XGBoost algorithm for predicting heat transfer coefficient of saturated flow boiling in mini/micro-channels

•A universal consolidated database of 11,470 pre-dryout data points was constructed from 41 sources covering 23 working fluids and wide operating ranges.•The XGBoost algorithm was applied to predict saturated flow boiling heat transfer coefficients in mini/micro-channels.•PFI and SHAP analyses were...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of heat and mass transfer Ročník 256; s. 128095
Hlavní autori: Noh, Hyeonseok, Kim, Jihyeok, Lee, Seunghyun, Kim, Sung-Min, Mudawar, Issam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2026
Predmet:
ISSN:0017-9310
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A universal consolidated database of 11,470 pre-dryout data points was constructed from 41 sources covering 23 working fluids and wide operating ranges.•The XGBoost algorithm was applied to predict saturated flow boiling heat transfer coefficients in mini/micro-channels.•PFI and SHAP analyses were integrated to enhance the physical interpretability of the data-driven model and to identify key parameters governing boiling heat transfer while mitigating overfitting.•Hyperparameter tuning with Optuna reduced the model’s MAE to 7.18 %, outperforming existing correlations and other machine learning models, while maintaining strong universal predictive capability on unseen data.•The proposed model provides an efficient framework for thermal system design and optimization, enabling reliable prediction of flow boiling heat transfer under diverse operating conditions. Accurate prediction of the heat transfer coefficient in saturated flow boiling within mini/micro-channels is the most critical factor in designing thermal systems for high-heat-flux devices. This study proposes a machine learning technique to predict the heat transfer coefficient of saturated flow boiling using the XGBoost (eXtreme Gradient Boosting) algorithm. The database used in this study consists of 11,470 pre-dryout data points, obtained by removing 1878 post-dryout data points from a total of 13,348 data points collected from 41 sources, employing an XGBoost incipience dryout predicting model. The dataset includes 23 working fluids, hydraulic diameters ranging from 0.19 mm to 6.50 mm, mass flow rates from 19.45 kg/m²s to 1608 kg/m²s, and saturation temperatures from -40 °C to 201.37 °C. The permutation feature importance (PFI) and SHapley Additive exPlanations (SHAP) values were used for feature selection, while Optuna was used for hyperparameter tuning. A total of seven training features—Prf, xdi, Pred, Frfo, Bo, Prg, and Frtp—were selected and used to develop the model. The model achieved a mean absolute error (MAE) of 7.18 %, demonstrating superior predictive performance compared to existing empirical correlations and other machine learning algorithms. This result confirms that XGBoost is an effective and reliable algorithm for predicting the heat transfer coefficient of saturated flow boiling in mini/micro-channels.
AbstractList •A universal consolidated database of 11,470 pre-dryout data points was constructed from 41 sources covering 23 working fluids and wide operating ranges.•The XGBoost algorithm was applied to predict saturated flow boiling heat transfer coefficients in mini/micro-channels.•PFI and SHAP analyses were integrated to enhance the physical interpretability of the data-driven model and to identify key parameters governing boiling heat transfer while mitigating overfitting.•Hyperparameter tuning with Optuna reduced the model’s MAE to 7.18 %, outperforming existing correlations and other machine learning models, while maintaining strong universal predictive capability on unseen data.•The proposed model provides an efficient framework for thermal system design and optimization, enabling reliable prediction of flow boiling heat transfer under diverse operating conditions. Accurate prediction of the heat transfer coefficient in saturated flow boiling within mini/micro-channels is the most critical factor in designing thermal systems for high-heat-flux devices. This study proposes a machine learning technique to predict the heat transfer coefficient of saturated flow boiling using the XGBoost (eXtreme Gradient Boosting) algorithm. The database used in this study consists of 11,470 pre-dryout data points, obtained by removing 1878 post-dryout data points from a total of 13,348 data points collected from 41 sources, employing an XGBoost incipience dryout predicting model. The dataset includes 23 working fluids, hydraulic diameters ranging from 0.19 mm to 6.50 mm, mass flow rates from 19.45 kg/m²s to 1608 kg/m²s, and saturation temperatures from -40 °C to 201.37 °C. The permutation feature importance (PFI) and SHapley Additive exPlanations (SHAP) values were used for feature selection, while Optuna was used for hyperparameter tuning. A total of seven training features—Prf, xdi, Pred, Frfo, Bo, Prg, and Frtp—were selected and used to develop the model. The model achieved a mean absolute error (MAE) of 7.18 %, demonstrating superior predictive performance compared to existing empirical correlations and other machine learning algorithms. This result confirms that XGBoost is an effective and reliable algorithm for predicting the heat transfer coefficient of saturated flow boiling in mini/micro-channels.
ArticleNumber 128095
Author Lee, Seunghyun
Kim, Jihyeok
Noh, Hyeonseok
Mudawar, Issam
Kim, Sung-Min
Author_xml – sequence: 1
  givenname: Hyeonseok
  surname: Noh
  fullname: Noh, Hyeonseok
  organization: Two-Phase Flow and Thermal Management Laboratory, School of Mechanical Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
– sequence: 2
  givenname: Jihyeok
  surname: Kim
  fullname: Kim, Jihyeok
  organization: Two-Phase Flow and Thermal Management Laboratory, School of Mechanical Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
– sequence: 3
  givenname: Seunghyun
  orcidid: 0000-0002-1019-2080
  surname: Lee
  fullname: Lee, Seunghyun
  email: lees@gist.ac.kr
  organization: Two-Phase Flow and Thermal Management Laboratory, School of Mechanical Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea
– sequence: 4
  givenname: Sung-Min
  surname: Kim
  fullname: Kim, Sung-Min
  organization: School of Mechanical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon, 16419, South Korea
– sequence: 5
  givenname: Issam
  surname: Mudawar
  fullname: Mudawar, Issam
  organization: Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL), School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN, 47907, USA
BookMark eNqNkD1PwzAQhj0UiRb4Dx5ZktppvrwBFRRQJRaQ2Czncm4dEruyDYh_T6LCxMJ0enW65-6eBZlZZ5GQS85Szni57FLT7VHFQYUQvbJBo08zlhUpz2omihmZM8arRKw4OyWLELopsryck7fXzY1zIVLV75w3cT9Q7Tw9eGwNRGN3dALTXyoFh1obMGgjdZoGFd-9ithS3btP2jjTTzPG0sFYsxwMeJfAXlmLfTgnJ1r1AS9-6hl5ubt9Xt8n26fNw_p6m0BW85ioWlXA84rnqqoBG6Ygr8coqlxDoapCYFOvENqyLJuSN0KUrOBaCYBM5ChWZ-TqyB2Xh-BRy4M3g_JfkjM5CZOd_CtMTsLkUdiIeDwixrPxw4zdMP0MoxWPEGXrzP9h3wERh44
Cites_doi 10.1016/S0017-9310(03)00041-3
10.1016/j.ijheatmasstransfer.2024.126593
10.1016/j.ijheatmasstransfer.2021.120980
10.1088/1742-6596/1599/1/012053
10.1016/j.ijheatmasstransfer.2024.125827
10.1016/j.ijheatmasstransfer.2010.12.009
10.1016/j.icheatmasstransfer.2024.108059
10.1016/j.ijheatmasstransfer.2012.03.002
10.1016/j.applthermaleng.2024.123254
10.1016/j.ijheatmasstransfer.2005.03.035
10.1093/bioinformatics/btq134
10.1016/j.ijheatmasstransfer.2018.02.020
10.1016/j.applthermaleng.2024.125077
10.1016/j.applthermaleng.2022.118773
10.1016/j.applthermaleng.2024.122769
10.1016/S0017-9310(03)00042-5
10.1016/j.ijheatmasstransfer.2021.122128
10.1016/j.ijrefrig.2023.08.018
10.1016/j.ijmultiphaseflow.2008.10.004
10.1016/j.ijheatmasstransfer.2017.08.104
10.1016/j.ijheatmasstransfer.2016.04.021
10.1016/0017-9310(94)00194-Z
10.1016/j.ijheatmasstransfer.2010.01.038
10.1016/S0142-727X(98)00006-X
10.1016/j.ijheatmasstransfer.2004.08.019
10.1021/je900140w
10.1016/S0140-7007(00)00057-8
10.1080/01457630802290080
10.1016/j.ijheatmasstransfer.2021.121176
10.1016/j.ijheatmasstransfer.2010.01.012
10.1016/S0894-1777(02)00317-5
10.1016/j.ijheatmasstransfer.2017.08.107
10.1016/j.ijheatmasstransfer.2009.04.004
10.1016/S0301-9322(02)00019-8
10.1016/j.ijheatfluidflow.2004.08.003
10.1115/1.4005300
10.1016/j.ijmultiphaseflow.2009.07.003
10.1038/s41586-020-2666-1
10.1016/j.expthermflusci.2011.09.005
10.1016/j.ijheatmasstransfer.2021.121712
10.1016/j.ijheatmasstransfer.2022.122599
10.1016/j.ijheatmasstransfer.2008.03.006
10.1016/j.ijheatmasstransfer.2011.03.052
10.1016/S0017-9310(02)00540-9
10.1016/j.ijheatmasstransfer.2008.02.012
10.1016/j.ijrefrig.2009.12.006
10.1016/0017-9310(94)00193-Y
10.1016/j.ijrefrig.2020.07.017
10.1016/0306-2619(95)00024-0
10.1016/j.expthermflusci.2010.12.013
10.1007/s00231-011-0761-4
10.1016/j.applthermaleng.2016.01.018
10.1016/j.expthermflusci.2010.11.014
10.1016/j.ijheatmasstransfer.2007.03.002
10.1115/1.2728905
10.1016/j.ijheatmasstransfer.2007.11.002
10.1016/j.ijheatmasstransfer.2013.04.014
10.1016/j.applthermaleng.2010.08.026
10.1115/1.4003669
10.1016/j.ijheatmasstransfer.2003.12.006
10.1016/j.applthermaleng.2003.11.027
10.1016/j.csite.2024.105122
10.1115/1.1643090
10.1016/j.ijheatfluidflow.2003.11.005
10.1016/j.ijheatmasstransfer.2013.04.016
10.1115/1.2911393
10.1016/S0017-9310(99)00379-8
10.1016/j.ijheatmasstransfer.2021.122500
10.1016/j.ijthermalsci.2010.03.011
10.1016/S0017-9310(98)00127-6
10.1016/j.ijheatmasstransfer.2017.10.015
10.1016/j.ijrefrig.2023.04.031
10.1115/1.3244324
10.1016/0017-9310(94)90103-1
10.1016/j.ijrefrig.2007.02.010
10.1016/j.ijheatmasstransfer.2010.06.011
10.1016/j.ijheatmasstransfer.2023.124309
10.1016/j.ijheatmasstransfer.2004.09.019
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatmasstransfer.2025.128095
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2025_128095
S0017931025014309
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABDMP
ABDPE
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c281t-a8a7c14714a78ceb0ac48471974fc5a759eb83ecd666b61b996051fa9cc294e93
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001619719800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Thu Nov 27 01:05:29 EST 2025
Wed Dec 10 14:22:56 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Mini/micro-channels
Extreme gradient boosting
Heat transfer coefficient
XGBoost
Saturated flow boiling
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-a8a7c14714a78ceb0ac48471974fc5a759eb83ecd666b61b996051fa9cc294e93
ORCID 0000-0002-1019-2080
ParticipantIDs crossref_primary_10_1016_j_ijheatmasstransfer_2025_128095
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2025_128095
PublicationCentury 2000
PublicationDate March 2026
2026-03-00
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: March 2026
PublicationDecade 2020
PublicationTitle International journal of heat and mass transfer
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Xuan (bib0015) 2024; 248
Gersey, Mudawar (bib0034) 1995; 38
Lee, Devahdhanush, Mudawar (bib0017) 2017; 115
Lin, Kew, Cornwell (bib0022) 2001; 24
Bao, Fletcher, Haynes (bib0046) 2000; 43
In, Jeong (bib0023) 2009; 35
Yu, France, Wambsganss, Hull (bib0089) 2002; 28
Saitoh, Daiguji, Hihara (bib0065) 2005; 48
Kandlikar (bib0030) 2004; 126
Lun, Calay, Holdo (bib0039) 1996; 53
van Erp, Soleimanzadeh, Nela (bib0010) 2020; 585
Hamdar, Zoughaib, Clodic (bib0052) 2010; 33
J. Bergstra, R. Bardenet, Y. Bengio, B. Kegl, Algorithms for hyper-parameter optimization, in: process. Syst, Granada, Spain, 2011, pp. 2546–2554.
Tibirica, Ribatski (bib0067) 2010; 53
Nijhawan (bib0032) 1980; 102
Wu, Koettig, Franke, Helmer, Eisel, Haug, Bremer (bib0073) 2011; 54
Mastrullo, Mauro, Napoli, Pelella, Viscito (bib0078) 2020; 1599
Mauro, Pelella, Viscito (bib0081) 2023; 155
E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference fluid thermodynamic and transport properties – REFPROP version 9.0, NIST, MD, 2010.
Mudawar (bib0002) 2011; 133
Tang (bib0013) 2025; 261
Ducoulombier (bib0050) 2010
Mahmoud, Karayiannis, Kenning (bib0056) 2011; 54
Mauro, Napoli, Pelella, Viscito (bib0079) 2020; 119
Wang, Chiang, Yu (bib0071) 1998; 19
Li, Wu (bib0091) 2010; 53
Noh, Lee, Kim, Mudawar (bib0043) 2024; 231
Copetti, Macagnan, Zinani, Kunsler (bib0049) 2011; 35
Kim, Mudawar (bib0021) 2013; 64
Qu, Mudawar (bib0027) 2003; 46
Kim, Mudawar (bib0020) 2013; 64
Wang, Chen, Groll (bib0072) 2009; 54
Qu, Mudawar (bib0035) 2004; 47
L. Consolini, Convective boiling heat transfer in a single micro-channel, ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, Switzerland, 2008.
Qu, Mudawar (bib0026) 2003; 46
Thome (bib0031) 2004; 25
Lee, Mudawar (bib0024) 2005; 48
Qu, Mudawar (bib0064) 2003; 46
Tarabkhah, Sajadi, Akhavan Behabadi (bib0041) 2023; 152
Yun, Kim, Kim, Choi (bib0075) 2003; 46
Chen, Guestrin (bib0082) 2016
Muwanga, Hassan (bib0059) 2007; 129
Akiba, Sano, Yanase, Ohta, Koyama (bib0087) 2019
Agostini, Bontemps (bib0090) 2005; 26
Mudawar (bib0007) 2025; 240
O’Neill, Mudawar (bib0028) 2020; 157
Revellin, Thome (bib0037) 2008; 51
Oh, Son (bib0060) 2011; 31
Greco (bib0051) 2008; 51
Jung, Lee (bib0004) 2024; 62
Yun, Kim, Kim (bib0076) 2005; 48
Tibirica, Ribatski, Thome (bib0068) 2012; 134
Hughes, Fronk, Garimella (bib0042) 2021; 179
Devahdhanush, Lee, Mudawar (bib0003) 2021; 172
Wang (bib0029) 2022; 214
Lee, Devahdhanush, Mudawar (bib0093) 2018; 123
Bowers, Mudawar (bib0016) 1994; 37
Borhani, Agostini, Thome (bib0019) 2010; 53
Yan, Lin (bib0074) 1998; 41
Arcasi, Mauro, Napoli, Viscito (bib0080) 2022; 188
Mudawar (bib0001) 2001; 24
C.L. Ong, Macro-to-microchannel transition in two-phase flow and evaporation, Ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, Switzerland, 2010.
Bertsch, Groll, Garimella (bib0047) 2009; 35
Agostini, Thome, Fabbri, Michel, Calmi, Kloter (bib0025) 2008; 51
Tran (bib0069) 1998
Ducoulombier, Colasson, Bonjour, Haberschill (bib0092) 2011; 35
Ali, Palm, Maqbool (bib0044) 2011; 133
Yeo, Lee (bib0038) 2022; 183
Martin-Callizo (bib0057) 2010
Bang, Kim, Lee, Lee (bib0045) 2011; 50
Altmann, Tolosi, Sander, Lengauer (bib0085) 2010; 26
Drummond (bib0011) 2018; 117
Messalas, Kanellopoulos, Makris (bib0086) 2019
Lee, Mudawar, Hasan (bib0006) 2016; 100
Wambsganss, France, Jendrzejczyk, Tran (bib0070) 1993; 115
Li, Dang, Hihara (bib0055) 2012; 55
Gersey, Mudawar (bib0033) 1995; 38
Sumith, Kaminaga, Matsumura (bib0066) 2003; 27
Li, Anglart (bib0040) 2016; 99
Cui (bib0012) 2024; 245
Huo, Chen, Tian, Karayiannis (bib0053) 2004; 24
Karayiannis, Mahmoud, Kenning (bib0054) 2012; 36
Lee, Mudawar (bib0036) 2008; 51
Jung, Noh, Lee (bib0005) 2024; 159
Li, Wu (bib0014) 2022; 187
Friedman (bib0083) 2006; 29
Mastrullo, Mauro, Rosato, Vanoli (bib0058) 2009; 52
Ohta, Inoue, Ando, Watanabe (bib0062) 2009; 30
Lee, Darges, Mudawar (bib0008) 2021; 170
Kim, Shah, Kim (bib0009) 2023; 213
Lee, Devahdhanush, Mudawar (bib0018) 2018; 116
Oh, Son (bib0061) 2011; 47
Zhao, Bansal (bib0077) 2007; 30
Mauro (10.1016/j.ijheatmasstransfer.2025.128095_bib0079) 2020; 119
Gersey (10.1016/j.ijheatmasstransfer.2025.128095_bib0033) 1995; 38
Altmann (10.1016/j.ijheatmasstransfer.2025.128095_bib0085) 2010; 26
Wang (10.1016/j.ijheatmasstransfer.2025.128095_bib0072) 2009; 54
Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0018) 2018; 116
Bang (10.1016/j.ijheatmasstransfer.2025.128095_bib0045) 2011; 50
10.1016/j.ijheatmasstransfer.2025.128095_bib0084
Lun (10.1016/j.ijheatmasstransfer.2025.128095_bib0039) 1996; 53
O’Neill (10.1016/j.ijheatmasstransfer.2025.128095_bib0028) 2020; 157
Kim (10.1016/j.ijheatmasstransfer.2025.128095_bib0020) 2013; 64
Bowers (10.1016/j.ijheatmasstransfer.2025.128095_bib0016) 1994; 37
Kim (10.1016/j.ijheatmasstransfer.2025.128095_bib0009) 2023; 213
Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0015) 2024; 248
Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0091) 2010; 53
Ali (10.1016/j.ijheatmasstransfer.2025.128095_bib0044) 2011; 133
Zhao (10.1016/j.ijheatmasstransfer.2025.128095_bib0077) 2007; 30
Akiba (10.1016/j.ijheatmasstransfer.2025.128095_bib0087) 2019
Wu (10.1016/j.ijheatmasstransfer.2025.128095_bib0073) 2011; 54
Agostini (10.1016/j.ijheatmasstransfer.2025.128095_bib0025) 2008; 51
Ohta (10.1016/j.ijheatmasstransfer.2025.128095_bib0062) 2009; 30
Tang (10.1016/j.ijheatmasstransfer.2025.128095_bib0013) 2025; 261
In (10.1016/j.ijheatmasstransfer.2025.128095_bib0023) 2009; 35
Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0024) 2005; 48
Muwanga (10.1016/j.ijheatmasstransfer.2025.128095_bib0059) 2007; 129
Qu (10.1016/j.ijheatmasstransfer.2025.128095_bib0035) 2004; 47
Yeo (10.1016/j.ijheatmasstransfer.2025.128095_bib0038) 2022; 183
Copetti (10.1016/j.ijheatmasstransfer.2025.128095_bib0049) 2011; 35
Yan (10.1016/j.ijheatmasstransfer.2025.128095_bib0074) 1998; 41
Gersey (10.1016/j.ijheatmasstransfer.2025.128095_bib0034) 1995; 38
Ducoulombier (10.1016/j.ijheatmasstransfer.2025.128095_bib0050) 2010
Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0017) 2017; 115
Wambsganss (10.1016/j.ijheatmasstransfer.2025.128095_bib0070) 1993; 115
Kandlikar (10.1016/j.ijheatmasstransfer.2025.128095_bib0030) 2004; 126
Agostini (10.1016/j.ijheatmasstransfer.2025.128095_bib0090) 2005; 26
Jung (10.1016/j.ijheatmasstransfer.2025.128095_bib0004) 2024; 62
Yun (10.1016/j.ijheatmasstransfer.2025.128095_bib0075) 2003; 46
Ducoulombier (10.1016/j.ijheatmasstransfer.2025.128095_bib0092) 2011; 35
Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0006) 2016; 100
Drummond (10.1016/j.ijheatmasstransfer.2025.128095_bib0011) 2018; 117
Lin (10.1016/j.ijheatmasstransfer.2025.128095_bib0022) 2001; 24
Thome (10.1016/j.ijheatmasstransfer.2025.128095_bib0031) 2004; 25
Jung (10.1016/j.ijheatmasstransfer.2025.128095_bib0005) 2024; 159
Yu (10.1016/j.ijheatmasstransfer.2025.128095_bib0089) 2002; 28
Kim (10.1016/j.ijheatmasstransfer.2025.128095_bib0021) 2013; 64
Qu (10.1016/j.ijheatmasstransfer.2025.128095_bib0064) 2003; 46
Wang (10.1016/j.ijheatmasstransfer.2025.128095_bib0071) 1998; 19
10.1016/j.ijheatmasstransfer.2025.128095_bib0088
Qu (10.1016/j.ijheatmasstransfer.2025.128095_bib0026) 2003; 46
Sumith (10.1016/j.ijheatmasstransfer.2025.128095_bib0066) 2003; 27
Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0040) 2016; 99
Oh (10.1016/j.ijheatmasstransfer.2025.128095_bib0061) 2011; 47
Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0008) 2021; 170
10.1016/j.ijheatmasstransfer.2025.128095_bib0048
Tibirica (10.1016/j.ijheatmasstransfer.2025.128095_bib0068) 2012; 134
Revellin (10.1016/j.ijheatmasstransfer.2025.128095_bib0037) 2008; 51
Mastrullo (10.1016/j.ijheatmasstransfer.2025.128095_bib0078) 2020; 1599
Huo (10.1016/j.ijheatmasstransfer.2025.128095_bib0053) 2004; 24
10.1016/j.ijheatmasstransfer.2025.128095_bib0063
Friedman (10.1016/j.ijheatmasstransfer.2025.128095_bib0083) 2006; 29
Qu (10.1016/j.ijheatmasstransfer.2025.128095_bib0027) 2003; 46
Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0014) 2022; 187
Bertsch (10.1016/j.ijheatmasstransfer.2025.128095_bib0047) 2009; 35
Martin-Callizo (10.1016/j.ijheatmasstransfer.2025.128095_bib0057) 2010
Greco (10.1016/j.ijheatmasstransfer.2025.128095_bib0051) 2008; 51
Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0055) 2012; 55
Borhani (10.1016/j.ijheatmasstransfer.2025.128095_bib0019) 2010; 53
van Erp (10.1016/j.ijheatmasstransfer.2025.128095_bib0010) 2020; 585
Mahmoud (10.1016/j.ijheatmasstransfer.2025.128095_bib0056) 2011; 54
Hughes (10.1016/j.ijheatmasstransfer.2025.128095_bib0042) 2021; 179
Mauro (10.1016/j.ijheatmasstransfer.2025.128095_bib0081) 2023; 155
Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0093) 2018; 123
Mudawar (10.1016/j.ijheatmasstransfer.2025.128095_bib0002) 2011; 133
Yun (10.1016/j.ijheatmasstransfer.2025.128095_bib0076) 2005; 48
Bao (10.1016/j.ijheatmasstransfer.2025.128095_bib0046) 2000; 43
Messalas (10.1016/j.ijheatmasstransfer.2025.128095_bib0086) 2019
Karayiannis (10.1016/j.ijheatmasstransfer.2025.128095_bib0054) 2012; 36
Mastrullo (10.1016/j.ijheatmasstransfer.2025.128095_bib0058) 2009; 52
Tibirica (10.1016/j.ijheatmasstransfer.2025.128095_bib0067) 2010; 53
Tarabkhah (10.1016/j.ijheatmasstransfer.2025.128095_bib0041) 2023; 152
Saitoh (10.1016/j.ijheatmasstransfer.2025.128095_bib0065) 2005; 48
Wang (10.1016/j.ijheatmasstransfer.2025.128095_bib0029) 2022; 214
Noh (10.1016/j.ijheatmasstransfer.2025.128095_bib0043) 2024; 231
Hamdar (10.1016/j.ijheatmasstransfer.2025.128095_bib0052) 2010; 33
Devahdhanush (10.1016/j.ijheatmasstransfer.2025.128095_bib0003) 2021; 172
Oh (10.1016/j.ijheatmasstransfer.2025.128095_bib0060) 2011; 31
Chen (10.1016/j.ijheatmasstransfer.2025.128095_bib0082) 2016
Mudawar (10.1016/j.ijheatmasstransfer.2025.128095_bib0001) 2001; 24
Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0036) 2008; 51
Mudawar (10.1016/j.ijheatmasstransfer.2025.128095_bib0007) 2025; 240
Nijhawan (10.1016/j.ijheatmasstransfer.2025.128095_bib0032) 1980; 102
Arcasi (10.1016/j.ijheatmasstransfer.2025.128095_bib0080) 2022; 188
Cui (10.1016/j.ijheatmasstransfer.2025.128095_bib0012) 2024; 245
Tran (10.1016/j.ijheatmasstransfer.2025.128095_bib0069) 1998
References_xml – volume: 214
  year: 2022
  ident: bib0029
  article-title: Dynamic instabilities of flow boiling in micro-channels: a review
  publication-title: Appl. Therm. Eng.
– start-page: 2623
  year: 2019
  end-page: 2631
  ident: bib0087
  article-title: Optuna: a next-generation hyperparameter optimization framework
  publication-title: Proceedings of the 25th ACM SIGKDD International Data Mining Knowledge Discovery Conference
– volume: 50
  start-page: 280
  year: 2011
  end-page: 286
  ident: bib0045
  article-title: Pressure effect on flow boiling heat transfer of water in minichannels
  publication-title: Int. J. Therm. Sci.
– year: 2010
  ident: bib0057
  article-title: Flow Boiling Heat Transfer in Single Vertical Channel of Small Diameter
– volume: 35
  start-page: 636
  year: 2011
  end-page: 644
  ident: bib0049
  article-title: Flow boiling heat transfer and pressure drop of R-134a in a mini tube: an experimental investigation
  publication-title: Exp. Therm. Fluid Sci.
– volume: 53
  start-page: 2459
  year: 2010
  end-page: 2468
  ident: bib0067
  article-title: Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube
  publication-title: Int. J. Heat Mass Transf.
– volume: 19
  start-page: 259
  year: 1998
  end-page: 269
  ident: bib0071
  article-title: An experimental study of in-tube evaporation of R-22 inside aa 6.5-mm smooth tube
  publication-title: Int. J. Heat Fluid Flow
– volume: 119
  start-page: 195
  year: 2020
  end-page: 205
  ident: bib0079
  article-title: Flow boiling heat transfer and pressure drop data of non-azeotropic mixture R455A in a horizontal 6.0 mm stainless-steel tube
  publication-title: Int. J. Refrig.
– volume: 172
  year: 2021
  ident: bib0003
  article-title: Experimental investigation of subcooled flow boiling in annuli with reference to thermal management of ultra-fast electric vehicle charging cables
  publication-title: Int. J. Heat Mass Transf.
– volume: 35
  start-page: 597
  year: 2011
  end-page: 611
  ident: bib0092
  article-title: Carbon dioxide flow boiling in a single microchannel – part ⅠⅠ: heat transfer
  publication-title: Exp. Therm. Fluid Sci.
– volume: 585
  start-page: 211
  year: 2020
  end-page: 216
  ident: bib0010
  article-title: Co-designing electronics with microfluidics for more sustainable cooling
  publication-title: Nature
– volume: 48
  start-page: 941
  year: 2005
  end-page: 955
  ident: bib0024
  article-title: Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part ⅠⅠ-heat transfer characteristics
  publication-title: Int. J. Heat Mass Transf.
– volume: 115
  start-page: 963
  year: 1993
  end-page: 972
  ident: bib0070
  article-title: Boiling heat transfer in a horizontal small-diameter tube
  publication-title: ASME J. Heat Transf.
– volume: 26
  start-page: 1340
  year: 2010
  end-page: 1347
  ident: bib0085
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
– volume: 157
  year: 2020
  ident: bib0028
  article-title: Review of two-phase flow instabilities in macro- and micro-channel systems
  publication-title: Int. J. Heat Mass Transf.
– volume: 115
  start-page: 1258
  year: 2017
  end-page: 1275
  ident: bib0017
  article-title: Pressure drop characteristics of large length-to-diameter two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 134
  year: 2012
  ident: bib0068
  article-title: Flow boiling characteristics for R1234ze(E) in 1.0 and 2.2 mm circular channels
  publication-title: ASME J. Heat Transf.
– volume: 38
  start-page: 643
  year: 1995
  end-page: 654
  ident: bib0034
  article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—II. Critical heat flux model
  publication-title: Int. J. Heat Mass Transf.
– volume: 133
  year: 2011
  ident: bib0002
  article-title: Two-phase microchannel heat sinks: theory, applications, and limitations
  publication-title: J. Electron. Packag. – Trans. ASME
– volume: 183
  year: 2022
  ident: bib0038
  article-title: 2D computational investigation into transport phenomena of subcooled and saturated flow boiling in large length to diameter ratio micro-channel heat sinks
  publication-title: Int. J. Heat and Mass Transf.
– volume: 187
  year: 2022
  ident: bib0014
  article-title: Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
– volume: 245
  year: 2024
  ident: bib0012
  article-title: Characteristics analysis and structure optimization of a hybrid micro-jet impingement/micro-channel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 64
  start-page: 1226
  year: 2013
  end-page: 1238
  ident: bib0020
  article-title: Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part Ⅰ. Dryout incipience quality
  publication-title: Int. J. Heat Mass Transf.
– volume: 53
  start-page: 299
  year: 1996
  end-page: 314
  ident: bib0039
  article-title: Modelling two-phase flows using CFD
  publication-title: Appl. Energy
– volume: 28
  start-page: 927
  year: 2002
  end-page: 941
  ident: bib0089
  article-title: Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube
  publication-title: Int. J. Multiphase Flow
– volume: 62
  year: 2024
  ident: bib0004
  article-title: Experimental investigation into thermal characteristics of subcooled flow boiling in horizontal concentric annuli for cooling ultra-fast electric vehicle charging cables
  publication-title: Case Stud. Therm. Eng.
– volume: 116
  start-page: 273
  year: 2018
  end-page: 291
  ident: bib0018
  article-title: Frequency analysis of pressure oscillations in large length-to-diameter two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 126
  start-page: 8
  year: 2004
  end-page: 16
  ident: bib0030
  article-title: Heat transfer mechanisms during flow boiling in microchannels
  publication-title: J. Heat Transf.
– volume: 30
  start-page: 19
  year: 2009
  end-page: 27
  ident: bib0062
  article-title: Experimental investigation on observed scattering in heat transfer characteristics for flow boiling in a small diameter tube
  publication-title: Heat Transf. Eng.
– volume: 129
  start-page: 977
  year: 2007
  end-page: 987
  ident: bib0059
  article-title: A flow boiling heat transfer investigation of FC-72 in a microtube using liquid crystal thermography
  publication-title: ASME J. Heat Transf.
– volume: 24
  start-page: 51
  year: 2001
  end-page: 56
  ident: bib0022
  article-title: Two-phase heat transfer to a refrigerant in a 1mm diameter tube
  publication-title: Int. J. Refrig.
– volume: 26
  start-page: 296
  year: 2005
  end-page: 306
  ident: bib0090
  article-title: Vertical flow boiling of refrigerant R134a in small channels
  publication-title: Int. J. Heat Fluid Flow
– volume: 35
  start-page: 987
  year: 2009
  end-page: 1000
  ident: bib0023
  article-title: Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel
  publication-title: Int. J. Multiphase Flow
– volume: 41
  start-page: 4183
  year: 1998
  end-page: 4194
  ident: bib0074
  article-title: Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe
  publication-title: Int. J. Heat Mass Transf.
– volume: 54
  start-page: 2154
  year: 2011
  end-page: 2162
  ident: bib0073
  article-title: Investigation of heat transfer and pressure drop of CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 43
  start-page: 3347
  year: 2000
  end-page: 3358
  ident: bib0046
  article-title: Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages
  publication-title: Int. J. Heat Mass Transf.
– volume: 51
  start-page: 4315
  year: 2008
  end-page: 4326
  ident: bib0036
  article-title: Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks–Part Ⅰ: experimental methods and flow visualization results
  publication-title: Int. J. Heat Mass Transf.
– start-page: 1
  year: 2019
  end-page: 7
  ident: bib0086
  article-title: Model-agnostic interpretability with sharply values
  publication-title: Proceedings of the 10th International Conference on Information, Intelligence, Systems and Applications (IISA), IEEE
– volume: 231
  year: 2024
  ident: bib0043
  article-title: Utilization of XGBoost algorithm to predict dryout incipience quality for saturated flow boiling in mini/micro-channels
  publication-title: Int. J. Heat Mass Transf.
– volume: 48
  start-page: 4973
  year: 2005
  end-page: 4984
  ident: bib0065
  article-title: Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 24
  start-page: 122
  year: 2001
  end-page: 141
  ident: bib0001
  article-title: Assessment of high-heat-flux thermal management schemes
  publication-title: IEEE Trans. –CPMT
– volume: 38
  start-page: 629
  year: 1995
  end-page: 641
  ident: bib0033
  article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—I. Photographic study and statistical characterization of the near-wall interfacial features
  publication-title: Int. J. Heat Mass Transf.
– volume: 99
  start-page: 839
  year: 2016
  end-page: 850
  ident: bib0040
  article-title: Prediction of dryout and post-dryout heat transfer using a two-phase CFD model
  publication-title: Int. J. Heat Mass Transf.
– volume: 152
  start-page: 256
  year: 2023
  end-page: 268
  ident: bib0041
  article-title: Prediction of heat transfer coefficient and pressure drop of R1234yf and R134a flow condensation in horizontal and inclined tubes using machine learning techniques
  publication-title: Int. J. Refrig.
– volume: 24
  start-page: 1225
  year: 2004
  end-page: 1239
  ident: bib0053
  article-title: Flow boiling and flow regimes in small diameter tubes
  publication-title: Appl. Therm. Eng.
– volume: 30
  start-page: 937
  year: 2007
  end-page: 945
  ident: bib0077
  article-title: Flow boiling heat transfer characteristics of CO
  publication-title: Int. J. Refrig.
– volume: 54
  start-page: 2638
  year: 2009
  end-page: 2645
  ident: bib0072
  article-title: Flow boiling heat transfer characteristics of R134a in a horizontal mini tube
  publication-title: J. Chem. Eng. Data
– reference: C.L. Ong, Macro-to-microchannel transition in two-phase flow and evaporation, Ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, Switzerland, 2010.
– volume: 188
  year: 2022
  ident: bib0080
  article-title: Heat transfer coefficient, pressure drop and dry-out vapor quality of R454C. Flow boiling experiments and assessment of methods
  publication-title: Int. J. Heat Mass Transf.
– volume: 46
  start-page: 2755
  year: 2003
  end-page: 2771
  ident: bib0026
  article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks –Ⅰ. Experimental investigation and assessment of correlation methods
  publication-title: Int. J. Heat Mass Transf.
– volume: 47
  start-page: 703
  year: 2011
  end-page: 717
  ident: bib0061
  article-title: Evaporation flow pattern and heat transfer of R-22 and R-134a in small diameter tubes
  publication-title: Heat Mass Transf.
– volume: 133
  year: 2011
  ident: bib0044
  article-title: Flow boiling heat transfer characteristics of a minichannel up to dryout condition
  publication-title: ASME J. Heat Transf.
– volume: 55
  start-page: 3437
  year: 2012
  end-page: 3446
  ident: bib0055
  article-title: Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube: part Ⅰ. Experimental investigation
  publication-title: Int. J. Heat Mass Transf.
– volume: 25
  start-page: 128
  year: 2004
  end-page: 139
  ident: bib0031
  article-title: Boiling in microchannels: a review of experiment and theory
  publication-title: Int. J. Heat Fluid Flow
– volume: 102
  year: 1980
  ident: bib0032
  article-title: Measurement of vapor superheat in post-critical-heat-flux boiling
  publication-title: J. Heat Transf.
– volume: 213
  year: 2023
  ident: bib0009
  article-title: Experimental investigation and analysis of two-phase flow instability of flow boiling in a mini-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
– volume: 29
  start-page: 1189
  year: 2006
  end-page: 1232
  ident: bib0083
  article-title: Greedy boosting approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 155
  start-page: 47
  year: 2023
  end-page: 57
  ident: bib0081
  article-title: Thermal-hydraulic characterization of R513A during flow boiling inside a 6.0 mm horizontal tube, comparison with R134a and development of a new correlation
  publication-title: Int. J. Refrig.
– volume: 159
  year: 2024
  ident: bib0005
  article-title: Experimental and photographic investigation into horizontal subcooled flow boiling in concentric annuli for cooling system of ultra-fast electric vehicle charging cables
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 53
  start-page: 1778
  year: 2010
  end-page: 1787
  ident: bib0091
  article-title: A general correlation for evaporative heat transfer in micro/mini-channels
  publication-title: Int. J. Heat Mass Transf.
– year: 2010
  ident: bib0050
  article-title: Ebullition Convective Du Dioxide De Carbone – Etude Experimentale En Micro-Canal
– volume: 51
  start-page: 5400
  year: 2008
  end-page: 5414
  ident: bib0025
  article-title: High heat flux flow boiling in silicon multi-microchannels – Part Ⅰ. heat transfer characteristics of refrigerant R235fa
  publication-title: Int. J. Heat Mass Transf.
– volume: 117
  start-page: 319
  year: 2018
  end-page: 330
  ident: bib0011
  article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics
  publication-title: Int. J. Heat Mass Transf.
– year: 1998
  ident: bib0069
  article-title: Pressure Drop and Heat Transfer Study of Two-Phase Flow in Small Channels
– volume: 261
  year: 2025
  ident: bib0013
  article-title: Experimental study on boiling heat transfer and pressure drop characteristics of hybrid jet microchannel heat sink
  publication-title: Appl. Therm. Eng.
– volume: 170
  year: 2021
  ident: bib0008
  article-title: Experimental investigation and analysis of parametric trends of instability in two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 51
  start-page: 1216
  year: 2008
  end-page: 1225
  ident: bib0037
  article-title: A theoretical model for the prediction of the critical heat flux in heated microchannels
  publication-title: Int. J. Heat Mass Transf.
– reference: E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference fluid thermodynamic and transport properties – REFPROP version 9.0, NIST, MD, 2010.
– volume: 123
  start-page: 172
  year: 2018
  end-page: 191
  ident: bib0093
  article-title: Investigation of subcooled and saturated boiling heat transfer mechanisms, instabilities, and transient flow regime maps for large length-to-diameter ratio micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 52
  start-page: 4184
  year: 2009
  end-page: 4194
  ident: bib0058
  article-title: Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube
  publication-title: Int. J. Heat Mass Transf.
– volume: 54
  start-page: 3334
  year: 2011
  end-page: 3346
  ident: bib0056
  article-title: Surface effects in flow boiling of R134a in microtubes
  publication-title: Int. J. Heat Mass Transf.
– volume: 248
  year: 2024
  ident: bib0015
  article-title: Bidirectional interlayer cooling of 3D chip stack for temperature uniformity enhancement and hotspot mitigation
  publication-title: Appl. Therm. Eng.
– volume: 46
  start-page: 2353
  year: 2003
  end-page: 2361
  ident: bib0075
  article-title: Boiling heat transfer and dryout phenomenon of CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 33
  start-page: 566
  year: 2010
  end-page: 577
  ident: bib0052
  article-title: Flow boiling heat transfer and pressure drop of pure HFC-152a in a horizontal mini-channel
  publication-title: Int. J. Refrig.
– volume: 37
  start-page: 321
  year: 1994
  end-page: 332
  ident: bib0016
  article-title: High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 48
  start-page: 235
  year: 2005
  end-page: 242
  ident: bib0076
  article-title: Convective boiling heat transfer characteristics of CO
  publication-title: Int. J. Heat Mass Transf.
– volume: 47
  start-page: 2045
  year: 2004
  end-page: 2059
  ident: bib0035
  article-title: Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
– volume: 35
  start-page: 142
  year: 2009
  end-page: 154
  ident: bib0047
  article-title: Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels
  publication-title: Int. J. Multiphase Flow
– volume: 240
  year: 2025
  ident: bib0007
  article-title: Pressure drop characteristics and prediction techniques (models/correlations and artificial neural networks) for microgravity flow boiling onboard the international space station
  publication-title: Int. J. Heat Mass Transf.
– volume: 64
  start-page: 1239
  year: 2013
  end-page: 1256
  ident: bib0021
  article-title: Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part ⅠⅠ. Two-phase heat transfer coefficient
  publication-title: Int. J. Heat Mass Transf.
– volume: 46
  start-page: 2755
  year: 2003
  end-page: 2771
  ident: bib0064
  article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks –Ⅰ. Experimental investigation and assessment of correlation methods
  publication-title: Int. J. Heat Mass Transf.
– reference: J. Bergstra, R. Bardenet, Y. Bengio, B. Kegl, Algorithms for hyper-parameter optimization, in: process. Syst, Granada, Spain, 2011, pp. 2546–2554.
– volume: 27
  start-page: 789
  year: 2003
  end-page: 801
  ident: bib0066
  article-title: Saturated flow boiling of water in a vertical small diameter tube
  publication-title: Exp. Therm. Fluid Sci.
– reference: L. Consolini, Convective boiling heat transfer in a single micro-channel, ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, Switzerland, 2008.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib0082
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 53
  start-page: 4809
  year: 2010
  end-page: 4818
  ident: bib0019
  article-title: A novel time strip flow visualization technique for investigation of intermittent dewetting and dryout in elongated bubble flow in a microchannel
  publication-title: Int. J. Heat Mass Transf.
– volume: 179
  year: 2021
  ident: bib0042
  article-title: Universal condensation heat transfer and pressure drop model and the role of machine learning techniques to improve predictive capabilities
  publication-title: Int. J. Heat Mass Transf.
– volume: 100
  start-page: 190
  year: 2016
  end-page: 214
  ident: bib0006
  article-title: Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft
  publication-title: Appl. Therm. Eng.
– volume: 46
  start-page: 2773
  year: 2003
  end-page: 2784
  ident: bib0027
  article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks – Ⅱ. Annular two-phase flow model
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  start-page: 163
  year: 2011
  end-page: 172
  ident: bib0060
  article-title: Flow boiling heat transfer and pressure drop characteristics of CO
  publication-title: Appl. Therm. Eng.
– volume: 1599
  year: 2020
  ident: bib0078
  article-title: Flow boiling of azeotropic and non-azeotropic mixtures. Effect of the glide temperature difference on the nucleate boiling contribution: assessment of methods
  publication-title: J. Phys. Conf. Ser.
– volume: 51
  start-page: 896
  year: 2008
  end-page: 909
  ident: bib0051
  article-title: Convective boiling of pure and mixed refrigerants: an experimental study of the major parameters affecting heat transfer
  publication-title: Int. J. Heat Mass Transf.
– volume: 36
  start-page: 126
  year: 2012
  end-page: 142
  ident: bib0054
  article-title: A study of discrepancies in flow boiling results in small to microdiameter metallic tubes
  publication-title: Exp. Therm. Fluid Sci.
– volume: 46
  start-page: 2755
  issue: 15
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0026
  article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks –Ⅰ. Experimental investigation and assessment of correlation methods
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00041-3
– start-page: 785
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0082
  article-title: XGBoost: a scalable tree boosting system
– volume: 157
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0028
  article-title: Review of two-phase flow instabilities in macro- and micro-channel systems
  publication-title: Int. J. Heat Mass Transf.
– year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0057
– volume: 240
  year: 2025
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0007
  article-title: Pressure drop characteristics and prediction techniques (models/correlations and artificial neural networks) for microgravity flow boiling onboard the international space station
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2024.126593
– volume: 170
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0008
  article-title: Experimental investigation and analysis of parametric trends of instability in two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.120980
– volume: 1599
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0078
  article-title: Flow boiling of azeotropic and non-azeotropic mixtures. Effect of the glide temperature difference on the nucleate boiling contribution: assessment of methods
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1599/1/012053
– ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0063
– volume: 231
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0043
  article-title: Utilization of XGBoost algorithm to predict dryout incipience quality for saturated flow boiling in mini/micro-channels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2024.125827
– volume: 54
  start-page: 2154
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0073
  article-title: Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal minichannel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.12.009
– volume: 159
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0005
  article-title: Experimental and photographic investigation into horizontal subcooled flow boiling in concentric annuli for cooling system of ultra-fast electric vehicle charging cables
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2024.108059
– volume: 55
  start-page: 3437
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0055
  article-title: Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube: part Ⅰ. Experimental investigation
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.03.002
– volume: 248
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0015
  article-title: Bidirectional interlayer cooling of 3D chip stack for temperature uniformity enhancement and hotspot mitigation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.123254
– volume: 48
  start-page: 4973
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0065
  article-title: Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.03.035
– volume: 26
  start-page: 1340
  issue: 10
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0085
  article-title: Permutation importance: a corrected feature importance measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
– volume: 123
  start-page: 172
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0093
  article-title: Investigation of subcooled and saturated boiling heat transfer mechanisms, instabilities, and transient flow regime maps for large length-to-diameter ratio micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.02.020
– volume: 261
  year: 2025
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0013
  article-title: Experimental study on boiling heat transfer and pressure drop characteristics of hybrid jet microchannel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.125077
– volume: 214
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0029
  article-title: Dynamic instabilities of flow boiling in micro-channels: a review
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118773
– volume: 245
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0012
  article-title: Characteristics analysis and structure optimization of a hybrid micro-jet impingement/micro-channel heat sink
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.122769
– volume: 46
  start-page: 2773
  issue: 15
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0027
  article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks – Ⅱ. Annular two-phase flow model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00042-5
– volume: 183
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0038
  article-title: 2D computational investigation into transport phenomena of subcooled and saturated flow boiling in large length to diameter ratio micro-channel heat sinks
  publication-title: Int. J. Heat and Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.122128
– volume: 155
  start-page: 47
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0081
  article-title: Thermal-hydraulic characterization of R513A during flow boiling inside a 6.0 mm horizontal tube, comparison with R134a and development of a new correlation
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2023.08.018
– volume: 134
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0068
  article-title: Flow boiling characteristics for R1234ze(E) in 1.0 and 2.2 mm circular channels
  publication-title: ASME J. Heat Transf.
– volume: 35
  start-page: 142
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0047
  article-title: Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2008.10.004
– volume: 115
  start-page: 1258
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0017
  article-title: Pressure drop characteristics of large length-to-diameter two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.08.104
– volume: 99
  start-page: 839
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0040
  article-title: Prediction of dryout and post-dryout heat transfer using a two-phase CFD model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.04.021
– volume: 38
  start-page: 643
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0034
  article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—II. Critical heat flux model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(94)00194-Z
– volume: 46
  start-page: 2755
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0064
  article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks –Ⅰ. Experimental investigation and assessment of correlation methods
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00041-3
– volume: 53
  start-page: 2459
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0067
  article-title: Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.01.038
– volume: 19
  start-page: 259
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0071
  article-title: An experimental study of in-tube evaporation of R-22 inside aa 6.5-mm smooth tube
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(98)00006-X
– volume: 48
  start-page: 235
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0076
  article-title: Convective boiling heat transfer characteristics of CO2 in microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2004.08.019
– volume: 54
  start-page: 2638
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0072
  article-title: Flow boiling heat transfer characteristics of R134a in a horizontal mini tube
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je900140w
– volume: 24
  start-page: 51
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0022
  article-title: Two-phase heat transfer to a refrigerant in a 1mm diameter tube
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(00)00057-8
– start-page: 2623
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0087
  article-title: Optuna: a next-generation hyperparameter optimization framework
– ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0048
– volume: 30
  start-page: 19
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0062
  article-title: Experimental investigation on observed scattering in heat transfer characteristics for flow boiling in a small diameter tube
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457630802290080
– volume: 172
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0003
  article-title: Experimental investigation of subcooled flow boiling in annuli with reference to thermal management of ultra-fast electric vehicle charging cables
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121176
– volume: 53
  start-page: 1778
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0091
  article-title: A general correlation for evaporative heat transfer in micro/mini-channels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.01.012
– volume: 27
  start-page: 789
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0066
  article-title: Saturated flow boiling of water in a vertical small diameter tube
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(02)00317-5
– volume: 116
  start-page: 273
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0018
  article-title: Frequency analysis of pressure oscillations in large length-to-diameter two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.08.107
– volume: 52
  start-page: 4184
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0058
  article-title: Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.04.004
– volume: 29
  start-page: 1189
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0083
  article-title: Greedy boosting approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 28
  start-page: 927
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0089
  article-title: Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(02)00019-8
– volume: 26
  start-page: 296
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0090
  article-title: Vertical flow boiling of refrigerant R134a in small channels
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2004.08.003
– volume: 133
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0002
  article-title: Two-phase microchannel heat sinks: theory, applications, and limitations
  publication-title: J. Electron. Packag. – Trans. ASME
  doi: 10.1115/1.4005300
– volume: 35
  start-page: 987
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0023
  article-title: Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2009.07.003
– volume: 585
  start-page: 211
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0010
  article-title: Co-designing electronics with microfluidics for more sustainable cooling
  publication-title: Nature
  doi: 10.1038/s41586-020-2666-1
– volume: 36
  start-page: 126
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0054
  article-title: A study of discrepancies in flow boiling results in small to microdiameter metallic tubes
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2011.09.005
– volume: 179
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0042
  article-title: Universal condensation heat transfer and pressure drop model and the role of machine learning techniques to improve predictive capabilities
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121712
– volume: 188
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0080
  article-title: Heat transfer coefficient, pressure drop and dry-out vapor quality of R454C. Flow boiling experiments and assessment of methods
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2022.122599
– volume: 51
  start-page: 5400
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0025
  article-title: High heat flux flow boiling in silicon multi-microchannels – Part Ⅰ. heat transfer characteristics of refrigerant R235fa
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.03.006
– volume: 54
  start-page: 3334
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0056
  article-title: Surface effects in flow boiling of R134a in microtubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.03.052
– ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0084
– volume: 46
  start-page: 2353
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0075
  article-title: Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(02)00540-9
– volume: 51
  start-page: 4315
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0036
  article-title: Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks–Part Ⅰ: experimental methods and flow visualization results
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.02.012
– volume: 33
  start-page: 566
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0052
  article-title: Flow boiling heat transfer and pressure drop of pure HFC-152a in a horizontal mini-channel
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.12.006
– volume: 38
  start-page: 629
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0033
  article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—I. Photographic study and statistical characterization of the near-wall interfacial features
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(94)00193-Y
– volume: 119
  start-page: 195
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0079
  article-title: Flow boiling heat transfer and pressure drop data of non-azeotropic mixture R455A in a horizontal 6.0 mm stainless-steel tube
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2020.07.017
– year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0069
– volume: 53
  start-page: 299
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0039
  article-title: Modelling two-phase flows using CFD
  publication-title: Appl. Energy
  doi: 10.1016/0306-2619(95)00024-0
– volume: 35
  start-page: 636
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0049
  article-title: Flow boiling heat transfer and pressure drop of R-134a in a mini tube: an experimental investigation
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.12.013
– volume: 47
  start-page: 703
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0061
  article-title: Evaporation flow pattern and heat transfer of R-22 and R-134a in small diameter tubes
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-011-0761-4
– start-page: 1
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0086
  article-title: Model-agnostic interpretability with sharply values
– ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0088
– volume: 100
  start-page: 190
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0006
  article-title: Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.01.018
– volume: 24
  start-page: 122
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0001
  article-title: Assessment of high-heat-flux thermal management schemes
  publication-title: IEEE Trans. –CPMT
– volume: 35
  start-page: 597
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0092
  article-title: Carbon dioxide flow boiling in a single microchannel – part ⅠⅠ: heat transfer
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.11.014
– volume: 51
  start-page: 1216
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0037
  article-title: A theoretical model for the prediction of the critical heat flux in heated microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.03.002
– volume: 129
  start-page: 977
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0059
  article-title: A flow boiling heat transfer investigation of FC-72 in a microtube using liquid crystal thermography
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.2728905
– volume: 51
  start-page: 896
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0051
  article-title: Convective boiling of pure and mixed refrigerants: an experimental study of the major parameters affecting heat transfer
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.11.002
– volume: 64
  start-page: 1239
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0021
  article-title: Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part ⅠⅠ. Two-phase heat transfer coefficient
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.04.014
– volume: 31
  start-page: 163
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0060
  article-title: Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57-mm inner diameter
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.08.026
– volume: 133
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0044
  article-title: Flow boiling heat transfer characteristics of a minichannel up to dryout condition
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.4003669
– volume: 47
  start-page: 2045
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0035
  article-title: Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2003.12.006
– volume: 24
  start-page: 1225
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0053
  article-title: Flow boiling and flow regimes in small diameter tubes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2003.11.027
– volume: 62
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0004
  article-title: Experimental investigation into thermal characteristics of subcooled flow boiling in horizontal concentric annuli for cooling ultra-fast electric vehicle charging cables
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2024.105122
– volume: 126
  start-page: 8
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0030
  article-title: Heat transfer mechanisms during flow boiling in microchannels
  publication-title: J. Heat Transf.
  doi: 10.1115/1.1643090
– volume: 25
  start-page: 128
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0031
  article-title: Boiling in microchannels: a review of experiment and theory
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2003.11.005
– volume: 64
  start-page: 1226
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0020
  article-title: Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part Ⅰ. Dryout incipience quality
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.04.016
– volume: 115
  start-page: 963
  year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0070
  article-title: Boiling heat transfer in a horizontal small-diameter tube
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.2911393
– volume: 43
  start-page: 3347
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0046
  article-title: Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(99)00379-8
– volume: 187
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0014
  article-title: Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.122500
– volume: 50
  start-page: 280
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0045
  article-title: Pressure effect on flow boiling heat transfer of water in minichannels
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.03.011
– volume: 41
  start-page: 4183
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0074
  article-title: Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(98)00127-6
– volume: 117
  start-page: 319
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0011
  article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.015
– volume: 152
  start-page: 256
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0041
  article-title: Prediction of heat transfer coefficient and pressure drop of R1234yf and R134a flow condensation in horizontal and inclined tubes using machine learning techniques
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2023.04.031
– volume: 102
  year: 1980
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0032
  article-title: Measurement of vapor superheat in post-critical-heat-flux boiling
  publication-title: J. Heat Transf.
  doi: 10.1115/1.3244324
– year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0050
– volume: 37
  start-page: 321
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0016
  article-title: High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(94)90103-1
– volume: 30
  start-page: 937
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0077
  article-title: Flow boiling heat transfer characteristics of CO2 at low temperatures
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2007.02.010
– volume: 53
  start-page: 4809
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0019
  article-title: A novel time strip flow visualization technique for investigation of intermittent dewetting and dryout in elongated bubble flow in a microchannel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.06.011
– volume: 213
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0009
  article-title: Experimental investigation and analysis of two-phase flow instability of flow boiling in a mini-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2023.124309
– volume: 48
  start-page: 941
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0024
  article-title: Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part ⅠⅠ-heat transfer characteristics
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2004.09.019
SSID ssj0017046
Score 2.4916415
Snippet •A universal consolidated database of 11,470 pre-dryout data points was constructed from 41 sources covering 23 working fluids and wide operating ranges.•The...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128095
SubjectTerms Extreme gradient boosting
Heat transfer coefficient
Machine learning
Mini/micro-channels
Saturated flow boiling
XGBoost
Title XGBoost algorithm for predicting heat transfer coefficient of saturated flow boiling in mini/micro-channels
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2025.128095
Volume 256
WOSCitedRecordID wos001619719800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017046
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4iXiasYN_mBBySUkpvr-HFMG9sEE9IG6luUuPaa0iZV2431x_HfOCdxnHSbUBHiJYqsxLfz5fj45DvHhLwNNYu0SLQDtsfQCUOmnFR6oeO6Smnd56Eo0zF8_8xPTqLBQHztdH7VsTCXE57n0dWVmP1XUUMZCBtDZ_9C3LZSKIB7EDpcQexw3Ujwg08fi2KBntzzAnb-o2nJJJzN8Y9MyXFG9YtHQ4DBquaYHKTMImE4AQtM9JmgGaonxc_3aZFNTNQLJiGBXk2RwedgvHBeZWK2tu26c7GVkqJsEB30U7DUbcvWDV2Unp3DlUJid2Ejh8w5z8fZaNUqNcShUwVKarS6yK89fQrFzheTTdw4M_x-w-aqFTQsmiIwTFejoH3WVrGwoLrVuZw3tH_liBj3sjEODMdUD6kHjbFe8-p64u1rC6KlKdYMuHF8s8YYa4yrGu-QLZ8zEXXJ1u7R_uDY_sbibhUpVo_qPnnXEAz_3Mvb7aSW7XP2kGybTQvdrcD2iHRU_pjcK8nDcvGE_DCQoxZyFCBHG8hR7AKt26ctyNFCUws5ipCjBnI0yylC7sM64J6Sbwf7Z3uHjjnEw5F-5C2dJEo4fPzcCxMeSZW6iQzRIoJ9rJYsgWlTaRQoOYR9dNr3UswWxDydCCl9ESoRPCPdvMjVc0IDrsDeimCDLlmYSC0CrdPAH2qWwsNM7hBRT1k8q3K1xJuKcIfs1XMcG9uzsiljANfGtbz4hx68JA-aL-IV6S7nF-o1uSsvl9li_sYg6zcR7Ltw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XGBoost+algorithm+for+predicting+heat+transfer+coefficient+of+saturated+flow+boiling+in+mini%2Fmicro-channels&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Noh%2C+Hyeonseok&rft.au=Kim%2C+Jihyeok&rft.au=Lee%2C+Seunghyun&rft.au=Kim%2C+Sung-Min&rft.date=2026-03-01&rft.issn=0017-9310&rft.volume=256&rft.spage=128095&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2025.128095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2025_128095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon