XGBoost algorithm for predicting heat transfer coefficient of saturated flow boiling in mini/micro-channels
•A universal consolidated database of 11,470 pre-dryout data points was constructed from 41 sources covering 23 working fluids and wide operating ranges.•The XGBoost algorithm was applied to predict saturated flow boiling heat transfer coefficients in mini/micro-channels.•PFI and SHAP analyses were...
Uložené v:
| Vydané v: | International journal of heat and mass transfer Ročník 256; s. 128095 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.03.2026
|
| Predmet: | |
| ISSN: | 0017-9310 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A universal consolidated database of 11,470 pre-dryout data points was constructed from 41 sources covering 23 working fluids and wide operating ranges.•The XGBoost algorithm was applied to predict saturated flow boiling heat transfer coefficients in mini/micro-channels.•PFI and SHAP analyses were integrated to enhance the physical interpretability of the data-driven model and to identify key parameters governing boiling heat transfer while mitigating overfitting.•Hyperparameter tuning with Optuna reduced the model’s MAE to 7.18 %, outperforming existing correlations and other machine learning models, while maintaining strong universal predictive capability on unseen data.•The proposed model provides an efficient framework for thermal system design and optimization, enabling reliable prediction of flow boiling heat transfer under diverse operating conditions.
Accurate prediction of the heat transfer coefficient in saturated flow boiling within mini/micro-channels is the most critical factor in designing thermal systems for high-heat-flux devices. This study proposes a machine learning technique to predict the heat transfer coefficient of saturated flow boiling using the XGBoost (eXtreme Gradient Boosting) algorithm. The database used in this study consists of 11,470 pre-dryout data points, obtained by removing 1878 post-dryout data points from a total of 13,348 data points collected from 41 sources, employing an XGBoost incipience dryout predicting model. The dataset includes 23 working fluids, hydraulic diameters ranging from 0.19 mm to 6.50 mm, mass flow rates from 19.45 kg/m²s to 1608 kg/m²s, and saturation temperatures from -40 °C to 201.37 °C. The permutation feature importance (PFI) and SHapley Additive exPlanations (SHAP) values were used for feature selection, while Optuna was used for hyperparameter tuning. A total of seven training features—Prf, xdi, Pred, Frfo, Bo, Prg, and Frtp—were selected and used to develop the model. The model achieved a mean absolute error (MAE) of 7.18 %, demonstrating superior predictive performance compared to existing empirical correlations and other machine learning algorithms. This result confirms that XGBoost is an effective and reliable algorithm for predicting the heat transfer coefficient of saturated flow boiling in mini/micro-channels. |
|---|---|
| AbstractList | •A universal consolidated database of 11,470 pre-dryout data points was constructed from 41 sources covering 23 working fluids and wide operating ranges.•The XGBoost algorithm was applied to predict saturated flow boiling heat transfer coefficients in mini/micro-channels.•PFI and SHAP analyses were integrated to enhance the physical interpretability of the data-driven model and to identify key parameters governing boiling heat transfer while mitigating overfitting.•Hyperparameter tuning with Optuna reduced the model’s MAE to 7.18 %, outperforming existing correlations and other machine learning models, while maintaining strong universal predictive capability on unseen data.•The proposed model provides an efficient framework for thermal system design and optimization, enabling reliable prediction of flow boiling heat transfer under diverse operating conditions.
Accurate prediction of the heat transfer coefficient in saturated flow boiling within mini/micro-channels is the most critical factor in designing thermal systems for high-heat-flux devices. This study proposes a machine learning technique to predict the heat transfer coefficient of saturated flow boiling using the XGBoost (eXtreme Gradient Boosting) algorithm. The database used in this study consists of 11,470 pre-dryout data points, obtained by removing 1878 post-dryout data points from a total of 13,348 data points collected from 41 sources, employing an XGBoost incipience dryout predicting model. The dataset includes 23 working fluids, hydraulic diameters ranging from 0.19 mm to 6.50 mm, mass flow rates from 19.45 kg/m²s to 1608 kg/m²s, and saturation temperatures from -40 °C to 201.37 °C. The permutation feature importance (PFI) and SHapley Additive exPlanations (SHAP) values were used for feature selection, while Optuna was used for hyperparameter tuning. A total of seven training features—Prf, xdi, Pred, Frfo, Bo, Prg, and Frtp—were selected and used to develop the model. The model achieved a mean absolute error (MAE) of 7.18 %, demonstrating superior predictive performance compared to existing empirical correlations and other machine learning algorithms. This result confirms that XGBoost is an effective and reliable algorithm for predicting the heat transfer coefficient of saturated flow boiling in mini/micro-channels. |
| ArticleNumber | 128095 |
| Author | Lee, Seunghyun Kim, Jihyeok Noh, Hyeonseok Mudawar, Issam Kim, Sung-Min |
| Author_xml | – sequence: 1 givenname: Hyeonseok surname: Noh fullname: Noh, Hyeonseok organization: Two-Phase Flow and Thermal Management Laboratory, School of Mechanical Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea – sequence: 2 givenname: Jihyeok surname: Kim fullname: Kim, Jihyeok organization: Two-Phase Flow and Thermal Management Laboratory, School of Mechanical Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea – sequence: 3 givenname: Seunghyun orcidid: 0000-0002-1019-2080 surname: Lee fullname: Lee, Seunghyun email: lees@gist.ac.kr organization: Two-Phase Flow and Thermal Management Laboratory, School of Mechanical Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, South Korea – sequence: 4 givenname: Sung-Min surname: Kim fullname: Kim, Sung-Min organization: School of Mechanical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon, 16419, South Korea – sequence: 5 givenname: Issam surname: Mudawar fullname: Mudawar, Issam organization: Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL), School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN, 47907, USA |
| BookMark | eNqNkD1PwzAQhj0UiRb4Dx5ZktppvrwBFRRQJRaQ2Czncm4dEruyDYh_T6LCxMJ0enW65-6eBZlZZ5GQS85Szni57FLT7VHFQYUQvbJBo08zlhUpz2omihmZM8arRKw4OyWLELopsryck7fXzY1zIVLV75w3cT9Q7Tw9eGwNRGN3dALTXyoFh1obMGgjdZoGFd-9ithS3btP2jjTTzPG0sFYsxwMeJfAXlmLfTgnJ1r1AS9-6hl5ubt9Xt8n26fNw_p6m0BW85ioWlXA84rnqqoBG6Ygr8coqlxDoapCYFOvENqyLJuSN0KUrOBaCYBM5ChWZ-TqyB2Xh-BRy4M3g_JfkjM5CZOd_CtMTsLkUdiIeDwixrPxw4zdMP0MoxWPEGXrzP9h3wERh44 |
| Cites_doi | 10.1016/S0017-9310(03)00041-3 10.1016/j.ijheatmasstransfer.2024.126593 10.1016/j.ijheatmasstransfer.2021.120980 10.1088/1742-6596/1599/1/012053 10.1016/j.ijheatmasstransfer.2024.125827 10.1016/j.ijheatmasstransfer.2010.12.009 10.1016/j.icheatmasstransfer.2024.108059 10.1016/j.ijheatmasstransfer.2012.03.002 10.1016/j.applthermaleng.2024.123254 10.1016/j.ijheatmasstransfer.2005.03.035 10.1093/bioinformatics/btq134 10.1016/j.ijheatmasstransfer.2018.02.020 10.1016/j.applthermaleng.2024.125077 10.1016/j.applthermaleng.2022.118773 10.1016/j.applthermaleng.2024.122769 10.1016/S0017-9310(03)00042-5 10.1016/j.ijheatmasstransfer.2021.122128 10.1016/j.ijrefrig.2023.08.018 10.1016/j.ijmultiphaseflow.2008.10.004 10.1016/j.ijheatmasstransfer.2017.08.104 10.1016/j.ijheatmasstransfer.2016.04.021 10.1016/0017-9310(94)00194-Z 10.1016/j.ijheatmasstransfer.2010.01.038 10.1016/S0142-727X(98)00006-X 10.1016/j.ijheatmasstransfer.2004.08.019 10.1021/je900140w 10.1016/S0140-7007(00)00057-8 10.1080/01457630802290080 10.1016/j.ijheatmasstransfer.2021.121176 10.1016/j.ijheatmasstransfer.2010.01.012 10.1016/S0894-1777(02)00317-5 10.1016/j.ijheatmasstransfer.2017.08.107 10.1016/j.ijheatmasstransfer.2009.04.004 10.1016/S0301-9322(02)00019-8 10.1016/j.ijheatfluidflow.2004.08.003 10.1115/1.4005300 10.1016/j.ijmultiphaseflow.2009.07.003 10.1038/s41586-020-2666-1 10.1016/j.expthermflusci.2011.09.005 10.1016/j.ijheatmasstransfer.2021.121712 10.1016/j.ijheatmasstransfer.2022.122599 10.1016/j.ijheatmasstransfer.2008.03.006 10.1016/j.ijheatmasstransfer.2011.03.052 10.1016/S0017-9310(02)00540-9 10.1016/j.ijheatmasstransfer.2008.02.012 10.1016/j.ijrefrig.2009.12.006 10.1016/0017-9310(94)00193-Y 10.1016/j.ijrefrig.2020.07.017 10.1016/0306-2619(95)00024-0 10.1016/j.expthermflusci.2010.12.013 10.1007/s00231-011-0761-4 10.1016/j.applthermaleng.2016.01.018 10.1016/j.expthermflusci.2010.11.014 10.1016/j.ijheatmasstransfer.2007.03.002 10.1115/1.2728905 10.1016/j.ijheatmasstransfer.2007.11.002 10.1016/j.ijheatmasstransfer.2013.04.014 10.1016/j.applthermaleng.2010.08.026 10.1115/1.4003669 10.1016/j.ijheatmasstransfer.2003.12.006 10.1016/j.applthermaleng.2003.11.027 10.1016/j.csite.2024.105122 10.1115/1.1643090 10.1016/j.ijheatfluidflow.2003.11.005 10.1016/j.ijheatmasstransfer.2013.04.016 10.1115/1.2911393 10.1016/S0017-9310(99)00379-8 10.1016/j.ijheatmasstransfer.2021.122500 10.1016/j.ijthermalsci.2010.03.011 10.1016/S0017-9310(98)00127-6 10.1016/j.ijheatmasstransfer.2017.10.015 10.1016/j.ijrefrig.2023.04.031 10.1115/1.3244324 10.1016/0017-9310(94)90103-1 10.1016/j.ijrefrig.2007.02.010 10.1016/j.ijheatmasstransfer.2010.06.011 10.1016/j.ijheatmasstransfer.2023.124309 10.1016/j.ijheatmasstransfer.2004.09.019 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijheatmasstransfer.2025.128095 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2025_128095 S0017931025014309 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABDMP ABDPE ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACIWK ACKIV ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c281t-a8a7c14714a78ceb0ac48471974fc5a759eb83ecd666b61b996051fa9cc294e93 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001619719800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Thu Nov 27 01:05:29 EST 2025 Wed Dec 10 14:22:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mini/micro-channels Extreme gradient boosting Heat transfer coefficient XGBoost Saturated flow boiling Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c281t-a8a7c14714a78ceb0ac48471974fc5a759eb83ecd666b61b996051fa9cc294e93 |
| ORCID | 0000-0002-1019-2080 |
| ParticipantIDs | crossref_primary_10_1016_j_ijheatmasstransfer_2025_128095 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2025_128095 |
| PublicationCentury | 2000 |
| PublicationDate | March 2026 2026-03-00 |
| PublicationDateYYYYMMDD | 2026-03-01 |
| PublicationDate_xml | – month: 03 year: 2026 text: March 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Xuan (bib0015) 2024; 248 Gersey, Mudawar (bib0034) 1995; 38 Lee, Devahdhanush, Mudawar (bib0017) 2017; 115 Lin, Kew, Cornwell (bib0022) 2001; 24 Bao, Fletcher, Haynes (bib0046) 2000; 43 In, Jeong (bib0023) 2009; 35 Yu, France, Wambsganss, Hull (bib0089) 2002; 28 Saitoh, Daiguji, Hihara (bib0065) 2005; 48 Kandlikar (bib0030) 2004; 126 Lun, Calay, Holdo (bib0039) 1996; 53 van Erp, Soleimanzadeh, Nela (bib0010) 2020; 585 Hamdar, Zoughaib, Clodic (bib0052) 2010; 33 J. Bergstra, R. Bardenet, Y. Bengio, B. Kegl, Algorithms for hyper-parameter optimization, in: process. Syst, Granada, Spain, 2011, pp. 2546–2554. Tibirica, Ribatski (bib0067) 2010; 53 Nijhawan (bib0032) 1980; 102 Wu, Koettig, Franke, Helmer, Eisel, Haug, Bremer (bib0073) 2011; 54 Mastrullo, Mauro, Napoli, Pelella, Viscito (bib0078) 2020; 1599 Mauro, Pelella, Viscito (bib0081) 2023; 155 E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference fluid thermodynamic and transport properties – REFPROP version 9.0, NIST, MD, 2010. Mudawar (bib0002) 2011; 133 Tang (bib0013) 2025; 261 Ducoulombier (bib0050) 2010 Mahmoud, Karayiannis, Kenning (bib0056) 2011; 54 Mauro, Napoli, Pelella, Viscito (bib0079) 2020; 119 Wang, Chiang, Yu (bib0071) 1998; 19 Li, Wu (bib0091) 2010; 53 Noh, Lee, Kim, Mudawar (bib0043) 2024; 231 Copetti, Macagnan, Zinani, Kunsler (bib0049) 2011; 35 Kim, Mudawar (bib0021) 2013; 64 Qu, Mudawar (bib0027) 2003; 46 Kim, Mudawar (bib0020) 2013; 64 Wang, Chen, Groll (bib0072) 2009; 54 Qu, Mudawar (bib0035) 2004; 47 L. Consolini, Convective boiling heat transfer in a single micro-channel, ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, Switzerland, 2008. Qu, Mudawar (bib0026) 2003; 46 Thome (bib0031) 2004; 25 Lee, Mudawar (bib0024) 2005; 48 Qu, Mudawar (bib0064) 2003; 46 Tarabkhah, Sajadi, Akhavan Behabadi (bib0041) 2023; 152 Yun, Kim, Kim, Choi (bib0075) 2003; 46 Chen, Guestrin (bib0082) 2016 Muwanga, Hassan (bib0059) 2007; 129 Akiba, Sano, Yanase, Ohta, Koyama (bib0087) 2019 Agostini, Bontemps (bib0090) 2005; 26 Mudawar (bib0007) 2025; 240 O’Neill, Mudawar (bib0028) 2020; 157 Revellin, Thome (bib0037) 2008; 51 Oh, Son (bib0060) 2011; 31 Greco (bib0051) 2008; 51 Jung, Lee (bib0004) 2024; 62 Yun, Kim, Kim (bib0076) 2005; 48 Tibirica, Ribatski, Thome (bib0068) 2012; 134 Hughes, Fronk, Garimella (bib0042) 2021; 179 Devahdhanush, Lee, Mudawar (bib0003) 2021; 172 Wang (bib0029) 2022; 214 Lee, Devahdhanush, Mudawar (bib0093) 2018; 123 Bowers, Mudawar (bib0016) 1994; 37 Borhani, Agostini, Thome (bib0019) 2010; 53 Yan, Lin (bib0074) 1998; 41 Arcasi, Mauro, Napoli, Viscito (bib0080) 2022; 188 Mudawar (bib0001) 2001; 24 C.L. Ong, Macro-to-microchannel transition in two-phase flow and evaporation, Ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, Switzerland, 2010. Bertsch, Groll, Garimella (bib0047) 2009; 35 Agostini, Thome, Fabbri, Michel, Calmi, Kloter (bib0025) 2008; 51 Tran (bib0069) 1998 Ducoulombier, Colasson, Bonjour, Haberschill (bib0092) 2011; 35 Ali, Palm, Maqbool (bib0044) 2011; 133 Yeo, Lee (bib0038) 2022; 183 Martin-Callizo (bib0057) 2010 Bang, Kim, Lee, Lee (bib0045) 2011; 50 Altmann, Tolosi, Sander, Lengauer (bib0085) 2010; 26 Drummond (bib0011) 2018; 117 Messalas, Kanellopoulos, Makris (bib0086) 2019 Lee, Mudawar, Hasan (bib0006) 2016; 100 Wambsganss, France, Jendrzejczyk, Tran (bib0070) 1993; 115 Li, Dang, Hihara (bib0055) 2012; 55 Gersey, Mudawar (bib0033) 1995; 38 Sumith, Kaminaga, Matsumura (bib0066) 2003; 27 Li, Anglart (bib0040) 2016; 99 Cui (bib0012) 2024; 245 Huo, Chen, Tian, Karayiannis (bib0053) 2004; 24 Karayiannis, Mahmoud, Kenning (bib0054) 2012; 36 Lee, Mudawar (bib0036) 2008; 51 Jung, Noh, Lee (bib0005) 2024; 159 Li, Wu (bib0014) 2022; 187 Friedman (bib0083) 2006; 29 Mastrullo, Mauro, Rosato, Vanoli (bib0058) 2009; 52 Ohta, Inoue, Ando, Watanabe (bib0062) 2009; 30 Lee, Darges, Mudawar (bib0008) 2021; 170 Kim, Shah, Kim (bib0009) 2023; 213 Lee, Devahdhanush, Mudawar (bib0018) 2018; 116 Oh, Son (bib0061) 2011; 47 Zhao, Bansal (bib0077) 2007; 30 Mauro (10.1016/j.ijheatmasstransfer.2025.128095_bib0079) 2020; 119 Gersey (10.1016/j.ijheatmasstransfer.2025.128095_bib0033) 1995; 38 Altmann (10.1016/j.ijheatmasstransfer.2025.128095_bib0085) 2010; 26 Wang (10.1016/j.ijheatmasstransfer.2025.128095_bib0072) 2009; 54 Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0018) 2018; 116 Bang (10.1016/j.ijheatmasstransfer.2025.128095_bib0045) 2011; 50 10.1016/j.ijheatmasstransfer.2025.128095_bib0084 Lun (10.1016/j.ijheatmasstransfer.2025.128095_bib0039) 1996; 53 O’Neill (10.1016/j.ijheatmasstransfer.2025.128095_bib0028) 2020; 157 Kim (10.1016/j.ijheatmasstransfer.2025.128095_bib0020) 2013; 64 Bowers (10.1016/j.ijheatmasstransfer.2025.128095_bib0016) 1994; 37 Kim (10.1016/j.ijheatmasstransfer.2025.128095_bib0009) 2023; 213 Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0015) 2024; 248 Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0091) 2010; 53 Ali (10.1016/j.ijheatmasstransfer.2025.128095_bib0044) 2011; 133 Zhao (10.1016/j.ijheatmasstransfer.2025.128095_bib0077) 2007; 30 Akiba (10.1016/j.ijheatmasstransfer.2025.128095_bib0087) 2019 Wu (10.1016/j.ijheatmasstransfer.2025.128095_bib0073) 2011; 54 Agostini (10.1016/j.ijheatmasstransfer.2025.128095_bib0025) 2008; 51 Ohta (10.1016/j.ijheatmasstransfer.2025.128095_bib0062) 2009; 30 Tang (10.1016/j.ijheatmasstransfer.2025.128095_bib0013) 2025; 261 In (10.1016/j.ijheatmasstransfer.2025.128095_bib0023) 2009; 35 Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0024) 2005; 48 Muwanga (10.1016/j.ijheatmasstransfer.2025.128095_bib0059) 2007; 129 Qu (10.1016/j.ijheatmasstransfer.2025.128095_bib0035) 2004; 47 Yeo (10.1016/j.ijheatmasstransfer.2025.128095_bib0038) 2022; 183 Copetti (10.1016/j.ijheatmasstransfer.2025.128095_bib0049) 2011; 35 Yan (10.1016/j.ijheatmasstransfer.2025.128095_bib0074) 1998; 41 Gersey (10.1016/j.ijheatmasstransfer.2025.128095_bib0034) 1995; 38 Ducoulombier (10.1016/j.ijheatmasstransfer.2025.128095_bib0050) 2010 Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0017) 2017; 115 Wambsganss (10.1016/j.ijheatmasstransfer.2025.128095_bib0070) 1993; 115 Kandlikar (10.1016/j.ijheatmasstransfer.2025.128095_bib0030) 2004; 126 Agostini (10.1016/j.ijheatmasstransfer.2025.128095_bib0090) 2005; 26 Jung (10.1016/j.ijheatmasstransfer.2025.128095_bib0004) 2024; 62 Yun (10.1016/j.ijheatmasstransfer.2025.128095_bib0075) 2003; 46 Ducoulombier (10.1016/j.ijheatmasstransfer.2025.128095_bib0092) 2011; 35 Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0006) 2016; 100 Drummond (10.1016/j.ijheatmasstransfer.2025.128095_bib0011) 2018; 117 Lin (10.1016/j.ijheatmasstransfer.2025.128095_bib0022) 2001; 24 Thome (10.1016/j.ijheatmasstransfer.2025.128095_bib0031) 2004; 25 Jung (10.1016/j.ijheatmasstransfer.2025.128095_bib0005) 2024; 159 Yu (10.1016/j.ijheatmasstransfer.2025.128095_bib0089) 2002; 28 Kim (10.1016/j.ijheatmasstransfer.2025.128095_bib0021) 2013; 64 Qu (10.1016/j.ijheatmasstransfer.2025.128095_bib0064) 2003; 46 Wang (10.1016/j.ijheatmasstransfer.2025.128095_bib0071) 1998; 19 10.1016/j.ijheatmasstransfer.2025.128095_bib0088 Qu (10.1016/j.ijheatmasstransfer.2025.128095_bib0026) 2003; 46 Sumith (10.1016/j.ijheatmasstransfer.2025.128095_bib0066) 2003; 27 Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0040) 2016; 99 Oh (10.1016/j.ijheatmasstransfer.2025.128095_bib0061) 2011; 47 Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0008) 2021; 170 10.1016/j.ijheatmasstransfer.2025.128095_bib0048 Tibirica (10.1016/j.ijheatmasstransfer.2025.128095_bib0068) 2012; 134 Revellin (10.1016/j.ijheatmasstransfer.2025.128095_bib0037) 2008; 51 Mastrullo (10.1016/j.ijheatmasstransfer.2025.128095_bib0078) 2020; 1599 Huo (10.1016/j.ijheatmasstransfer.2025.128095_bib0053) 2004; 24 10.1016/j.ijheatmasstransfer.2025.128095_bib0063 Friedman (10.1016/j.ijheatmasstransfer.2025.128095_bib0083) 2006; 29 Qu (10.1016/j.ijheatmasstransfer.2025.128095_bib0027) 2003; 46 Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0014) 2022; 187 Bertsch (10.1016/j.ijheatmasstransfer.2025.128095_bib0047) 2009; 35 Martin-Callizo (10.1016/j.ijheatmasstransfer.2025.128095_bib0057) 2010 Greco (10.1016/j.ijheatmasstransfer.2025.128095_bib0051) 2008; 51 Li (10.1016/j.ijheatmasstransfer.2025.128095_bib0055) 2012; 55 Borhani (10.1016/j.ijheatmasstransfer.2025.128095_bib0019) 2010; 53 van Erp (10.1016/j.ijheatmasstransfer.2025.128095_bib0010) 2020; 585 Mahmoud (10.1016/j.ijheatmasstransfer.2025.128095_bib0056) 2011; 54 Hughes (10.1016/j.ijheatmasstransfer.2025.128095_bib0042) 2021; 179 Mauro (10.1016/j.ijheatmasstransfer.2025.128095_bib0081) 2023; 155 Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0093) 2018; 123 Mudawar (10.1016/j.ijheatmasstransfer.2025.128095_bib0002) 2011; 133 Yun (10.1016/j.ijheatmasstransfer.2025.128095_bib0076) 2005; 48 Bao (10.1016/j.ijheatmasstransfer.2025.128095_bib0046) 2000; 43 Messalas (10.1016/j.ijheatmasstransfer.2025.128095_bib0086) 2019 Karayiannis (10.1016/j.ijheatmasstransfer.2025.128095_bib0054) 2012; 36 Mastrullo (10.1016/j.ijheatmasstransfer.2025.128095_bib0058) 2009; 52 Tibirica (10.1016/j.ijheatmasstransfer.2025.128095_bib0067) 2010; 53 Tarabkhah (10.1016/j.ijheatmasstransfer.2025.128095_bib0041) 2023; 152 Saitoh (10.1016/j.ijheatmasstransfer.2025.128095_bib0065) 2005; 48 Wang (10.1016/j.ijheatmasstransfer.2025.128095_bib0029) 2022; 214 Noh (10.1016/j.ijheatmasstransfer.2025.128095_bib0043) 2024; 231 Hamdar (10.1016/j.ijheatmasstransfer.2025.128095_bib0052) 2010; 33 Devahdhanush (10.1016/j.ijheatmasstransfer.2025.128095_bib0003) 2021; 172 Oh (10.1016/j.ijheatmasstransfer.2025.128095_bib0060) 2011; 31 Chen (10.1016/j.ijheatmasstransfer.2025.128095_bib0082) 2016 Mudawar (10.1016/j.ijheatmasstransfer.2025.128095_bib0001) 2001; 24 Lee (10.1016/j.ijheatmasstransfer.2025.128095_bib0036) 2008; 51 Mudawar (10.1016/j.ijheatmasstransfer.2025.128095_bib0007) 2025; 240 Nijhawan (10.1016/j.ijheatmasstransfer.2025.128095_bib0032) 1980; 102 Arcasi (10.1016/j.ijheatmasstransfer.2025.128095_bib0080) 2022; 188 Cui (10.1016/j.ijheatmasstransfer.2025.128095_bib0012) 2024; 245 Tran (10.1016/j.ijheatmasstransfer.2025.128095_bib0069) 1998 |
| References_xml | – volume: 214 year: 2022 ident: bib0029 article-title: Dynamic instabilities of flow boiling in micro-channels: a review publication-title: Appl. Therm. Eng. – start-page: 2623 year: 2019 end-page: 2631 ident: bib0087 article-title: Optuna: a next-generation hyperparameter optimization framework publication-title: Proceedings of the 25th ACM SIGKDD International Data Mining Knowledge Discovery Conference – volume: 50 start-page: 280 year: 2011 end-page: 286 ident: bib0045 article-title: Pressure effect on flow boiling heat transfer of water in minichannels publication-title: Int. J. Therm. Sci. – year: 2010 ident: bib0057 article-title: Flow Boiling Heat Transfer in Single Vertical Channel of Small Diameter – volume: 35 start-page: 636 year: 2011 end-page: 644 ident: bib0049 article-title: Flow boiling heat transfer and pressure drop of R-134a in a mini tube: an experimental investigation publication-title: Exp. Therm. Fluid Sci. – volume: 53 start-page: 2459 year: 2010 end-page: 2468 ident: bib0067 article-title: Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube publication-title: Int. J. Heat Mass Transf. – volume: 19 start-page: 259 year: 1998 end-page: 269 ident: bib0071 article-title: An experimental study of in-tube evaporation of R-22 inside aa 6.5-mm smooth tube publication-title: Int. J. Heat Fluid Flow – volume: 119 start-page: 195 year: 2020 end-page: 205 ident: bib0079 article-title: Flow boiling heat transfer and pressure drop data of non-azeotropic mixture R455A in a horizontal 6.0 mm stainless-steel tube publication-title: Int. J. Refrig. – volume: 172 year: 2021 ident: bib0003 article-title: Experimental investigation of subcooled flow boiling in annuli with reference to thermal management of ultra-fast electric vehicle charging cables publication-title: Int. J. Heat Mass Transf. – volume: 35 start-page: 597 year: 2011 end-page: 611 ident: bib0092 article-title: Carbon dioxide flow boiling in a single microchannel – part ⅠⅠ: heat transfer publication-title: Exp. Therm. Fluid Sci. – volume: 585 start-page: 211 year: 2020 end-page: 216 ident: bib0010 article-title: Co-designing electronics with microfluidics for more sustainable cooling publication-title: Nature – volume: 48 start-page: 941 year: 2005 end-page: 955 ident: bib0024 article-title: Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part ⅠⅠ-heat transfer characteristics publication-title: Int. J. Heat Mass Transf. – volume: 115 start-page: 963 year: 1993 end-page: 972 ident: bib0070 article-title: Boiling heat transfer in a horizontal small-diameter tube publication-title: ASME J. Heat Transf. – volume: 26 start-page: 1340 year: 2010 end-page: 1347 ident: bib0085 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics – volume: 157 year: 2020 ident: bib0028 article-title: Review of two-phase flow instabilities in macro- and micro-channel systems publication-title: Int. J. Heat Mass Transf. – volume: 115 start-page: 1258 year: 2017 end-page: 1275 ident: bib0017 article-title: Pressure drop characteristics of large length-to-diameter two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 134 year: 2012 ident: bib0068 article-title: Flow boiling characteristics for R1234ze(E) in 1.0 and 2.2 mm circular channels publication-title: ASME J. Heat Transf. – volume: 38 start-page: 643 year: 1995 end-page: 654 ident: bib0034 article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—II. Critical heat flux model publication-title: Int. J. Heat Mass Transf. – volume: 133 year: 2011 ident: bib0002 article-title: Two-phase microchannel heat sinks: theory, applications, and limitations publication-title: J. Electron. Packag. – Trans. ASME – volume: 183 year: 2022 ident: bib0038 article-title: 2D computational investigation into transport phenomena of subcooled and saturated flow boiling in large length to diameter ratio micro-channel heat sinks publication-title: Int. J. Heat and Mass Transf. – volume: 187 year: 2022 ident: bib0014 article-title: Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink publication-title: Int. J. Heat Mass Transf. – volume: 245 year: 2024 ident: bib0012 article-title: Characteristics analysis and structure optimization of a hybrid micro-jet impingement/micro-channel heat sink publication-title: Appl. Therm. Eng. – volume: 64 start-page: 1226 year: 2013 end-page: 1238 ident: bib0020 article-title: Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part Ⅰ. Dryout incipience quality publication-title: Int. J. Heat Mass Transf. – volume: 53 start-page: 299 year: 1996 end-page: 314 ident: bib0039 article-title: Modelling two-phase flows using CFD publication-title: Appl. Energy – volume: 28 start-page: 927 year: 2002 end-page: 941 ident: bib0089 article-title: Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube publication-title: Int. J. Multiphase Flow – volume: 62 year: 2024 ident: bib0004 article-title: Experimental investigation into thermal characteristics of subcooled flow boiling in horizontal concentric annuli for cooling ultra-fast electric vehicle charging cables publication-title: Case Stud. Therm. Eng. – volume: 116 start-page: 273 year: 2018 end-page: 291 ident: bib0018 article-title: Frequency analysis of pressure oscillations in large length-to-diameter two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 126 start-page: 8 year: 2004 end-page: 16 ident: bib0030 article-title: Heat transfer mechanisms during flow boiling in microchannels publication-title: J. Heat Transf. – volume: 30 start-page: 19 year: 2009 end-page: 27 ident: bib0062 article-title: Experimental investigation on observed scattering in heat transfer characteristics for flow boiling in a small diameter tube publication-title: Heat Transf. Eng. – volume: 129 start-page: 977 year: 2007 end-page: 987 ident: bib0059 article-title: A flow boiling heat transfer investigation of FC-72 in a microtube using liquid crystal thermography publication-title: ASME J. Heat Transf. – volume: 24 start-page: 51 year: 2001 end-page: 56 ident: bib0022 article-title: Two-phase heat transfer to a refrigerant in a 1mm diameter tube publication-title: Int. J. Refrig. – volume: 26 start-page: 296 year: 2005 end-page: 306 ident: bib0090 article-title: Vertical flow boiling of refrigerant R134a in small channels publication-title: Int. J. Heat Fluid Flow – volume: 35 start-page: 987 year: 2009 end-page: 1000 ident: bib0023 article-title: Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel publication-title: Int. J. Multiphase Flow – volume: 41 start-page: 4183 year: 1998 end-page: 4194 ident: bib0074 article-title: Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe publication-title: Int. J. Heat Mass Transf. – volume: 54 start-page: 2154 year: 2011 end-page: 2162 ident: bib0073 article-title: Investigation of heat transfer and pressure drop of CO publication-title: Int. J. Heat Mass Transf. – volume: 43 start-page: 3347 year: 2000 end-page: 3358 ident: bib0046 article-title: Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages publication-title: Int. J. Heat Mass Transf. – volume: 51 start-page: 4315 year: 2008 end-page: 4326 ident: bib0036 article-title: Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks–Part Ⅰ: experimental methods and flow visualization results publication-title: Int. J. Heat Mass Transf. – start-page: 1 year: 2019 end-page: 7 ident: bib0086 article-title: Model-agnostic interpretability with sharply values publication-title: Proceedings of the 10th International Conference on Information, Intelligence, Systems and Applications (IISA), IEEE – volume: 231 year: 2024 ident: bib0043 article-title: Utilization of XGBoost algorithm to predict dryout incipience quality for saturated flow boiling in mini/micro-channels publication-title: Int. J. Heat Mass Transf. – volume: 48 start-page: 4973 year: 2005 end-page: 4984 ident: bib0065 article-title: Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes publication-title: Int. J. Heat Mass Transf. – volume: 24 start-page: 122 year: 2001 end-page: 141 ident: bib0001 article-title: Assessment of high-heat-flux thermal management schemes publication-title: IEEE Trans. –CPMT – volume: 38 start-page: 629 year: 1995 end-page: 641 ident: bib0033 article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—I. Photographic study and statistical characterization of the near-wall interfacial features publication-title: Int. J. Heat Mass Transf. – volume: 99 start-page: 839 year: 2016 end-page: 850 ident: bib0040 article-title: Prediction of dryout and post-dryout heat transfer using a two-phase CFD model publication-title: Int. J. Heat Mass Transf. – volume: 152 start-page: 256 year: 2023 end-page: 268 ident: bib0041 article-title: Prediction of heat transfer coefficient and pressure drop of R1234yf and R134a flow condensation in horizontal and inclined tubes using machine learning techniques publication-title: Int. J. Refrig. – volume: 24 start-page: 1225 year: 2004 end-page: 1239 ident: bib0053 article-title: Flow boiling and flow regimes in small diameter tubes publication-title: Appl. Therm. Eng. – volume: 30 start-page: 937 year: 2007 end-page: 945 ident: bib0077 article-title: Flow boiling heat transfer characteristics of CO publication-title: Int. J. Refrig. – volume: 54 start-page: 2638 year: 2009 end-page: 2645 ident: bib0072 article-title: Flow boiling heat transfer characteristics of R134a in a horizontal mini tube publication-title: J. Chem. Eng. Data – reference: C.L. Ong, Macro-to-microchannel transition in two-phase flow and evaporation, Ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, Switzerland, 2010. – volume: 188 year: 2022 ident: bib0080 article-title: Heat transfer coefficient, pressure drop and dry-out vapor quality of R454C. Flow boiling experiments and assessment of methods publication-title: Int. J. Heat Mass Transf. – volume: 46 start-page: 2755 year: 2003 end-page: 2771 ident: bib0026 article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks –Ⅰ. Experimental investigation and assessment of correlation methods publication-title: Int. J. Heat Mass Transf. – volume: 47 start-page: 703 year: 2011 end-page: 717 ident: bib0061 article-title: Evaporation flow pattern and heat transfer of R-22 and R-134a in small diameter tubes publication-title: Heat Mass Transf. – volume: 133 year: 2011 ident: bib0044 article-title: Flow boiling heat transfer characteristics of a minichannel up to dryout condition publication-title: ASME J. Heat Transf. – volume: 55 start-page: 3437 year: 2012 end-page: 3446 ident: bib0055 article-title: Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube: part Ⅰ. Experimental investigation publication-title: Int. J. Heat Mass Transf. – volume: 25 start-page: 128 year: 2004 end-page: 139 ident: bib0031 article-title: Boiling in microchannels: a review of experiment and theory publication-title: Int. J. Heat Fluid Flow – volume: 102 year: 1980 ident: bib0032 article-title: Measurement of vapor superheat in post-critical-heat-flux boiling publication-title: J. Heat Transf. – volume: 213 year: 2023 ident: bib0009 article-title: Experimental investigation and analysis of two-phase flow instability of flow boiling in a mini-channel heat sink publication-title: Int. J. Heat Mass Transf. – volume: 29 start-page: 1189 year: 2006 end-page: 1232 ident: bib0083 article-title: Greedy boosting approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 155 start-page: 47 year: 2023 end-page: 57 ident: bib0081 article-title: Thermal-hydraulic characterization of R513A during flow boiling inside a 6.0 mm horizontal tube, comparison with R134a and development of a new correlation publication-title: Int. J. Refrig. – volume: 159 year: 2024 ident: bib0005 article-title: Experimental and photographic investigation into horizontal subcooled flow boiling in concentric annuli for cooling system of ultra-fast electric vehicle charging cables publication-title: Int. Commun. Heat Mass Transf. – volume: 53 start-page: 1778 year: 2010 end-page: 1787 ident: bib0091 article-title: A general correlation for evaporative heat transfer in micro/mini-channels publication-title: Int. J. Heat Mass Transf. – year: 2010 ident: bib0050 article-title: Ebullition Convective Du Dioxide De Carbone – Etude Experimentale En Micro-Canal – volume: 51 start-page: 5400 year: 2008 end-page: 5414 ident: bib0025 article-title: High heat flux flow boiling in silicon multi-microchannels – Part Ⅰ. heat transfer characteristics of refrigerant R235fa publication-title: Int. J. Heat Mass Transf. – volume: 117 start-page: 319 year: 2018 end-page: 330 ident: bib0011 article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics publication-title: Int. J. Heat Mass Transf. – year: 1998 ident: bib0069 article-title: Pressure Drop and Heat Transfer Study of Two-Phase Flow in Small Channels – volume: 261 year: 2025 ident: bib0013 article-title: Experimental study on boiling heat transfer and pressure drop characteristics of hybrid jet microchannel heat sink publication-title: Appl. Therm. Eng. – volume: 170 year: 2021 ident: bib0008 article-title: Experimental investigation and analysis of parametric trends of instability in two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 51 start-page: 1216 year: 2008 end-page: 1225 ident: bib0037 article-title: A theoretical model for the prediction of the critical heat flux in heated microchannels publication-title: Int. J. Heat Mass Transf. – reference: E.W. Lemmon, M.L. Huber, M.O. McLinden, Reference fluid thermodynamic and transport properties – REFPROP version 9.0, NIST, MD, 2010. – volume: 123 start-page: 172 year: 2018 end-page: 191 ident: bib0093 article-title: Investigation of subcooled and saturated boiling heat transfer mechanisms, instabilities, and transient flow regime maps for large length-to-diameter ratio micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 52 start-page: 4184 year: 2009 end-page: 4194 ident: bib0058 article-title: Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube publication-title: Int. J. Heat Mass Transf. – volume: 54 start-page: 3334 year: 2011 end-page: 3346 ident: bib0056 article-title: Surface effects in flow boiling of R134a in microtubes publication-title: Int. J. Heat Mass Transf. – volume: 248 year: 2024 ident: bib0015 article-title: Bidirectional interlayer cooling of 3D chip stack for temperature uniformity enhancement and hotspot mitigation publication-title: Appl. Therm. Eng. – volume: 46 start-page: 2353 year: 2003 end-page: 2361 ident: bib0075 article-title: Boiling heat transfer and dryout phenomenon of CO publication-title: Int. J. Heat Mass Transf. – volume: 33 start-page: 566 year: 2010 end-page: 577 ident: bib0052 article-title: Flow boiling heat transfer and pressure drop of pure HFC-152a in a horizontal mini-channel publication-title: Int. J. Refrig. – volume: 37 start-page: 321 year: 1994 end-page: 332 ident: bib0016 article-title: High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 48 start-page: 235 year: 2005 end-page: 242 ident: bib0076 article-title: Convective boiling heat transfer characteristics of CO publication-title: Int. J. Heat Mass Transf. – volume: 47 start-page: 2045 year: 2004 end-page: 2059 ident: bib0035 article-title: Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. – volume: 35 start-page: 142 year: 2009 end-page: 154 ident: bib0047 article-title: Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels publication-title: Int. J. Multiphase Flow – volume: 240 year: 2025 ident: bib0007 article-title: Pressure drop characteristics and prediction techniques (models/correlations and artificial neural networks) for microgravity flow boiling onboard the international space station publication-title: Int. J. Heat Mass Transf. – volume: 64 start-page: 1239 year: 2013 end-page: 1256 ident: bib0021 article-title: Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part ⅠⅠ. Two-phase heat transfer coefficient publication-title: Int. J. Heat Mass Transf. – volume: 46 start-page: 2755 year: 2003 end-page: 2771 ident: bib0064 article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks –Ⅰ. Experimental investigation and assessment of correlation methods publication-title: Int. J. Heat Mass Transf. – reference: J. Bergstra, R. Bardenet, Y. Bengio, B. Kegl, Algorithms for hyper-parameter optimization, in: process. Syst, Granada, Spain, 2011, pp. 2546–2554. – volume: 27 start-page: 789 year: 2003 end-page: 801 ident: bib0066 article-title: Saturated flow boiling of water in a vertical small diameter tube publication-title: Exp. Therm. Fluid Sci. – reference: L. Consolini, Convective boiling heat transfer in a single micro-channel, ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, Switzerland, 2008. – start-page: 785 year: 2016 end-page: 794 ident: bib0082 article-title: XGBoost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 53 start-page: 4809 year: 2010 end-page: 4818 ident: bib0019 article-title: A novel time strip flow visualization technique for investigation of intermittent dewetting and dryout in elongated bubble flow in a microchannel publication-title: Int. J. Heat Mass Transf. – volume: 179 year: 2021 ident: bib0042 article-title: Universal condensation heat transfer and pressure drop model and the role of machine learning techniques to improve predictive capabilities publication-title: Int. J. Heat Mass Transf. – volume: 100 start-page: 190 year: 2016 end-page: 214 ident: bib0006 article-title: Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft publication-title: Appl. Therm. Eng. – volume: 46 start-page: 2773 year: 2003 end-page: 2784 ident: bib0027 article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks – Ⅱ. Annular two-phase flow model publication-title: Int. J. Heat Mass Transf. – volume: 31 start-page: 163 year: 2011 end-page: 172 ident: bib0060 article-title: Flow boiling heat transfer and pressure drop characteristics of CO publication-title: Appl. Therm. Eng. – volume: 1599 year: 2020 ident: bib0078 article-title: Flow boiling of azeotropic and non-azeotropic mixtures. Effect of the glide temperature difference on the nucleate boiling contribution: assessment of methods publication-title: J. Phys. Conf. Ser. – volume: 51 start-page: 896 year: 2008 end-page: 909 ident: bib0051 article-title: Convective boiling of pure and mixed refrigerants: an experimental study of the major parameters affecting heat transfer publication-title: Int. J. Heat Mass Transf. – volume: 36 start-page: 126 year: 2012 end-page: 142 ident: bib0054 article-title: A study of discrepancies in flow boiling results in small to microdiameter metallic tubes publication-title: Exp. Therm. Fluid Sci. – volume: 46 start-page: 2755 issue: 15 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0026 article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks –Ⅰ. Experimental investigation and assessment of correlation methods publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00041-3 – start-page: 785 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0082 article-title: XGBoost: a scalable tree boosting system – volume: 157 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0028 article-title: Review of two-phase flow instabilities in macro- and micro-channel systems publication-title: Int. J. Heat Mass Transf. – year: 2010 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0057 – volume: 240 year: 2025 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0007 article-title: Pressure drop characteristics and prediction techniques (models/correlations and artificial neural networks) for microgravity flow boiling onboard the international space station publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2024.126593 – volume: 170 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0008 article-title: Experimental investigation and analysis of parametric trends of instability in two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.120980 – volume: 1599 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0078 article-title: Flow boiling of azeotropic and non-azeotropic mixtures. Effect of the glide temperature difference on the nucleate boiling contribution: assessment of methods publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1599/1/012053 – ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0063 – volume: 231 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0043 article-title: Utilization of XGBoost algorithm to predict dryout incipience quality for saturated flow boiling in mini/micro-channels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2024.125827 – volume: 54 start-page: 2154 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0073 article-title: Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal minichannel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.12.009 – volume: 159 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0005 article-title: Experimental and photographic investigation into horizontal subcooled flow boiling in concentric annuli for cooling system of ultra-fast electric vehicle charging cables publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2024.108059 – volume: 55 start-page: 3437 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0055 article-title: Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube: part Ⅰ. Experimental investigation publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.03.002 – volume: 248 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0015 article-title: Bidirectional interlayer cooling of 3D chip stack for temperature uniformity enhancement and hotspot mitigation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.123254 – volume: 48 start-page: 4973 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0065 article-title: Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.03.035 – volume: 26 start-page: 1340 issue: 10 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0085 article-title: Permutation importance: a corrected feature importance measure publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq134 – volume: 123 start-page: 172 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0093 article-title: Investigation of subcooled and saturated boiling heat transfer mechanisms, instabilities, and transient flow regime maps for large length-to-diameter ratio micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.02.020 – volume: 261 year: 2025 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0013 article-title: Experimental study on boiling heat transfer and pressure drop characteristics of hybrid jet microchannel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.125077 – volume: 214 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0029 article-title: Dynamic instabilities of flow boiling in micro-channels: a review publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118773 – volume: 245 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0012 article-title: Characteristics analysis and structure optimization of a hybrid micro-jet impingement/micro-channel heat sink publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.122769 – volume: 46 start-page: 2773 issue: 15 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0027 article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks – Ⅱ. Annular two-phase flow model publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00042-5 – volume: 183 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0038 article-title: 2D computational investigation into transport phenomena of subcooled and saturated flow boiling in large length to diameter ratio micro-channel heat sinks publication-title: Int. J. Heat and Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.122128 – volume: 155 start-page: 47 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0081 article-title: Thermal-hydraulic characterization of R513A during flow boiling inside a 6.0 mm horizontal tube, comparison with R134a and development of a new correlation publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2023.08.018 – volume: 134 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0068 article-title: Flow boiling characteristics for R1234ze(E) in 1.0 and 2.2 mm circular channels publication-title: ASME J. Heat Transf. – volume: 35 start-page: 142 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0047 article-title: Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2008.10.004 – volume: 115 start-page: 1258 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0017 article-title: Pressure drop characteristics of large length-to-diameter two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.08.104 – volume: 99 start-page: 839 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0040 article-title: Prediction of dryout and post-dryout heat transfer using a two-phase CFD model publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.04.021 – volume: 38 start-page: 643 year: 1995 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0034 article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—II. Critical heat flux model publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(94)00194-Z – volume: 46 start-page: 2755 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0064 article-title: Flow boiling heat transfer in two-phase micro-channel heat sinks –Ⅰ. Experimental investigation and assessment of correlation methods publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00041-3 – volume: 53 start-page: 2459 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0067 article-title: Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.01.038 – volume: 19 start-page: 259 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0071 article-title: An experimental study of in-tube evaporation of R-22 inside aa 6.5-mm smooth tube publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(98)00006-X – volume: 48 start-page: 235 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0076 article-title: Convective boiling heat transfer characteristics of CO2 in microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2004.08.019 – volume: 54 start-page: 2638 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0072 article-title: Flow boiling heat transfer characteristics of R134a in a horizontal mini tube publication-title: J. Chem. Eng. Data doi: 10.1021/je900140w – volume: 24 start-page: 51 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0022 article-title: Two-phase heat transfer to a refrigerant in a 1mm diameter tube publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(00)00057-8 – start-page: 2623 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0087 article-title: Optuna: a next-generation hyperparameter optimization framework – ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0048 – volume: 30 start-page: 19 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0062 article-title: Experimental investigation on observed scattering in heat transfer characteristics for flow boiling in a small diameter tube publication-title: Heat Transf. Eng. doi: 10.1080/01457630802290080 – volume: 172 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0003 article-title: Experimental investigation of subcooled flow boiling in annuli with reference to thermal management of ultra-fast electric vehicle charging cables publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121176 – volume: 53 start-page: 1778 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0091 article-title: A general correlation for evaporative heat transfer in micro/mini-channels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.01.012 – volume: 27 start-page: 789 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0066 article-title: Saturated flow boiling of water in a vertical small diameter tube publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(02)00317-5 – volume: 116 start-page: 273 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0018 article-title: Frequency analysis of pressure oscillations in large length-to-diameter two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.08.107 – volume: 52 start-page: 4184 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0058 article-title: Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.04.004 – volume: 29 start-page: 1189 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0083 article-title: Greedy boosting approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 28 start-page: 927 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0089 article-title: Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(02)00019-8 – volume: 26 start-page: 296 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0090 article-title: Vertical flow boiling of refrigerant R134a in small channels publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2004.08.003 – volume: 133 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0002 article-title: Two-phase microchannel heat sinks: theory, applications, and limitations publication-title: J. Electron. Packag. – Trans. ASME doi: 10.1115/1.4005300 – volume: 35 start-page: 987 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0023 article-title: Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2009.07.003 – volume: 585 start-page: 211 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0010 article-title: Co-designing electronics with microfluidics for more sustainable cooling publication-title: Nature doi: 10.1038/s41586-020-2666-1 – volume: 36 start-page: 126 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0054 article-title: A study of discrepancies in flow boiling results in small to microdiameter metallic tubes publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2011.09.005 – volume: 179 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0042 article-title: Universal condensation heat transfer and pressure drop model and the role of machine learning techniques to improve predictive capabilities publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121712 – volume: 188 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0080 article-title: Heat transfer coefficient, pressure drop and dry-out vapor quality of R454C. Flow boiling experiments and assessment of methods publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2022.122599 – volume: 51 start-page: 5400 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0025 article-title: High heat flux flow boiling in silicon multi-microchannels – Part Ⅰ. heat transfer characteristics of refrigerant R235fa publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.03.006 – volume: 54 start-page: 3334 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0056 article-title: Surface effects in flow boiling of R134a in microtubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.03.052 – ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0084 – volume: 46 start-page: 2353 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0075 article-title: Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(02)00540-9 – volume: 51 start-page: 4315 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0036 article-title: Fluid flow and heat transfer characteristics of low temperature two-phase micro-channel heat sinks–Part Ⅰ: experimental methods and flow visualization results publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.02.012 – volume: 33 start-page: 566 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0052 article-title: Flow boiling heat transfer and pressure drop of pure HFC-152a in a horizontal mini-channel publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.12.006 – volume: 38 start-page: 629 year: 1995 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0033 article-title: Effects of heater length and orientation on the trigger mechanism for near-saturated flow boiling critical heat flux—I. Photographic study and statistical characterization of the near-wall interfacial features publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(94)00193-Y – volume: 119 start-page: 195 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0079 article-title: Flow boiling heat transfer and pressure drop data of non-azeotropic mixture R455A in a horizontal 6.0 mm stainless-steel tube publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.07.017 – year: 1998 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0069 – volume: 53 start-page: 299 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0039 article-title: Modelling two-phase flows using CFD publication-title: Appl. Energy doi: 10.1016/0306-2619(95)00024-0 – volume: 35 start-page: 636 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0049 article-title: Flow boiling heat transfer and pressure drop of R-134a in a mini tube: an experimental investigation publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2010.12.013 – volume: 47 start-page: 703 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0061 article-title: Evaporation flow pattern and heat transfer of R-22 and R-134a in small diameter tubes publication-title: Heat Mass Transf. doi: 10.1007/s00231-011-0761-4 – start-page: 1 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0086 article-title: Model-agnostic interpretability with sharply values – ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0088 – volume: 100 start-page: 190 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0006 article-title: Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.01.018 – volume: 24 start-page: 122 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0001 article-title: Assessment of high-heat-flux thermal management schemes publication-title: IEEE Trans. –CPMT – volume: 35 start-page: 597 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0092 article-title: Carbon dioxide flow boiling in a single microchannel – part ⅠⅠ: heat transfer publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2010.11.014 – volume: 51 start-page: 1216 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0037 article-title: A theoretical model for the prediction of the critical heat flux in heated microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.03.002 – volume: 129 start-page: 977 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0059 article-title: A flow boiling heat transfer investigation of FC-72 in a microtube using liquid crystal thermography publication-title: ASME J. Heat Transf. doi: 10.1115/1.2728905 – volume: 51 start-page: 896 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0051 article-title: Convective boiling of pure and mixed refrigerants: an experimental study of the major parameters affecting heat transfer publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.11.002 – volume: 64 start-page: 1239 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0021 article-title: Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part ⅠⅠ. Two-phase heat transfer coefficient publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.04.014 – volume: 31 start-page: 163 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0060 article-title: Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57-mm inner diameter publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.08.026 – volume: 133 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0044 article-title: Flow boiling heat transfer characteristics of a minichannel up to dryout condition publication-title: ASME J. Heat Transf. doi: 10.1115/1.4003669 – volume: 47 start-page: 2045 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0035 article-title: Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2003.12.006 – volume: 24 start-page: 1225 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0053 article-title: Flow boiling and flow regimes in small diameter tubes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2003.11.027 – volume: 62 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0004 article-title: Experimental investigation into thermal characteristics of subcooled flow boiling in horizontal concentric annuli for cooling ultra-fast electric vehicle charging cables publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2024.105122 – volume: 126 start-page: 8 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0030 article-title: Heat transfer mechanisms during flow boiling in microchannels publication-title: J. Heat Transf. doi: 10.1115/1.1643090 – volume: 25 start-page: 128 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0031 article-title: Boiling in microchannels: a review of experiment and theory publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2003.11.005 – volume: 64 start-page: 1226 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0020 article-title: Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – Part Ⅰ. Dryout incipience quality publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.04.016 – volume: 115 start-page: 963 year: 1993 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0070 article-title: Boiling heat transfer in a horizontal small-diameter tube publication-title: ASME J. Heat Transf. doi: 10.1115/1.2911393 – volume: 43 start-page: 3347 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0046 article-title: Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(99)00379-8 – volume: 187 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0014 article-title: Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.122500 – volume: 50 start-page: 280 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0045 article-title: Pressure effect on flow boiling heat transfer of water in minichannels publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.03.011 – volume: 41 start-page: 4183 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0074 article-title: Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(98)00127-6 – volume: 117 start-page: 319 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0011 article-title: A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.10.015 – volume: 152 start-page: 256 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0041 article-title: Prediction of heat transfer coefficient and pressure drop of R1234yf and R134a flow condensation in horizontal and inclined tubes using machine learning techniques publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2023.04.031 – volume: 102 year: 1980 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0032 article-title: Measurement of vapor superheat in post-critical-heat-flux boiling publication-title: J. Heat Transf. doi: 10.1115/1.3244324 – year: 2010 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0050 – volume: 37 start-page: 321 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0016 article-title: High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(94)90103-1 – volume: 30 start-page: 937 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0077 article-title: Flow boiling heat transfer characteristics of CO2 at low temperatures publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2007.02.010 – volume: 53 start-page: 4809 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0019 article-title: A novel time strip flow visualization technique for investigation of intermittent dewetting and dryout in elongated bubble flow in a microchannel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.06.011 – volume: 213 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0009 article-title: Experimental investigation and analysis of two-phase flow instability of flow boiling in a mini-channel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2023.124309 – volume: 48 start-page: 941 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2025.128095_bib0024 article-title: Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part ⅠⅠ-heat transfer characteristics publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2004.09.019 |
| SSID | ssj0017046 |
| Score | 2.4916415 |
| Snippet | •A universal consolidated database of 11,470 pre-dryout data points was constructed from 41 sources covering 23 working fluids and wide operating ranges.•The... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 128095 |
| SubjectTerms | Extreme gradient boosting Heat transfer coefficient Machine learning Mini/micro-channels Saturated flow boiling XGBoost |
| Title | XGBoost algorithm for predicting heat transfer coefficient of saturated flow boiling in mini/micro-channels |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2025.128095 |
| Volume | 256 |
| WOSCitedRecordID | wos001619719800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017046 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKB4iXiasYN_mBBySUkpvr-HFMG9sEE9IG6luUuPaa0iZV2431x_HfOCdxnHSbUBHiJYqsxLfz5fj45DvHhLwNNYu0SLQDtsfQCUOmnFR6oeO6Smnd56Eo0zF8_8xPTqLBQHztdH7VsTCXE57n0dWVmP1XUUMZCBtDZ_9C3LZSKIB7EDpcQexw3Ujwg08fi2KBntzzAnb-o2nJJJzN8Y9MyXFG9YtHQ4DBquaYHKTMImE4AQtM9JmgGaonxc_3aZFNTNQLJiGBXk2RwedgvHBeZWK2tu26c7GVkqJsEB30U7DUbcvWDV2Unp3DlUJid2Ejh8w5z8fZaNUqNcShUwVKarS6yK89fQrFzheTTdw4M_x-w-aqFTQsmiIwTFejoH3WVrGwoLrVuZw3tH_liBj3sjEODMdUD6kHjbFe8-p64u1rC6KlKdYMuHF8s8YYa4yrGu-QLZ8zEXXJ1u7R_uDY_sbibhUpVo_qPnnXEAz_3Mvb7aSW7XP2kGybTQvdrcD2iHRU_pjcK8nDcvGE_DCQoxZyFCBHG8hR7AKt26ctyNFCUws5ipCjBnI0yylC7sM64J6Sbwf7Z3uHjjnEw5F-5C2dJEo4fPzcCxMeSZW6iQzRIoJ9rJYsgWlTaRQoOYR9dNr3UswWxDydCCl9ESoRPCPdvMjVc0IDrsDeimCDLlmYSC0CrdPAH2qWwsNM7hBRT1k8q3K1xJuKcIfs1XMcG9uzsiljANfGtbz4hx68JA-aL-IV6S7nF-o1uSsvl9li_sYg6zcR7Ltw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XGBoost+algorithm+for+predicting+heat+transfer+coefficient+of+saturated+flow+boiling+in+mini%2Fmicro-channels&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Noh%2C+Hyeonseok&rft.au=Kim%2C+Jihyeok&rft.au=Lee%2C+Seunghyun&rft.au=Kim%2C+Sung-Min&rft.date=2026-03-01&rft.issn=0017-9310&rft.volume=256&rft.spage=128095&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2025.128095&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2025_128095 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |