Quasi-polynomial time approximation schemes for assortment optimization under Mallows-based rankings

In spite of its widespread applicability in learning theory, probability, combinatorics, and in various other fields, the Mallows model has only recently been examined from revenue management perspectives. To our knowledge, the only provably-good approaches for assortment optimization under the Mall...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 208; no. 1-2; pp. 111 - 171
Main Authors: Rieger, Alon, Segev, Danny
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In spite of its widespread applicability in learning theory, probability, combinatorics, and in various other fields, the Mallows model has only recently been examined from revenue management perspectives. To our knowledge, the only provably-good approaches for assortment optimization under the Mallows model have recently been proposed by Désir et al. (Oper Res 69(4):1206–1227, 2021), who devised three approximation schemes that operate in very specific circumstances. Unfortunately, these algorithmic results suffer from two major limitations, either crucially relying on strong structural assumptions, or incurring running times that exponentially scale either with the ratio between the extremal prices or with the Mallows concentration parameter. The main contribution of this paper consists in devising a quasi-polynomial-time approximation scheme for the assortment optimization problem under the Mallows model in its utmost generality. In other words, for any accuracy level ϵ > 0 , our algorithm identifies an assortment whose expected revenue is within factor 1 - ϵ of optimal, without resorting to any structural or parametric assumption whatsoever. Our work sheds light on newly-gained structural insights surrounding near-optimal Mallows-based assortments and fleshes out some of their unexpected algorithmic consequences.
AbstractList In spite of its widespread applicability in learning theory, probability, combinatorics, and in various other fields, the Mallows model has only recently been examined from revenue management perspectives. To our knowledge, the only provably-good approaches for assortment optimization under the Mallows model have recently been proposed by Désir et al. (Oper Res 69(4):1206-1227, 2021), who devised three approximation schemes that operate in very specific circumstances. Unfortunately, these algorithmic results suffer from two major limitations, either crucially relying on strong structural assumptions, or incurring running times that exponentially scale either with the ratio between the extremal prices or with the Mallows concentration parameter. The main contribution of this paper consists in devising a quasi-polynomial-time approximation scheme for the assortment optimization problem under the Mallows model in its utmost generality. In other words, for any accuracy level [Formula omitted], our algorithm identifies an assortment whose expected revenue is within factor [Formula omitted] of optimal, without resorting to any structural or parametric assumption whatsoever. Our work sheds light on newly-gained structural insights surrounding near-optimal Mallows-based assortments and fleshes out some of their unexpected algorithmic consequences.
In spite of its widespread applicability in learning theory, probability, combinatorics, and in various other fields, the Mallows model has only recently been examined from revenue management perspectives. To our knowledge, the only provably-good approaches for assortment optimization under the Mallows model have recently been proposed by Désir et al. (Oper Res 69(4):1206–1227, 2021), who devised three approximation schemes that operate in very specific circumstances. Unfortunately, these algorithmic results suffer from two major limitations, either crucially relying on strong structural assumptions, or incurring running times that exponentially scale either with the ratio between the extremal prices or with the Mallows concentration parameter. The main contribution of this paper consists in devising a quasi-polynomial-time approximation scheme for the assortment optimization problem under the Mallows model in its utmost generality. In other words, for any accuracy level ϵ > 0 , our algorithm identifies an assortment whose expected revenue is within factor 1 - ϵ of optimal, without resorting to any structural or parametric assumption whatsoever. Our work sheds light on newly-gained structural insights surrounding near-optimal Mallows-based assortments and fleshes out some of their unexpected algorithmic consequences.
Audience Academic
Author Segev, Danny
Rieger, Alon
Author_xml – sequence: 1
  givenname: Alon
  surname: Rieger
  fullname: Rieger, Alon
  organization: Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University
– sequence: 2
  givenname: Danny
  orcidid: 0000-0003-4684-2185
  surname: Segev
  fullname: Segev, Danny
  email: segevdanny@tauex.tau.ac.il
  organization: Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University
BookMark eNp9kNtKAzEQhoNUsK2-gFd5gdQctrvZy1I8gSKCXofsZlJTd5Ml2aL16Y2u1zIMA8P_Dcy3QDMfPCB0yeiKUVpdJUYZrQjlIjcVghQnaM4KUZKiLMoZmlPK12RdMnqGFintKaVMSDlH5vmgkyND6I4-9E53eHQ9YD0MMXy6Xo8ueJzaN-ghYRsi1imFOPbgRxyGnHVfU-bgDUT8qLsufCTS6AQGR-3fnd-lc3RqdZfg4m8u0evN9cv2jjw83d5vNw-k5ZKNRFvZWikbacHWnDWGgRG2htqWlgvZNKbmhVk3AnSzLriuRSWMLEHaSvOqbcUSraa7O92Bct6GMeo2l4HetdmYdXm_kYwXgmY4A3wC2hhSimDVEPPT8agYVT9i1SRWZbHqV6wqMiQmKOWw30FU-3CIPj_2H_UNecqBAw
Cites_doi 10.1137/14099317X
10.2307/2346567
10.1287/opre.2018.1754
10.1287/opre.2017.1692
10.1093/biomet/44.1-2.114
10.1287/moor.2018.0933
10.1111/poms.12365
10.1007/s10107-003-0438-y
10.1287/mnsc.2016.2491
10.1007/s10107-021-01755-7
10.1287/moor.2013.0611
10.1007/s00440-014-0559-7
10.1287/mnsc.2014.1931
10.1287/msom.1110.0365
10.1137/S0097539701399654
10.1287/mnsc.1120.1610
10.1016/0304-4076(90)90126-E
10.1109/FOCS.2018.00066
10.1086/296093
10.1137/1.9781611973730.98
10.1111/j.2517-6161.1986.tb01420.x
10.1145/2818695
10.1287/opre.2016.1505
10.1145/1132516.1132617
10.1007/s00453-014-9906-4
10.1007/s00453-017-0300-x
10.1068/a090285
10.1145/509907.509954
10.1287/mnsc.2020.3657
10.1287/opre.1100.0866
10.1007/s11009-016-9506-7
10.1111/poms.12191
10.1137/19M1266587
10.1007/s00454-011-9337-9
10.1287/opre.2021.2142
10.1287/opre.2020.2085
10.1145/1516512.1516517
10.1287/mnsc.2018.3230
10.1287/opre.2017.1628
10.2307/1910997
10.1287/opre.2014.1256
10.1287/mnsc.1030.0147
10.1137/19M128257X
10.1214/17-AOP1202
10.1287/opre.1080.0567
10.1007/978-1-4939-9606-3
10.1063/1.3156746
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10107-023-02033-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 171
ExternalDocumentID A812430373
10_1007_s10107_023_02033_4
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 1407/20
  funderid: http://dx.doi.org/10.13039/501100003977
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c281t-af8cf88b8fef921bd1ed3f9e9f6f238bbd924d5b3eab542a9373d86e8f7a27cc3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001123115700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 10:28:28 EST 2025
Sat Nov 29 03:34:04 EST 2025
Fri Feb 21 02:37:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Mallows model
Assortment optimization
90C39
Dynamic programming
68W25
90C27
Quasi-PTAS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-af8cf88b8fef921bd1ed3f9e9f6f238bbd924d5b3eab542a9373d86e8f7a27cc3
ORCID 0000-0003-4684-2185
PageCount 61
ParticipantIDs gale_infotracacademiconefile_A812430373
crossref_primary_10_1007_s10107_023_02033_4
springer_journals_10_1007_s10107_023_02033_4
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References JagabathulaSRusmevichientongPA nonparametric joint assortment and price choice modelManag. Sci.201796331283145
IrurozkiECalvoBLozanoJASampling and learning mallows and generalized mallows models under the Cayley distanceMethodol. Comput. Appl. Probab.2018201353760337
AroraSKarakostasGApproximation schemes for minimum latency problemsSIAM J. Comput.2003325131713372001275
GladkichAPeledROn the cycle structure of Mallows permutationsAnn. Probab.2018462111411693773382
DésirAGoyalVJagabathulaSSegevDMallows-smoothed distribution over rankings approach for modeling choiceOper. Res.2021694120612274300100
AouadALeviRSegevDApproximation algorithms for dynamic assortment optimization modelsMath. Oper. Res.2019244487511
HausmanJMcFaddenDSpecification tests for the multinomial logit modelEconometrica198452512191240763071
TrainKEDiscrete Choice Methods with Simulation2009CambridgeCambridge University Press
WilliamsHCOn the formation of travel demand models and economic evaluation measures of user benefitEnviron. Plan A197793285344
ChanTHHElbassioniKMA QPTAS for TSP with fat weakly disjoint neighborhoods in doubling metricsDiscrete Comput. Geom.20114647047232846175
SegevDAn approximate dynamic-programming approach to the joint replenishment problemMath. Oper. Res.20143924324443205554
Liu, A., Moitra, A.: Efficiently learning mixtures of Mallows models. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science, pp. 627–638 (2018)
van RyzinGVulcanoGA market discovery algorithm to estimate a general class of nonparametric choice modelsManag. Sci.2014261281300
AroraSApproximation schemes for NP-hard geometric optimization problems: a surveyMath. Program.200397143692004392
JansenKRohwedderLA quasi-polynomial approximation for the restricted assignment problemSIAM J. Comput.2020496108311084169756
Starr, S.: Thermodynamic limit for the Mallows model on Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. J. Math. Phys. 50(9) (2009)
MustafaNHRamanRRaySQuasi-polynomial time approximation scheme for weighted geometric set cover on pseudodisks and halfspacesSIAM J. Comput.2015446165016693418236
FeldmanJBTopalogluHRevenue management under the Markov chain choice modelOper. Res.2017655132213423710049
DésirAGoyalVSegevDYeCCapacity constrained assortment optimization under the Markov chain based choice modelManag. Sci.2020662698721
MallowsCLNon-null ranking modelsBiometrika195744111413087267
HonhonDJonnalageddaSPanXAOptimal algorithms for assortment selection under ranking-based consumer choice modelsManuf. Serv. Oper. Manag.2012214279289
Meilă, M., Chen, H.: Dirichlet process mixtures of generalized Mallows models. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 358–367 (2010)
Börsch-SupanAOn the compatibility of Nested Logit models with utility maximizationJ. Econom.1990433373388
FaenzaYSegevDZhangLApproximation algorithms for the generalized incremental knapsack problemMath. Program.2023198127834550945
FlignerMAVerducciJSDistance based ranking modelsJ. Roy. Stat. Soc.: Ser. B (Methodol.)1986483359369876847
LebanonGMaoYNon-parametric modeling of partially ranked dataJ. Mach. Learn. Res.20089240124292452632
Awasthi, P., Blum, A., Sheffet, O., Vijayaraghavan, A.: Learning mixtures of ranking models. In: Proceedings of the 28th Annual Conference on Neural Information Processing Systems, pp. 2609–2617 (2014)
De, A., O’Donnell, R., Servedio, R.: Learning sparse mixtures of permutations from noisy information. In: Proceedings of 34th Conference on Learning Theory, pp. 1429–1466 (2021)
DavisJMGallegoGTopalogluHAssortment optimization under variants of the Nested Logit modelOper. Res.20146222502733209169
LuceRIndividual Choice Behavior: A Theoretical Analysis1959New YorkWiley
JonesBWeighted games of best choiceSIAM J. Discret. Math.20203413994144062797
PoláčekLSvenssonOQuasi-polynomial local search for restricted max-min fair allocationACM Trans. Algorithms20151221133465936
McFaddenDEconometric models for probabilistic choice among productsJ. Bus.1980533s13s29
HöhnWMestreJWieseAHow unsplittable-flow-covering helps scheduling with job-dependent cost functionsAlgorithmica2018804119112133769287
RusmevichientongPShenZJMShmoysDBDynamic assortment optimization with a multinomial logit choice model and capacity constraintOper. Res.2010586166616802752712
FariasVSrikanthJDevavratSA nonparametric approach to modeling choice with limited dataManag. Sci.2013259305322
Plackett, R.: The analysis of permutations. Appl. Stat. 193–202 (1975)
Adamaszek, A., Wiese, A.: A quasi-PTAS for the two-dimensional geometric knapsack problem. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1491–1505 (2015)
TalluriKvan RyzinGRevenue management under a general discrete choice model of consumer behaviorManag. Sci.20045011533
SumidaMGallegoGRusmevichientongPTopalogluHDavisJRevenue-utility tradeoff in assortment optimization under the Multinomial Logit model with totally unimodular constraintsManag. Sci.202167528452869
FeldmanJBTopalogluHBounding optimal expected revenues for assortment optimization under mixtures of multinomial logitsProd. Oper. Manag.2015241015981620
RemyJStegerAA quasi-polynomial time approximation scheme for minimum weight triangulationJ. ACM20095631472536130
BhatnagarNPeledRLengths of monotone subsequences in a Mallows permutationProbab. Theory Relat. Fields20151617197803334280
BlanchetJHGallegoGGoyalVA Markov chain approximation to choice modelingOper. Res.20166448869053532860
FengYTangYOn a mallows-type model for (ranked) choicesAdv. Neural. Inf. Process. Syst.20223530523065
GallegoGTopalogluHRevenue Management and Pricing Analytics2019BerlinSpringer
ŞimşekASTopalogluHTechnical note: an expectation-maximization algorithm to estimate the parameters of the Markov chain choice modelOper. Res.20186637487603826853
McFadden, D.: Modeling the choice of residential location. Transp. Res. Rec. (1978)
Chekuri, C., Khanna, S.: Approximation schemes for preemptive weighted flow time. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 297–305 (2002)
Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line graphs. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 721–729 (2006)
RusmevichientongPShmoysDTongCTopalogluHAssortment optimization under the Multinomial Logit model with random choice parametersProd. Oper. Manag.2014231120232039
LuTBoutilierCEffective sampling and learning for Mallows models with pairwise-preference dataJ. Mach. Learn. Res.2014151378338293317212
GallegoGTopalogluHConstrained assortment optimization for the Nested Logit modelManag. Sci.2014601025832601
AouadAFariasVLeviRSegevDThe approximability of assortment optimization under ranking preferencesOper. Res.2018666166116693898852
DésirAGoyalVZhangJTechnical note-capacitated assortment optimization: hardness and approximationOper. Res.20217028939044409597
Braverman, M., Mossel, E.: Noisy sorting without resampling. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 268–276 (2008)
JagabathulaSRusmevichientongPThe limit of rationality in choice modeling: formulation, computation, and implicationsManag. Sci.201956521962215
BrontJJMMéndez-DiazIVulcanoGA column generation algorithm for choice-based network revenue managementOper. Res.2009573769784
DasAMathieuCA quasipolynomial time approximation scheme for Euclidean capacitated vehicle routingAlgorithmica20157311151423361782
2033_CR18
2033_CR11
2033_CR14
S Jagabathula (2033_CR36) 2019; 5
JB Feldman (2033_CR24) 2015; 24
A Das (2033_CR16) 2015; 73
A Aouad (2033_CR3) 2019; 2
M Sumida (2033_CR55) 2021; 67
G van Ryzin (2033_CR58) 2014; 2
S Jagabathula (2033_CR35) 2017; 9
THH Chan (2033_CR13) 2011; 46
T Lu (2033_CR41) 2014; 15
2033_CR54
W Höhn (2033_CR32) 2018; 80
2033_CR7
2033_CR6
2033_CR1
A Börsch-Supan (2033_CR10) 1990; 43
P Rusmevichientong (2033_CR51) 2010; 58
P Rusmevichientong (2033_CR52) 2014; 23
HC Williams (2033_CR59) 1977; 9
Y Feng (2033_CR26) 2022; 35
R Luce (2033_CR42) 1959
A Gladkich (2033_CR30) 2018; 46
A Désir (2033_CR20) 2020; 66
G Gallego (2033_CR28) 2014; 60
B Jones (2033_CR38) 2020; 34
KE Train (2033_CR57) 2009
D Honhon (2033_CR33) 2012; 2
S Arora (2033_CR4) 2003; 97
JB Feldman (2033_CR25) 2017; 65
CL Mallows (2033_CR43) 1957; 44
K Talluri (2033_CR56) 2004; 50
A Désir (2033_CR21) 2021; 70
J Hausman (2033_CR31) 1984; 52
JJM Bront (2033_CR12) 2009; 57
L Poláček (2033_CR49) 2015; 12
JM Davis (2033_CR17) 2014; 62
K Jansen (2033_CR37) 2020; 49
A Désir (2033_CR19) 2021; 69
G Gallego (2033_CR29) 2019
E Irurozki (2033_CR34) 2018; 20
D Segev (2033_CR53) 2014; 39
A Aouad (2033_CR2) 2018; 66
MA Fligner (2033_CR27) 1986; 48
2033_CR48
2033_CR44
2033_CR46
G Lebanon (2033_CR39) 2008; 9
N Bhatnagar (2033_CR8) 2015; 161
Y Faenza (2033_CR22) 2023; 198
S Arora (2033_CR5) 2003; 32
V Farias (2033_CR23) 2013; 2
D McFadden (2033_CR45) 1980; 53
2033_CR40
J Remy (2033_CR50) 2009; 56
AS Şimşek (2033_CR15) 2018; 66
NH Mustafa (2033_CR47) 2015; 44
JH Blanchet (2033_CR9) 2016; 64
References_xml – reference: ŞimşekASTopalogluHTechnical note: an expectation-maximization algorithm to estimate the parameters of the Markov chain choice modelOper. Res.20186637487603826853
– reference: JonesBWeighted games of best choiceSIAM J. Discret. Math.20203413994144062797
– reference: BlanchetJHGallegoGGoyalVA Markov chain approximation to choice modelingOper. Res.20166448869053532860
– reference: AouadAFariasVLeviRSegevDThe approximability of assortment optimization under ranking preferencesOper. Res.2018666166116693898852
– reference: Liu, A., Moitra, A.: Efficiently learning mixtures of Mallows models. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science, pp. 627–638 (2018)
– reference: DésirAGoyalVSegevDYeCCapacity constrained assortment optimization under the Markov chain based choice modelManag. Sci.2020662698721
– reference: BrontJJMMéndez-DiazIVulcanoGA column generation algorithm for choice-based network revenue managementOper. Res.2009573769784
– reference: SegevDAn approximate dynamic-programming approach to the joint replenishment problemMath. Oper. Res.20143924324443205554
– reference: RemyJStegerAA quasi-polynomial time approximation scheme for minimum weight triangulationJ. ACM20095631472536130
– reference: ChanTHHElbassioniKMA QPTAS for TSP with fat weakly disjoint neighborhoods in doubling metricsDiscrete Comput. Geom.20114647047232846175
– reference: GladkichAPeledROn the cycle structure of Mallows permutationsAnn. Probab.2018462111411693773382
– reference: SumidaMGallegoGRusmevichientongPTopalogluHDavisJRevenue-utility tradeoff in assortment optimization under the Multinomial Logit model with totally unimodular constraintsManag. Sci.202167528452869
– reference: DésirAGoyalVJagabathulaSSegevDMallows-smoothed distribution over rankings approach for modeling choiceOper. Res.2021694120612274300100
– reference: FaenzaYSegevDZhangLApproximation algorithms for the generalized incremental knapsack problemMath. Program.2023198127834550945
– reference: McFadden, D.: Modeling the choice of residential location. Transp. Res. Rec. (1978)
– reference: MallowsCLNon-null ranking modelsBiometrika195744111413087267
– reference: Adamaszek, A., Wiese, A.: A quasi-PTAS for the two-dimensional geometric knapsack problem. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1491–1505 (2015)
– reference: Plackett, R.: The analysis of permutations. Appl. Stat. 193–202 (1975)
– reference: WilliamsHCOn the formation of travel demand models and economic evaluation measures of user benefitEnviron. Plan A197793285344
– reference: DasAMathieuCA quasipolynomial time approximation scheme for Euclidean capacitated vehicle routingAlgorithmica20157311151423361782
– reference: FengYTangYOn a mallows-type model for (ranked) choicesAdv. Neural. Inf. Process. Syst.20223530523065
– reference: GallegoGTopalogluHConstrained assortment optimization for the Nested Logit modelManag. Sci.2014601025832601
– reference: GallegoGTopalogluHRevenue Management and Pricing Analytics2019BerlinSpringer
– reference: Starr, S.: Thermodynamic limit for the Mallows model on Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}. J. Math. Phys. 50(9) (2009)
– reference: RusmevichientongPShmoysDTongCTopalogluHAssortment optimization under the Multinomial Logit model with random choice parametersProd. Oper. Manag.2014231120232039
– reference: TalluriKvan RyzinGRevenue management under a general discrete choice model of consumer behaviorManag. Sci.20045011533
– reference: FariasVSrikanthJDevavratSA nonparametric approach to modeling choice with limited dataManag. Sci.2013259305322
– reference: FlignerMAVerducciJSDistance based ranking modelsJ. Roy. Stat. Soc.: Ser. B (Methodol.)1986483359369876847
– reference: Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line graphs. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 721–729 (2006)
– reference: Meilă, M., Chen, H.: Dirichlet process mixtures of generalized Mallows models. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pp. 358–367 (2010)
– reference: JagabathulaSRusmevichientongPA nonparametric joint assortment and price choice modelManag. Sci.201796331283145
– reference: van RyzinGVulcanoGA market discovery algorithm to estimate a general class of nonparametric choice modelsManag. Sci.2014261281300
– reference: JagabathulaSRusmevichientongPThe limit of rationality in choice modeling: formulation, computation, and implicationsManag. Sci.201956521962215
– reference: JansenKRohwedderLA quasi-polynomial approximation for the restricted assignment problemSIAM J. Comput.2020496108311084169756
– reference: De, A., O’Donnell, R., Servedio, R.: Learning sparse mixtures of permutations from noisy information. In: Proceedings of 34th Conference on Learning Theory, pp. 1429–1466 (2021)
– reference: LuceRIndividual Choice Behavior: A Theoretical Analysis1959New YorkWiley
– reference: RusmevichientongPShenZJMShmoysDBDynamic assortment optimization with a multinomial logit choice model and capacity constraintOper. Res.2010586166616802752712
– reference: HausmanJMcFaddenDSpecification tests for the multinomial logit modelEconometrica198452512191240763071
– reference: Braverman, M., Mossel, E.: Noisy sorting without resampling. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 268–276 (2008)
– reference: IrurozkiECalvoBLozanoJASampling and learning mallows and generalized mallows models under the Cayley distanceMethodol. Comput. Appl. Probab.2018201353760337
– reference: Awasthi, P., Blum, A., Sheffet, O., Vijayaraghavan, A.: Learning mixtures of ranking models. In: Proceedings of the 28th Annual Conference on Neural Information Processing Systems, pp. 2609–2617 (2014)
– reference: AouadALeviRSegevDApproximation algorithms for dynamic assortment optimization modelsMath. Oper. Res.2019244487511
– reference: AroraSApproximation schemes for NP-hard geometric optimization problems: a surveyMath. Program.200397143692004392
– reference: HöhnWMestreJWieseAHow unsplittable-flow-covering helps scheduling with job-dependent cost functionsAlgorithmica2018804119112133769287
– reference: PoláčekLSvenssonOQuasi-polynomial local search for restricted max-min fair allocationACM Trans. Algorithms20151221133465936
– reference: HonhonDJonnalageddaSPanXAOptimal algorithms for assortment selection under ranking-based consumer choice modelsManuf. Serv. Oper. Manag.2012214279289
– reference: TrainKEDiscrete Choice Methods with Simulation2009CambridgeCambridge University Press
– reference: DavisJMGallegoGTopalogluHAssortment optimization under variants of the Nested Logit modelOper. Res.20146222502733209169
– reference: LebanonGMaoYNon-parametric modeling of partially ranked dataJ. Mach. Learn. Res.20089240124292452632
– reference: FeldmanJBTopalogluHBounding optimal expected revenues for assortment optimization under mixtures of multinomial logitsProd. Oper. Manag.2015241015981620
– reference: LuTBoutilierCEffective sampling and learning for Mallows models with pairwise-preference dataJ. Mach. Learn. Res.2014151378338293317212
– reference: FeldmanJBTopalogluHRevenue management under the Markov chain choice modelOper. Res.2017655132213423710049
– reference: MustafaNHRamanRRaySQuasi-polynomial time approximation scheme for weighted geometric set cover on pseudodisks and halfspacesSIAM J. Comput.2015446165016693418236
– reference: AroraSKarakostasGApproximation schemes for minimum latency problemsSIAM J. Comput.2003325131713372001275
– reference: BhatnagarNPeledRLengths of monotone subsequences in a Mallows permutationProbab. Theory Relat. Fields20151617197803334280
– reference: Börsch-SupanAOn the compatibility of Nested Logit models with utility maximizationJ. Econom.1990433373388
– reference: Chekuri, C., Khanna, S.: Approximation schemes for preemptive weighted flow time. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 297–305 (2002)
– reference: DésirAGoyalVZhangJTechnical note-capacitated assortment optimization: hardness and approximationOper. Res.20217028939044409597
– reference: McFaddenDEconometric models for probabilistic choice among productsJ. Bus.1980533s13s29
– volume: 44
  start-page: 1650
  issue: 6
  year: 2015
  ident: 2033_CR47
  publication-title: SIAM J. Comput.
  doi: 10.1137/14099317X
– volume: 5
  start-page: 2196
  issue: 65
  year: 2019
  ident: 2033_CR36
  publication-title: Manag. Sci.
– ident: 2033_CR48
  doi: 10.2307/2346567
– volume: 66
  start-page: 1661
  issue: 6
  year: 2018
  ident: 2033_CR2
  publication-title: Oper. Res.
  doi: 10.1287/opre.2018.1754
– volume: 66
  start-page: 748
  issue: 3
  year: 2018
  ident: 2033_CR15
  publication-title: Oper. Res.
  doi: 10.1287/opre.2017.1692
– volume: 15
  start-page: 3783
  issue: 1
  year: 2014
  ident: 2033_CR41
  publication-title: J. Mach. Learn. Res.
– volume: 44
  start-page: 114
  issue: 1
  year: 1957
  ident: 2033_CR43
  publication-title: Biometrika
  doi: 10.1093/biomet/44.1-2.114
– volume: 9
  start-page: 2401
  year: 2008
  ident: 2033_CR39
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 487
  issue: 44
  year: 2019
  ident: 2033_CR3
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2018.0933
– volume-title: Discrete Choice Methods with Simulation
  year: 2009
  ident: 2033_CR57
– volume: 24
  start-page: 1598
  issue: 10
  year: 2015
  ident: 2033_CR24
  publication-title: Prod. Oper. Manag.
  doi: 10.1111/poms.12365
– volume: 97
  start-page: 43
  issue: 1
  year: 2003
  ident: 2033_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0438-y
– ident: 2033_CR46
– volume: 9
  start-page: 3128
  issue: 63
  year: 2017
  ident: 2033_CR35
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2016.2491
– volume: 198
  start-page: 27
  issue: 1
  year: 2023
  ident: 2033_CR22
  publication-title: Math. Program.
  doi: 10.1007/s10107-021-01755-7
– volume: 2
  start-page: 281
  issue: 61
  year: 2014
  ident: 2033_CR58
  publication-title: Manag. Sci.
– volume: 39
  start-page: 432
  issue: 2
  year: 2014
  ident: 2033_CR53
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2013.0611
– volume: 161
  start-page: 719
  year: 2015
  ident: 2033_CR8
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/s00440-014-0559-7
– volume: 60
  start-page: 2583
  issue: 10
  year: 2014
  ident: 2033_CR28
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2014.1931
– volume: 2
  start-page: 279
  issue: 14
  year: 2012
  ident: 2033_CR33
  publication-title: Manuf. Serv. Oper. Manag.
  doi: 10.1287/msom.1110.0365
– volume: 32
  start-page: 1317
  issue: 5
  year: 2003
  ident: 2033_CR5
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539701399654
– volume: 2
  start-page: 305
  issue: 59
  year: 2013
  ident: 2033_CR23
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.1120.1610
– volume: 43
  start-page: 373
  issue: 3
  year: 1990
  ident: 2033_CR10
  publication-title: J. Econom.
  doi: 10.1016/0304-4076(90)90126-E
– ident: 2033_CR40
  doi: 10.1109/FOCS.2018.00066
– volume: 53
  start-page: s13
  issue: 3
  year: 1980
  ident: 2033_CR45
  publication-title: J. Bus.
  doi: 10.1086/296093
– ident: 2033_CR1
  doi: 10.1137/1.9781611973730.98
– volume: 48
  start-page: 359
  issue: 3
  year: 1986
  ident: 2033_CR27
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1986.tb01420.x
– volume: 12
  start-page: 1
  issue: 2
  year: 2015
  ident: 2033_CR49
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2818695
– volume: 64
  start-page: 886
  issue: 4
  year: 2016
  ident: 2033_CR9
  publication-title: Oper. Res.
  doi: 10.1287/opre.2016.1505
– ident: 2033_CR7
  doi: 10.1145/1132516.1132617
– volume: 73
  start-page: 115
  issue: 1
  year: 2015
  ident: 2033_CR16
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9906-4
– volume: 80
  start-page: 1191
  issue: 4
  year: 2018
  ident: 2033_CR32
  publication-title: Algorithmica
  doi: 10.1007/s00453-017-0300-x
– volume: 9
  start-page: 285
  issue: 3
  year: 1977
  ident: 2033_CR59
  publication-title: Environ. Plan A
  doi: 10.1068/a090285
– ident: 2033_CR14
  doi: 10.1145/509907.509954
– volume: 67
  start-page: 2845
  issue: 5
  year: 2021
  ident: 2033_CR55
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2020.3657
– volume: 58
  start-page: 1666
  issue: 6
  year: 2010
  ident: 2033_CR51
  publication-title: Oper. Res.
  doi: 10.1287/opre.1100.0866
– volume: 20
  start-page: 1
  year: 2018
  ident: 2033_CR34
  publication-title: Methodol. Comput. Appl. Probab.
  doi: 10.1007/s11009-016-9506-7
– volume: 23
  start-page: 2023
  issue: 11
  year: 2014
  ident: 2033_CR52
  publication-title: Prod. Oper. Manag.
  doi: 10.1111/poms.12191
– ident: 2033_CR11
– volume: 34
  start-page: 399
  issue: 1
  year: 2020
  ident: 2033_CR38
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/19M1266587
– volume-title: Individual Choice Behavior: A Theoretical Analysis
  year: 1959
  ident: 2033_CR42
– volume: 46
  start-page: 704
  issue: 4
  year: 2011
  ident: 2033_CR13
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-011-9337-9
– volume: 70
  start-page: 893
  issue: 2
  year: 2021
  ident: 2033_CR21
  publication-title: Oper. Res.
  doi: 10.1287/opre.2021.2142
– volume: 69
  start-page: 1206
  issue: 4
  year: 2021
  ident: 2033_CR19
  publication-title: Oper. Res.
  doi: 10.1287/opre.2020.2085
– volume: 56
  start-page: 1
  issue: 3
  year: 2009
  ident: 2033_CR50
  publication-title: J. ACM
  doi: 10.1145/1516512.1516517
– volume: 66
  start-page: 698
  issue: 2
  year: 2020
  ident: 2033_CR20
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2018.3230
– volume: 65
  start-page: 1322
  issue: 5
  year: 2017
  ident: 2033_CR25
  publication-title: Oper. Res.
  doi: 10.1287/opre.2017.1628
– volume: 52
  start-page: 1219
  issue: 5
  year: 1984
  ident: 2033_CR31
  publication-title: Econometrica
  doi: 10.2307/1910997
– ident: 2033_CR44
– ident: 2033_CR18
– volume: 62
  start-page: 250
  issue: 2
  year: 2014
  ident: 2033_CR17
  publication-title: Oper. Res.
  doi: 10.1287/opre.2014.1256
– volume: 50
  start-page: 15
  issue: 1
  year: 2004
  ident: 2033_CR56
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.1030.0147
– volume: 49
  start-page: 1083
  issue: 6
  year: 2020
  ident: 2033_CR37
  publication-title: SIAM J. Comput.
  doi: 10.1137/19M128257X
– volume: 35
  start-page: 3052
  year: 2022
  ident: 2033_CR26
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 46
  start-page: 1114
  issue: 2
  year: 2018
  ident: 2033_CR30
  publication-title: Ann. Probab.
  doi: 10.1214/17-AOP1202
– volume: 57
  start-page: 769
  issue: 3
  year: 2009
  ident: 2033_CR12
  publication-title: Oper. Res.
  doi: 10.1287/opre.1080.0567
– volume-title: Revenue Management and Pricing Analytics
  year: 2019
  ident: 2033_CR29
  doi: 10.1007/978-1-4939-9606-3
– ident: 2033_CR54
  doi: 10.1063/1.3156746
– ident: 2033_CR6
SSID ssj0001388
Score 2.4263403
Snippet In spite of its widespread applicability in learning theory, probability, combinatorics, and in various other fields, the Mallows model has only recently been...
SourceID gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 111
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title Quasi-polynomial time approximation schemes for assortment optimization under Mallows-based rankings
URI https://link.springer.com/article/10.1007/s10107-023-02033-4
Volume 208
WOSCitedRecordID wos001123115700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7G-2IPgQQPNbh6bYxHFgy2KD3oL-4SCfZCkPv69M2lSWxBBj4FkE2Z2Z77dyfcNIWeRloBDNPMixUIvSALuScelp5mWsTaC-67sWnIXd7ui10vuK1JYXv_tXpcky0g9R3bz8ViNYd0RO5AFy2QlRLUZ3KM_vszir8-FqBu1IjqoqDI_j7GQjuqgvFgSLTPNzeb_vnGLbFTIkranU2GbLNnhDlmf0xuEq85MpDXfJeZhIvO-Nx69fiI3GZ7FRvO0VBn_6E8pjRQ2v3ZgcwrYlgLOBrCOx4l0BJFmUFE4KfLQMtrBEv577mFeNBR7weMh_B55vrl-urr1qqYL4B7hF-ApoZ0QSjjrEuYr41vDXWITFzlI70oZ2LGZUHErVRgwCfCGGxFZ4WLJYq35PmkMR0N7QGikW47FNpZSiyBhUgUuaCkhcDJoYU2TXNS2T8dTbY30W0UZLZmCJdPSkmnQJOfonhQXXpFJLSv-ALwLJazSNkIVSMgxb5LL2jtptSLzXwY-_NvtR2SNAbCZ8hGPSaPIJvaErOq3op9np-VU_ALmqNuv
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC7WWcHdg-trcdyHfRA8aGDS3ZN0jrIoLjszKD7w1vQTBnRGJjPq_nurMokPWIT1GEg6oaq76uuufPUB7GTOIA5xPMks7yaykCIxUZjEcWdy55VIY6Va0ssHA3V1VZzUpLCy-du9KUlWkfoF2S2lYzVOdUdSIJML8FGSzA7t0c8un-JvKpRqhFoJHdRUmX-P8SodNUH5dUm0yjRHX973jSuwXCNLdjCfCqvwIYzW4POLfoN41X9q0lqugz-dmXKY3I6v_xI3GZ8loXlWdRl_GM4pjQw3v-EmlAyxLUOcjWCdjhPZGCPNTU3hZMRDm7A-lfDvy4TyomekBU-H8BtwcXR4_us4qUUX0D0qnaKnlItKWRVDLHhqfRq8iEUoYhYxvVvrccfmu1YEY7uSG4Q3wqssqJgbnjsnvkJrNB6FTWCZ60Seh9wYp2TBjZVRdqxSNBmcCr4Ne43t9e28t4Z-7qJMltRoSV1ZUss27JJ7NC286cQ4U_MH8F3UwkofEFTBhJyLNuw33tH1iizfGHjr_27fhqXj835P934P_nyDTxxBzpyb-B1a08ks_IBFdzcdlpOf1bR8BDww3pM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VWqFygJZSddtCfajUA40gtjdxjgi6agWsKI-Km-WntFLZXW0ClH_fmTzoIlVIiGOixIk8tufzjL9vAD5nziAOcTzJLO8nspAiMVGYxHFncueVSGNdteQwHw7VxUVxPMfir0-7dynJhtNAKk3janvq4_Yc8S2lEBunHCRVI5ML8FziLTrUdXL6624tToVSXdFWQgotbeb_bdxzTd0CfT89WnudwerT__cVrLSIk-02Q-Q1PAvjNVie0yHEq6M78dbyDfifV6YcJdPJ71viLOO7VICe1erjf0YN1ZHhpjhchpIh5mWIvxHEU5iRTXAFumypnYz4aTN2RKn9mzIhf-kZ1Yin4Pw6nA--ne19T9piDGg2lVZoQeWiUlbFEAueWp8GL2IRiphFdPvWetzJ-b4Vwdi-5AZhj_AqCyrmhufOibewOJ6MwztgmduJPA-5MU7Jghsro9yxStEgcSr4Hmx1dtDTRnND_1NXpp7U2JO67kkte_CFTKVpQlYz40zLK8BvkbSV3iUIg446Fz342llKtzO1fKDh9497_BMsHe8P9OGP4cEHeMkR-zSUxY-wWM2uwga8cNfVqJxt1iP0LxAj53c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-polynomial+time+approximation+schemes+for+assortment+optimization+under+Mallows-based+rankings&rft.jtitle=Mathematical+programming&rft.au=Rieger%2C+Alon&rft.au=Segev%2C+Danny&rft.date=2024-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=208&rft.issue=1-2&rft.spage=111&rft.epage=171&rft_id=info:doi/10.1007%2Fs10107-023-02033-4&rft.externalDocID=10_1007_s10107_023_02033_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon