A polynomial time algorithm for finding a minimum 4-partition of a submodular function

In this paper, we study the minimum k -partition problem of submodular functions, i.e., given a finite set V and a submodular function f : 2 V → R , computing a k -partition { V 1 , … , V k } of V with minimum ∑ i = 1 k f ( V i ) . The problem is a natural generalization of the minimum k -cut proble...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 207; číslo 1-2; s. 717 - 732
Hlavní autoři: Hirayama, Tsuyoshi, Liu, Yuhao, Makino, Kazuhisa, Shi, Ke, Xu, Chao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the minimum k -partition problem of submodular functions, i.e., given a finite set V and a submodular function f : 2 V → R , computing a k -partition { V 1 , … , V k } of V with minimum ∑ i = 1 k f ( V i ) . The problem is a natural generalization of the minimum k -cut problem in graphs and hypergraphs. It is known that the problem is NP-hard for general k , and solvable in polynomial time for fixed k ≤ 3 . In this paper, we construct the first polynomial-time algorithm for the minimum 4-partition problem.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-023-02029-0