Optimizing Sparse Linear Algebra for Large-Scale Graph Analytics

Emerging data-intensive applications attempt to process and provide insight into vast amounts of online data. A new class of linear algebra algorithms can efficiently execute sparse matrix-matrix and matrix-vector multiplications on large-scale, shared memory multiprocessor systems, enabling analyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer (Long Beach, Calif.) Jg. 48; H. 8; S. 26 - 34
Hauptverfasser: Buono, Daniele, Gunnels, John A., Xinyu Que, Checconi, Fabio, Petrini, Fabrizio, Tai-Ching Tuan, Long, Chris
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9162, 1558-0814
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging data-intensive applications attempt to process and provide insight into vast amounts of online data. A new class of linear algebra algorithms can efficiently execute sparse matrix-matrix and matrix-vector multiplications on large-scale, shared memory multiprocessor systems, enabling analysts to more easily discern meaningful data relationships, such as those in social networks.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9162
1558-0814
DOI:10.1109/MC.2015.228