref5 doi: 10.1109/TNNLS.2020.2984958 – start-page: 473 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref12 article-title: Feature selection in clustering problems – ident: ref22 doi: 10.1109/TKDE.2018.2847685 – ident: ref23 doi: 10.1109/TNNLS.2018.2837100 – start-page: 3569 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. ident: ref39 article-title: A new simplex sparse learning model to measure data similarity for clustering – ident: ref3 doi: 10.24963/ijcai.2017/306 – ident: ref20 doi: 10.1109/IJCNN.2015.7280307 – ident: ref38 doi: 10.1145/2623330.2623726 – ident: ref31 doi: 10.1109/ICDM.2011.105 – ident: ref36 doi: 10.1017/cbo9780511810817 – ident: ref17 doi: 10.1609/aaai.v30i1.10168 – ident: ref8 doi: 10.2307/2347842 – ident: ref27 doi: 10.1016/j.neucom.2012.05.031 – volume: 5 start-page: 845 year: 2004 ident: ref35 article-title: Feature selection for unsupervised learning publication-title: J. Mach. Learn. Res. – ident: ref29 doi: 10.1111/j.2517-6161.1996.tb02080.x – start-page: 1621 volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell. ident: ref16 article-title: Robust unsupervised feature selection – ident: ref13 doi: 10.1609/aaai.v30i1.10082 – start-page: 1589 volume-title: Proc. 22nd Int. Joint Conf. Artif. Intell. ident: ref14 article-title: ℓ₂, 1-norm regularized discriminative feature selection for unsupervised learning – start-page: 1240 volume-title: Proc. 23rd International Joint Conference on Artificial Intelligence ident: ref21 article-title: Exact top-k feature selection via ℓ₂, 0-norm constraint – volume: 50 start-page: 94 issue: 6 year: 2016 ident: ref4 article-title: Feature selection: A data perspective publication-title: ACM Comput. Surv. – ident: ref28 doi: 10.1162/153244303322753751 – ident: ref34 doi: 10.1609/aaai.v31i1.11208 – ident: ref26 doi: 10.24963/ijcai.2020/416 – start-page: 507 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref9 article-title: Laplacian score for feature selection – ident: ref7 doi: 10.1109/TCBB.2015.2478454 – ident: ref25 doi: 10.1109/TCYB.2020.3025205 – start-page: 995 volume-title: Proc. 19th Int. Conf. Artif. Intell. Statist. ident: ref19 article-title: Unsupervised feature selection by preserving stochastic neighbors – ident: ref24 doi: 10.1609/aaai.v32i1.11904 – ident: ref1 doi: 10.1109/TPAMI.2019.2961877 – ident: ref33 doi: 10.1002/cpa.20131 |
| SSID | ssj0000605649 |
| Score | 2.558229 |
| Snippet | In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained <inline-formula> <tex-math... In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained ℓ2,0-norm (row-sparsity constrained) and... In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained [Formula Omitted]-norm (row-sparsity... In this article, we propose a novel feature selection approach, named unsupervised feature selection with constrained l2,0 -norm (row-sparsity constrained) and... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1702 |
| SubjectTerms | Algorithms Approximation Approximation algorithms Computer applications Feature extraction Feature selection group feature selection Image color analysis Manifolds Mathematical analysis Noise measurement norm Objective function Optimization optimized graph Regularization Similarity Sparse matrices Sparsity unsupervised learning |
| Title | Unsupervised Feature Selection With Constrained ℓ₂,₀-Norm and Optimized Graph |
| URI | https://ieeexplore.ieee.org/document/9309097 https://www.ncbi.nlm.nih.gov/pubmed/33361007 https://www.proquest.com/docview/2647427008 https://www.proquest.com/docview/2473419993 |
| Volume | 33 |
| WOSCitedRecordID | wos000778930100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQcuFGiBlLYKEjdqmtje2D4i1McBBaRt1b1FfkWsBNlqd8OhJ7TiH_AP95cw9iaRkChST0nkycsztr-xPfMBvOU4xAlXa6IlNYRbXRBNhSPcGcdZhr6csZFsQpSlnEzUly04GWJhvPdx85l_H07jWr6b2TZMlZ0qlqlMiW3YFqLYxGoN8ykZ4vIiol2aF5RQJiZ9jEymTq_K8tMYvUGKTmpI2VUEFhuGx7BJ4K8hKXKs3A8347BzvvuwD34KTzp4mX7Y2MMz2PLNc9jtqRvSriXvwfi6WbS3oZ9YeJcGHNjOfTqOpDioqfRmuvyaBjLPSCGBIutfv9er1cl69ZOUCHNT3bj0M3Y336d3WHoR0l7vw_X52dXHS9LxKxBLZb4kLjOj2ulCO1twaa1ilhrt0YUY1QZ1q3xR09obo7RkTmmOV4xZ65WuNbo57AXsNLPGvwqR36Pc1lrnRiLA8g67UMEo45J563KfJ5D3VVzZLvl4-IFvVXRCMlVFDVVBQ1WnoQTeDffcblJv_Fd6L9T_INlVfQKHvSarrnUuKgSBgocVd5nAm6EY21VYLNGNn7Uow0VIdYfwLYGXGwsYnt0bzsG_3_kaHtMQJBH39xzCznLe-iN4ZH8sp4v5MRrvRB5H4_0D5x3soQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tCxJcWGB5BBYIEjfWbGK7SXxEiGURJSC1K3qL_IqoBOmqbThwQhX_gH_YX8KMm0RCAiROSeTJyzO2v7E98wE8lTjE5a7WTBfcMGl1xjTPHZPOOCkS9OWMDWQTeVkWs5n6sAfHQyyM9z5sPvPP6TSs5buFbWmq7ESJRCUqvwSXR1LyZBetNcyoJIjMs4B3eZpxxkU-66NkEnUyLcvxBP1Bjm4qJe3KiMdG4JG2Cfw2KAWWlb8DzjDwnB783yffgOsdwIxf7CziJuz55hYc9OQNcdeWD2Fy3qzaC-opVt7FhATbpY8ngRYHdRV_nK8_xUTnGUgkUGT74-d2sznebr6zEoFurBsXv8cO58v8G5a-psTXt-H89NX05RnrGBaY5UW6Zi4xo9rpTDubycJaJSw32qMTMaoNalf5rOa1N0bpQjilJV4JYa1Xutbo6Ig7sN8sGn-PYr9Hqa21Tk2BEMs77ERzwYUshLcu9WkEaV_Fle3Sj9MPfK6CG5KoKmioIg1VnYYieDbcc7FLvvFP6UOq_0Gyq_oIjnpNVl37XFUIA3NJa-5FBE-GYmxZtFyiG79oUUbmlOwOAVwEd3cWMDy7N5z7f37nY7h6Nn03rsZvyrcP4BqnkImw2-cI9tfL1j-EK_brer5aPgom_AvEcO8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Feature+Selection+With+Constrained+%E2%84%932%2C0-Norm+and+Optimized+Graph&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Nie%2C+Feiping&rft.au=Dong%2C+Xia&rft.au=Tian%2C+Lai&rft.au=Wang%2C+Rong&rft.date=2022-04-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2020.3043362&rft_id=info%3Apmid%2F33361007&rft.externalDocID=33361007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |