A polynomial time algorithm for finding a minimum 4-partition of a submodular function

In this paper, we study the minimum k -partition problem of submodular functions, i.e., given a finite set V and a submodular function f : 2 V → R , computing a k -partition { V 1 , … , V k } of V with minimum ∑ i = 1 k f ( V i ) . The problem is a natural generalization of the minimum k -cut proble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 207; H. 1-2; S. 717 - 732
Hauptverfasser: Hirayama, Tsuyoshi, Liu, Yuhao, Makino, Kazuhisa, Shi, Ke, Xu, Chao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2024
Springer
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we study the minimum k -partition problem of submodular functions, i.e., given a finite set V and a submodular function f : 2 V → R , computing a k -partition { V 1 , … , V k } of V with minimum ∑ i = 1 k f ( V i ) . The problem is a natural generalization of the minimum k -cut problem in graphs and hypergraphs. It is known that the problem is NP-hard for general k , and solvable in polynomial time for fixed k ≤ 3 . In this paper, we construct the first polynomial-time algorithm for the minimum 4-partition problem.
AbstractList In this paper, we study the minimum k-partition problem of submodular functions, i.e., given a finite set V and a submodular function [Formula omitted], computing a k-partition [Formula omitted] of V with minimum [Formula omitted]. The problem is a natural generalization of the minimum k-cut problem in graphs and hypergraphs. It is known that the problem is NP-hard for general k, and solvable in polynomial time for fixed [Formula omitted]. In this paper, we construct the first polynomial-time algorithm for the minimum 4-partition problem.
In this paper, we study the minimum k -partition problem of submodular functions, i.e., given a finite set V and a submodular function f : 2 V → R , computing a k -partition { V 1 , … , V k } of V with minimum ∑ i = 1 k f ( V i ) . The problem is a natural generalization of the minimum k -cut problem in graphs and hypergraphs. It is known that the problem is NP-hard for general k , and solvable in polynomial time for fixed k ≤ 3 . In this paper, we construct the first polynomial-time algorithm for the minimum 4-partition problem.
Audience Academic
Author Hirayama, Tsuyoshi
Makino, Kazuhisa
Shi, Ke
Liu, Yuhao
Xu, Chao
Author_xml – sequence: 1
  givenname: Tsuyoshi
  surname: Hirayama
  fullname: Hirayama, Tsuyoshi
  organization: Toshiba Digital Solutions Corporation
– sequence: 2
  givenname: Yuhao
  surname: Liu
  fullname: Liu, Yuhao
  organization: University of Electronic Science and Technology of China
– sequence: 3
  givenname: Kazuhisa
  surname: Makino
  fullname: Makino, Kazuhisa
  organization: Kyoto University
– sequence: 4
  givenname: Ke
  surname: Shi
  fullname: Shi, Ke
  organization: University of Electronic Science and Technology of China
– sequence: 5
  givenname: Chao
  orcidid: 0000-0003-4417-3299
  surname: Xu
  fullname: Xu, Chao
  email: the.chao.xu@gmail.com
  organization: University of Electronic Science and Technology of China
BookMark eNp9kMtqAyEUhqW00CTtC3TlC5geL3NbhtAbBLppuxVnRqeGUYPOLPL2NZ2ui8oB__MdON8aXfvgNUIPFLYUoHpMFChUBBjPD1hD4AqtqOAlEaUor9EKgBWkKCnconVKRwCgvK5X6GuHT2E8--CsGvFkncZqHEK007fDJkRsrO-tH7DCznrrZocFOak42ckGj4PJQZpbF_p5VLl79t0luEM3Ro1J3__VDfp8fvrYv5LD-8vbfncgHavpRBpQHbRVD_n2VVULzrqe8b6tKCsqzqGkpW4MpaoUzDRlrfu2bgWnhWpapSjfoO0yd1CjltabMEXV5dNrZ7vsyNj8v6tBMFFQxjLAFqCLIaWojTxF61Q8SwryolIuKmVWKX9VSsgQX6CUm_2gozyGOfq82H_UD9boeCk
Cites_doi 10.1016/j.ipl.2010.05.003
10.1287/moor.19.1.24
10.1023/A:1009804919645
10.1137/1.9781611976465.64
10.1109/FOCS.2015.68
10.1007/3-540-55719-9_88
10.1137/1.9781611977554.ch64
10.1137/0405004
10.1007/978-3-642-10631-6_8
10.4230/LIPIcs.ICALP.2022.16
10.1007/s10107-019-01443-7
10.1145/3478018
10.1016/j.dam.2003.10.007
10.1007/s00453-010-9483-0
10.1137/1.9781611975482.54
10.1109/FOCS.2011.34
10.1137/19M1299359
10.1016/S0167-9260(00)00008-0
10.1007/PL00011383
10.1109/FOCS.2018.00020
10.1002/ecjc.20341
10.1007/s10107-004-0510-2
10.1016/j.disopt.2013.10.002
10.1023/A:1009833626004
10.1007/s10107-021-01732-0
10.1137/18M1163865
10.1137/1.9781611977073
10.1007/978-3-540-92182-0_21
10.1007/s00453-009-9284-5
10.1145/1374376.1374402
10.1137/050631616
10.1007/BF01585863
10.1287/moor.2021.1250
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2024 Springer
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2024 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10107-023-02029-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 732
ExternalDocumentID A804245122
10_1007_s10107_023_02029_0
GrantInformation_xml – fundername: Japan Society for the Promotion of Science London
  grantid: JP19K22841; JP20H00609; JP20H05967
  funderid: http://dx.doi.org/10.13039/501100000646
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c281t-90ac0b7d07d0d778432cd23db71257330616e9f11a642f968edb8b4315a9baa13
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001114584700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 10:28:26 EST 2025
Sat Nov 29 03:34:04 EST 2025
Fri Feb 21 02:38:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Submodular function
90C27
Combinatorial optimization
Polynomial time
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-90ac0b7d07d0d778432cd23db71257330616e9f11a642f968edb8b4315a9baa13
ORCID 0000-0003-4417-3299
PageCount 16
ParticipantIDs gale_infotracacademiconefile_A804245122
crossref_primary_10_1007_s10107_023_02029_0
springer_journals_10_1007_s10107_023_02029_0
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References Gupta, A., Lee, E., Li, J.: Faster exact and approximate algorithms for k-cut. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 113–123 (2018). https://doi.org/10.1109/FOCS.2018.00020
Beideman, C., Chandrasekaran, K., Wang, W.: Deterministic enumeration of all minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut-sets in hypergraphs for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2208–2228. Society for Industrial and Applied Mathematics, Philadelphia (2022). https://doi.org/10.1137/1.9781611977073
Hirayama, T., Liu, Y., Makino, K., Shi, K., Xu, C.: A polynomial time algorithm for finding a minimum 4-partition of a submodular function. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1680–1691. https://doi.org/10.1137/1.9781611977554.ch64
Fox, K., Panigrahi, D., Zhang, F.: Minimum cut and minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut in hypergraphs via branching contractions. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 881–896. SIAM (2019)
Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Tech. Rep. B 96-02, FU Berlin Fachbereich Mathematik und Informatik (1996)
Guinez, F., Queyranne, M.: The size-constrained submodular k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partition problem (2012). https://docs.google.com/viewer?a=v &pid=sites &srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1. Unpublished manuscript. See also https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf
GoldschmidtOHochbaumDSA polynomial algorithm for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut problem for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}Math. Oper. Res.1994192437129000810.1287/moor.19.1.24
NagamochiHAlgorithms for the minimum partitioning problems in graphsElectron. Commun. Jpn.20079010637810.1002/ecjc.20341Part III Fundamental Electronic Science
Vazirani, V.V., Yannakakis, M.: Suboptimal cuts: Their enumeration, weight and number. In: International Colloquium on Automata, Languages, and Programming, pp. 366–377. Springer (1992)
GasieniecLJanssonJLingasAÖstlinAOn the complexity of constructing evolutionary treesJ. Comb. Optim.199932/3183197170861610.1023/A:1009833626004
NagamochiHIbarakiTComputing edge-connectivity in multigraphs and capacitated graphsSIAM J. Discrete Math.1992515466114689610.1137/0405004
ChandrasekaranKXuCYuXHypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut in randomized polynomial timeMath. Program.20211861–285113421447710.1007/s10107-019-01443-7
FukunagaTComputing minimum multiway cuts in hypergraphsDiscrete Optim.2013104371382312862410.1016/j.disopt.2013.10.002
XiaoMHongSHNagamochiHFukunagaTAn improved divide-and-conquer algorithm for finding all minimum k-way cutsAlgorithms and Computation2008BerlinSpringer20821910.1007/978-3-540-92182-0_21
BeidemanCChandrasekaranKXuCMulticriteria cuts and size-constrained k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cuts in hypergraphsMath. Program.202110.1007/s10107-021-01732-0
OkumotoKFukunagaTNagamochiHDivide-and-conquer algorithms for partitioning hypergraphs and submodular systemsAlgorithmica201010.1007/s00453-010-9483-0
ZhaoLNagamochiHIbarakiTOn generalized greedy splitting algorithms for multiway partition problemsDiscrete Appl. Math.20041431130143208787510.1016/j.dam.2003.10.007
GuptaAHarrisDGLeeELiJOptimal bounds for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut problemJ. ACM202110.1145/3478018
NagamochiHKatayamaSIbarakiTA faster algorithm for computing minimum 5-way and 6-way cuts in graphsJ. Comb. Optim.200042151169177282310.1023/A:1009804919645
ChandrasekaranKChekuriCHypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} in deterministic polynomial timeMath. Oper. Res.2022451550710.1287/moor.2021.1250
NagamochiHIbarakiTA fast algorithm for computing minimum 3-way and 4-way cutsMath. Program.2000883507520178215310.1007/PL00011383
ChekuriCXuCMinimum cuts and sparsification in hypergraphsSIAM J. Comput.201847621182156388124610.1137/18M1163865
XiaoMFinding minimum 3-way cuts in hypergraphsInf. Process. Lett.201011014–15554558267497010.1016/j.ipl.2010.05.003
Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 807–816. IEEE, Palm Springs, CA, USA (2011). https://doi.org/10.1109/FOCS.2011.34
OkumotoKFukunagaTNagamochiHDongYDuDZIbarraODivide-and-conquer algorithms for partitioning hypergraphs and submodular systemsAlgorithms and Computation2009BerlinSpringer556410.1007/978-3-642-10631-6_8
Chandrasekaran, K., Chekuri, C.: Min–max partitioning of hypergraphs and symmetric submodular functions. In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’21, pp. 1026–1038. Society for Industrial and Applied Mathematics, USA (2021)
QueyranneMMinimizing symmetric submodular functionsMath. Program.1998821312162769310.1007/BF01585863
YehLPWangBFSuHHEfficient algorithms for the problems of enumerating cuts by non-decreasing weightsAlgorithmica2010563297312258106810.1007/s00453-009-9284-5
Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its implications for combinatorial and convex optimization. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 1049–1065 (2015). https://doi.org/10.1109/FOCS.2015.68
KamidoiYYoshidaNNagamochiHA deterministic algorithm for finding all minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-way cutsSIAM J. Comput.200636513291341228408310.1137/050631616
Thorup, M.: Minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-way cuts via deterministic greedy tree packing. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 159–165 (2008). https://doi.org/10.1145/1374376.1374402
Beideman, C., Chandrasekaran, K., Wang, W.: Counting and enumerating optimum cut sets for hypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partitioning problems for fixed k. In: Bojańczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol. 229, pp. 16:1–16:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.16. https://drops.dagstuhl.de/opus/volltexte/2022/16357
MakWKWongDFFast hypergraph min-cut algorithm for circuit partitioningIntegr. VLSI J.200030111110.1016/S0167-9260(00)00008-0
ZhaoLNagamochiHIbarakiTGreedy splitting algorithms for approximating multiway partition problemsMath. Program.20051021167183211548510.1007/s10107-004-0510-2
ChekuriCQuanrudKXuCLP Relaxation and tree packing for minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end
O Goldschmidt (2029_CR13) 1994; 19
M Queyranne (2029_CR28) 1998; 82
M Xiao (2029_CR32) 2010; 110
T Fukunaga (2029_CR11) 2013; 10
L Gasieniec (2029_CR12) 1999; 3
2029_CR20
L Zhao (2029_CR34) 2004; 143
K Okumoto (2029_CR27) 2010
K Chandrasekaran (2029_CR5) 2022
H Nagamochi (2029_CR24) 2000; 88
2029_CR29
2029_CR14
2029_CR16
Y Kamidoi (2029_CR18) 2006; 36
2029_CR17
2029_CR10
K Okumoto (2029_CR26) 2009
LP Yeh (2029_CR33) 2010; 56
2029_CR7
2029_CR30
2029_CR4
2029_CR2
C Chekuri (2029_CR9) 2018; 47
H Nagamochi (2029_CR22) 2007; 90
M Xiao (2029_CR31) 2008
2029_CR1
WK Mak (2029_CR21) 2000; 30
L Zhao (2029_CR35) 2005; 102
C Beideman (2029_CR3) 2021
K Chandrasekaran (2029_CR6) 2021; 186
H Nagamochi (2029_CR25) 2000; 4
C Chekuri (2029_CR8) 2020; 34
A Gupta (2029_CR15) 2021
2029_CR19
H Nagamochi (2029_CR23) 1992; 5
References_xml – reference: Vazirani, V.V., Yannakakis, M.: Suboptimal cuts: Their enumeration, weight and number. In: International Colloquium on Automata, Languages, and Programming, pp. 366–377. Springer (1992)
– reference: Hirayama, T., Liu, Y., Makino, K., Shi, K., Xu, C.: A polynomial time algorithm for finding a minimum 4-partition of a submodular function. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1680–1691. https://doi.org/10.1137/1.9781611977554.ch64
– reference: Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 807–816. IEEE, Palm Springs, CA, USA (2011). https://doi.org/10.1109/FOCS.2011.34
– reference: OkumotoKFukunagaTNagamochiHDongYDuDZIbarraODivide-and-conquer algorithms for partitioning hypergraphs and submodular systemsAlgorithms and Computation2009BerlinSpringer556410.1007/978-3-642-10631-6_8
– reference: Beideman, C., Chandrasekaran, K., Wang, W.: Counting and enumerating optimum cut sets for hypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partitioning problems for fixed k. In: Bojańczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol. 229, pp. 16:1–16:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.16. https://drops.dagstuhl.de/opus/volltexte/2022/16357
– reference: FukunagaTComputing minimum multiway cuts in hypergraphsDiscrete Optim.2013104371382312862410.1016/j.disopt.2013.10.002
– reference: NagamochiHIbarakiTA fast algorithm for computing minimum 3-way and 4-way cutsMath. Program.2000883507520178215310.1007/PL00011383
– reference: GasieniecLJanssonJLingasAÖstlinAOn the complexity of constructing evolutionary treesJ. Comb. Optim.199932/3183197170861610.1023/A:1009833626004
– reference: KamidoiYYoshidaNNagamochiHA deterministic algorithm for finding all minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-way cutsSIAM J. Comput.200636513291341228408310.1137/050631616
– reference: ChandrasekaranKChekuriCHypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} in deterministic polynomial timeMath. Oper. Res.2022451550710.1287/moor.2021.1250
– reference: ChekuriCXuCMinimum cuts and sparsification in hypergraphsSIAM J. Comput.201847621182156388124610.1137/18M1163865
– reference: MakWKWongDFFast hypergraph min-cut algorithm for circuit partitioningIntegr. VLSI J.200030111110.1016/S0167-9260(00)00008-0
– reference: Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Tech. Rep. B 96-02, FU Berlin Fachbereich Mathematik und Informatik (1996)
– reference: Guinez, F., Queyranne, M.: The size-constrained submodular k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partition problem (2012). https://docs.google.com/viewer?a=v &pid=sites &srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1. Unpublished manuscript. See also https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf
– reference: Chandrasekaran, K., Chekuri, C.: Min–max partitioning of hypergraphs and symmetric submodular functions. In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’21, pp. 1026–1038. Society for Industrial and Applied Mathematics, USA (2021)
– reference: Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its implications for combinatorial and convex optimization. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 1049–1065 (2015). https://doi.org/10.1109/FOCS.2015.68
– reference: Beideman, C., Chandrasekaran, K., Wang, W.: Deterministic enumeration of all minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut-sets in hypergraphs for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2208–2228. Society for Industrial and Applied Mathematics, Philadelphia (2022). https://doi.org/10.1137/1.9781611977073
– reference: ChekuriCQuanrudKXuCLP Relaxation and tree packing for minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cutSIAM J. Discrete Math.202034213341353411166810.1137/19M1299359
– reference: Gupta, A., Lee, E., Li, J.: Faster exact and approximate algorithms for k-cut. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 113–123 (2018). https://doi.org/10.1109/FOCS.2018.00020
– reference: NagamochiHKatayamaSIbarakiTA faster algorithm for computing minimum 5-way and 6-way cuts in graphsJ. Comb. Optim.200042151169177282310.1023/A:1009804919645
– reference: GoldschmidtOHochbaumDSA polynomial algorithm for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut problem for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}Math. Oper. Res.1994192437129000810.1287/moor.19.1.24
– reference: YehLPWangBFSuHHEfficient algorithms for the problems of enumerating cuts by non-decreasing weightsAlgorithmica2010563297312258106810.1007/s00453-009-9284-5
– reference: GuptaAHarrisDGLeeELiJOptimal bounds for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut problemJ. ACM202110.1145/3478018
– reference: Fox, K., Panigrahi, D., Zhang, F.: Minimum cut and minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut in hypergraphs via branching contractions. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 881–896. SIAM (2019)
– reference: ZhaoLNagamochiHIbarakiTGreedy splitting algorithms for approximating multiway partition problemsMath. Program.20051021167183211548510.1007/s10107-004-0510-2
– reference: ZhaoLNagamochiHIbarakiTOn generalized greedy splitting algorithms for multiway partition problemsDiscrete Appl. Math.20041431130143208787510.1016/j.dam.2003.10.007
– reference: OkumotoKFukunagaTNagamochiHDivide-and-conquer algorithms for partitioning hypergraphs and submodular systemsAlgorithmica201010.1007/s00453-010-9483-0
– reference: Thorup, M.: Minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-way cuts via deterministic greedy tree packing. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 159–165 (2008). https://doi.org/10.1145/1374376.1374402
– reference: XiaoMHongSHNagamochiHFukunagaTAn improved divide-and-conquer algorithm for finding all minimum k-way cutsAlgorithms and Computation2008BerlinSpringer20821910.1007/978-3-540-92182-0_21
– reference: QueyranneMMinimizing symmetric submodular functionsMath. Program.1998821312162769310.1007/BF01585863
– reference: NagamochiHIbarakiTComputing edge-connectivity in multigraphs and capacitated graphsSIAM J. Discrete Math.1992515466114689610.1137/0405004
– reference: BeidemanCChandrasekaranKXuCMulticriteria cuts and size-constrained k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cuts in hypergraphsMath. Program.202110.1007/s10107-021-01732-0
– reference: ChandrasekaranKXuCYuXHypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut in randomized polynomial timeMath. Program.20211861–285113421447710.1007/s10107-019-01443-7
– reference: XiaoMFinding minimum 3-way cuts in hypergraphsInf. Process. Lett.201011014–15554558267497010.1016/j.ipl.2010.05.003
– reference: NagamochiHAlgorithms for the minimum partitioning problems in graphsElectron. Commun. Jpn.20079010637810.1002/ecjc.20341Part III Fundamental Electronic Science
– volume: 110
  start-page: 554
  issue: 14–15
  year: 2010
  ident: 2029_CR32
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2010.05.003
– volume: 19
  start-page: 24
  year: 1994
  ident: 2029_CR13
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.19.1.24
– volume: 4
  start-page: 151
  issue: 2
  year: 2000
  ident: 2029_CR25
  publication-title: J. Comb. Optim.
  doi: 10.1023/A:1009804919645
– ident: 2029_CR4
  doi: 10.1137/1.9781611976465.64
– ident: 2029_CR20
  doi: 10.1109/FOCS.2015.68
– ident: 2029_CR30
  doi: 10.1007/3-540-55719-9_88
– ident: 2029_CR17
  doi: 10.1137/1.9781611977554.ch64
– volume: 5
  start-page: 54
  issue: 1
  year: 1992
  ident: 2029_CR23
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/0405004
– start-page: 55
  volume-title: Algorithms and Computation
  year: 2009
  ident: 2029_CR26
  doi: 10.1007/978-3-642-10631-6_8
– ident: 2029_CR1
  doi: 10.4230/LIPIcs.ICALP.2022.16
– volume: 186
  start-page: 85
  issue: 1–2
  year: 2021
  ident: 2029_CR6
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01443-7
– year: 2021
  ident: 2029_CR15
  publication-title: J. ACM
  doi: 10.1145/3478018
– volume: 143
  start-page: 130
  issue: 1
  year: 2004
  ident: 2029_CR34
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2003.10.007
– year: 2010
  ident: 2029_CR27
  publication-title: Algorithmica
  doi: 10.1007/s00453-010-9483-0
– ident: 2029_CR10
  doi: 10.1137/1.9781611975482.54
– ident: 2029_CR14
– ident: 2029_CR7
  doi: 10.1109/FOCS.2011.34
– volume: 34
  start-page: 1334
  issue: 2
  year: 2020
  ident: 2029_CR8
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/19M1299359
– volume: 30
  start-page: 1
  issue: 1
  year: 2000
  ident: 2029_CR21
  publication-title: Integr. VLSI J.
  doi: 10.1016/S0167-9260(00)00008-0
– volume: 88
  start-page: 507
  issue: 3
  year: 2000
  ident: 2029_CR24
  publication-title: Math. Program.
  doi: 10.1007/PL00011383
– ident: 2029_CR16
  doi: 10.1109/FOCS.2018.00020
– volume: 90
  start-page: 63
  issue: 10
  year: 2007
  ident: 2029_CR22
  publication-title: Electron. Commun. Jpn.
  doi: 10.1002/ecjc.20341
– volume: 102
  start-page: 167
  issue: 1
  year: 2005
  ident: 2029_CR35
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0510-2
– volume: 10
  start-page: 371
  issue: 4
  year: 2013
  ident: 2029_CR11
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2013.10.002
– volume: 3
  start-page: 183
  issue: 2/3
  year: 1999
  ident: 2029_CR12
  publication-title: J. Comb. Optim.
  doi: 10.1023/A:1009833626004
– year: 2021
  ident: 2029_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-021-01732-0
– volume: 47
  start-page: 2118
  issue: 6
  year: 2018
  ident: 2029_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/18M1163865
– ident: 2029_CR2
  doi: 10.1137/1.9781611977073
– start-page: 208
  volume-title: Algorithms and Computation
  year: 2008
  ident: 2029_CR31
  doi: 10.1007/978-3-540-92182-0_21
– volume: 56
  start-page: 297
  issue: 3
  year: 2010
  ident: 2029_CR33
  publication-title: Algorithmica
  doi: 10.1007/s00453-009-9284-5
– ident: 2029_CR29
  doi: 10.1145/1374376.1374402
– volume: 36
  start-page: 1329
  issue: 5
  year: 2006
  ident: 2029_CR18
  publication-title: SIAM J. Comput.
  doi: 10.1137/050631616
– volume: 82
  start-page: 3
  issue: 1
  year: 1998
  ident: 2029_CR28
  publication-title: Math. Program.
  doi: 10.1007/BF01585863
– year: 2022
  ident: 2029_CR5
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2021.1250
– ident: 2029_CR19
SSID ssj0001388
Score 2.4217703
Snippet In this paper, we study the minimum k -partition problem of submodular functions, i.e., given a finite set V and a submodular function f : 2 V → R , computing...
In this paper, we study the minimum k-partition problem of submodular functions, i.e., given a finite set V and a submodular function [Formula omitted],...
SourceID gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 717
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title A polynomial time algorithm for finding a minimum 4-partition of a submodular function
URI https://link.springer.com/article/10.1007/s10107-023-02029-0
Volume 207
WOSCitedRecordID wos001114584700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yfdAHv8X5RR4EH7TQpG2SPg5x-OIQ1LG3kjTtHGztWDvB_967rp0biKDQh5a0abm75O56d78j5FpbngTWcse1Ujh-7FpHCSYc7hkNa4-LVKRVswnZ66nBIHyui8KKJtu9CUlWO_VKsRvD32oc446YtAGO-maAaDPoo7_0l_sv85RqGrWidVCXyvw8x5o6ajbl9ZBopWm6e__7xn2yW1uWtLMQhQOykWSHZGcFbxCunpYgrcUR6XfoNB9_Yl0yPIdN5qkeD_PZqHyfULBlaRXPzoZUUwQgmcwn1HemKGrITJqnMFCAOs0tprJS1JA4cEzeug-v949O3WbBiblipRO6OnaNtC4cVkrlezy2HHGXwfiRHvgUTCRhypgGXyUNhUqsUQYMj0CHRmvmnZBWlmfJKaGx8jnXoW9icLOkDI3RDOYJuRRglgSiTW4bakfTBZpG9I2bjLSLgHZRRbvIbZMbZEiES62c6VjXFQPwLgStijqqitsyztvkruFHVK_B4peJz_52-znZhhN_kVl2QVrlbJ5ckq34oxwVs6tK-L4A9jvRag
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-igvrgtzg_8yD4oIUm7ZL0cYiiuA3BOXwLadPOwbaOtRP8773rWt1ABIW-tGnTcnfJ3fXufkfIhbE8rlvLHddK4fiRax0lmHC4FxpYe1wkIimaTch2W72-Bk9lUVhWZbtXIclip54rdmP4W41j3BGTNsBRX_GxzQ766M_dr_2XeUpVjVrROihLZX6eY0EdVZvyYki00DR3W__7xm2yWVqWtDEThR2yFI92ycYc3iCctb5AWrM90m3QcTr4wLpkeA6bzFMz6KWTfv42pGDL0iKePepRQxGAZDgdUt8Zo6ghM2mawEAG6jS1mMpKUUPiwD55ubvt3Nw7ZZsFJ-KK5U7gmsgNpXXhsFIq3-OR5Yi7DMaP9MCnYCIOEsYM-CpJIFRsQxWC4VE3QWgM8w7I8igdxYeERsrn3AR-GIGbJWUQhobBPAGXAsySuqiRq4raejxD09DfuMlIOw200wXttFsjl8gQjUstn5jIlBUD8C4ErdINVcRtGec1cl3xQ5drMPtl4qO_3X5O1u47raZuPrQfj8k6XPRnWWYnZDmfTONTshq95_1sclYI4ifQeNRO
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfTBb3F-5kHwQcuatEvSx6EORR3ix9hbSJt2Cq4dWxX8773rWp0gggh9adIm5S7J3fXufkfIobE8blrLHddK4fiRax0lmHC4FxrYe1wkIimKTchOR_V6we1UFn8R7V65JCc5DYjSlOaNoU0aU4lvDH-xcfRBYgAHGO2zPjRhUNfdfffzLGaeUlXRVtQUyrSZn8f4JpqqA_q7e7SQOu3l_3_vClkqNU7amiyRVTITp2tkcQqHEO5uPsFbx-uk26LD7OUd85XhPSw-T81LPxs9508DCjouLfzcaZ8aisAkg9cB9Z0hLkFkMs0S6BiDmM0shrhSlJzYsUEe2-cPpxdOWX7BibhiuRO4JnJDaV24rJTK93hkOeIxg1IkPbA1mIiDhDEDNkwSCBXbUIWgkDRNEBrDvE1SS7M03iI0Uj7nJvDDCMwvKYMwNAzGCbgUoK40RZ0cV5TXwwnKhv7CU0baaaCdLmin3To5QuZo3IL5yESmzCSAuRDMSrdU4c9lnNfJScUbXe7N8S8Db__t8QMyf3vW1teXnasdsgBt_iT4bJfU8tFrvEfmorf8eTzaL9bkBym_3TI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polynomial+time+algorithm+for+finding+a+minimum+4-partition+of+a+submodular+function&rft.jtitle=Mathematical+programming&rft.au=Hirayama%2C+Tsuyoshi&rft.au=Liu%2C+Yuhao&rft.au=Makino%2C+Kazuhisa&rft.au=Shi%2C+Ke&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=207&rft.issue=1-2&rft.spage=717&rft.epage=732&rft_id=info:doi/10.1007%2Fs10107-023-02029-0&rft.externalDocID=10_1007_s10107_023_02029_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon