A polynomial time algorithm for finding a minimum 4-partition of a submodular function
In this paper, we study the minimum k -partition problem of submodular functions, i.e., given a finite set V and a submodular function f : 2 V → R , computing a k -partition { V 1 , … , V k } of V with minimum ∑ i = 1 k f ( V i ) . The problem is a natural generalization of the minimum k -cut proble...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming Jg. 207; H. 1-2; S. 717 - 732 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer |
| Schlagworte: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we study the minimum
k
-partition problem of submodular functions, i.e., given a finite set
V
and a submodular function
f
:
2
V
→
R
, computing a
k
-partition
{
V
1
,
…
,
V
k
}
of
V
with minimum
∑
i
=
1
k
f
(
V
i
)
. The problem is a natural generalization of the minimum
k
-cut problem in graphs and hypergraphs. It is known that the problem is NP-hard for general
k
, and solvable in polynomial time for fixed
k
≤
3
. In this paper, we construct the first polynomial-time algorithm for the minimum 4-partition problem. |
|---|---|
| AbstractList | In this paper, we study the minimum k-partition problem of submodular functions, i.e., given a finite set V and a submodular function [Formula omitted], computing a k-partition [Formula omitted] of V with minimum [Formula omitted]. The problem is a natural generalization of the minimum k-cut problem in graphs and hypergraphs. It is known that the problem is NP-hard for general k, and solvable in polynomial time for fixed [Formula omitted]. In this paper, we construct the first polynomial-time algorithm for the minimum 4-partition problem. In this paper, we study the minimum k -partition problem of submodular functions, i.e., given a finite set V and a submodular function f : 2 V → R , computing a k -partition { V 1 , … , V k } of V with minimum ∑ i = 1 k f ( V i ) . The problem is a natural generalization of the minimum k -cut problem in graphs and hypergraphs. It is known that the problem is NP-hard for general k , and solvable in polynomial time for fixed k ≤ 3 . In this paper, we construct the first polynomial-time algorithm for the minimum 4-partition problem. |
| Audience | Academic |
| Author | Hirayama, Tsuyoshi Makino, Kazuhisa Shi, Ke Liu, Yuhao Xu, Chao |
| Author_xml | – sequence: 1 givenname: Tsuyoshi surname: Hirayama fullname: Hirayama, Tsuyoshi organization: Toshiba Digital Solutions Corporation – sequence: 2 givenname: Yuhao surname: Liu fullname: Liu, Yuhao organization: University of Electronic Science and Technology of China – sequence: 3 givenname: Kazuhisa surname: Makino fullname: Makino, Kazuhisa organization: Kyoto University – sequence: 4 givenname: Ke surname: Shi fullname: Shi, Ke organization: University of Electronic Science and Technology of China – sequence: 5 givenname: Chao orcidid: 0000-0003-4417-3299 surname: Xu fullname: Xu, Chao email: the.chao.xu@gmail.com organization: University of Electronic Science and Technology of China |
| BookMark | eNp9kMtqAyEUhqW00CTtC3TlC5geL3NbhtAbBLppuxVnRqeGUYPOLPL2NZ2ui8oB__MdON8aXfvgNUIPFLYUoHpMFChUBBjPD1hD4AqtqOAlEaUor9EKgBWkKCnconVKRwCgvK5X6GuHT2E8--CsGvFkncZqHEK007fDJkRsrO-tH7DCznrrZocFOak42ckGj4PJQZpbF_p5VLl79t0luEM3Ro1J3__VDfp8fvrYv5LD-8vbfncgHavpRBpQHbRVD_n2VVULzrqe8b6tKCsqzqGkpW4MpaoUzDRlrfu2bgWnhWpapSjfoO0yd1CjltabMEXV5dNrZ7vsyNj8v6tBMFFQxjLAFqCLIaWojTxF61Q8SwryolIuKmVWKX9VSsgQX6CUm_2gozyGOfq82H_UD9boeCk |
| Cites_doi | 10.1016/j.ipl.2010.05.003 10.1287/moor.19.1.24 10.1023/A:1009804919645 10.1137/1.9781611976465.64 10.1109/FOCS.2015.68 10.1007/3-540-55719-9_88 10.1137/1.9781611977554.ch64 10.1137/0405004 10.1007/978-3-642-10631-6_8 10.4230/LIPIcs.ICALP.2022.16 10.1007/s10107-019-01443-7 10.1145/3478018 10.1016/j.dam.2003.10.007 10.1007/s00453-010-9483-0 10.1137/1.9781611975482.54 10.1109/FOCS.2011.34 10.1137/19M1299359 10.1016/S0167-9260(00)00008-0 10.1007/PL00011383 10.1109/FOCS.2018.00020 10.1002/ecjc.20341 10.1007/s10107-004-0510-2 10.1016/j.disopt.2013.10.002 10.1023/A:1009833626004 10.1007/s10107-021-01732-0 10.1137/18M1163865 10.1137/1.9781611977073 10.1007/978-3-540-92182-0_21 10.1007/s00453-009-9284-5 10.1145/1374376.1374402 10.1137/050631616 10.1007/BF01585863 10.1287/moor.2021.1250 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2024 Springer |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2024 Springer |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10107-023-02029-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 732 |
| ExternalDocumentID | A804245122 10_1007_s10107_023_02029_0 |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science London grantid: JP19K22841; JP20H00609; JP20H05967 funderid: http://dx.doi.org/10.13039/501100000646 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c281t-90ac0b7d07d0d778432cd23db71257330616e9f11a642f968edb8b4315a9baa13 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001114584700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Sat Nov 29 10:28:26 EST 2025 Sat Nov 29 03:34:04 EST 2025 Fri Feb 21 02:38:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Submodular function 90C27 Combinatorial optimization Polynomial time |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c281t-90ac0b7d07d0d778432cd23db71257330616e9f11a642f968edb8b4315a9baa13 |
| ORCID | 0000-0003-4417-3299 |
| PageCount | 16 |
| ParticipantIDs | gale_infotracacademiconefile_A804245122 crossref_primary_10_1007_s10107_023_02029_0 springer_journals_10_1007_s10107_023_02029_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
| References | Gupta, A., Lee, E., Li, J.: Faster exact and approximate algorithms for k-cut. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 113–123 (2018). https://doi.org/10.1109/FOCS.2018.00020 Beideman, C., Chandrasekaran, K., Wang, W.: Deterministic enumeration of all minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut-sets in hypergraphs for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2208–2228. Society for Industrial and Applied Mathematics, Philadelphia (2022). https://doi.org/10.1137/1.9781611977073 Hirayama, T., Liu, Y., Makino, K., Shi, K., Xu, C.: A polynomial time algorithm for finding a minimum 4-partition of a submodular function. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1680–1691. https://doi.org/10.1137/1.9781611977554.ch64 Fox, K., Panigrahi, D., Zhang, F.: Minimum cut and minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut in hypergraphs via branching contractions. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 881–896. SIAM (2019) Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Tech. Rep. B 96-02, FU Berlin Fachbereich Mathematik und Informatik (1996) Guinez, F., Queyranne, M.: The size-constrained submodular k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partition problem (2012). https://docs.google.com/viewer?a=v &pid=sites &srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1. Unpublished manuscript. See also https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf GoldschmidtOHochbaumDSA polynomial algorithm for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut problem for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}Math. Oper. Res.1994192437129000810.1287/moor.19.1.24 NagamochiHAlgorithms for the minimum partitioning problems in graphsElectron. Commun. Jpn.20079010637810.1002/ecjc.20341Part III Fundamental Electronic Science Vazirani, V.V., Yannakakis, M.: Suboptimal cuts: Their enumeration, weight and number. In: International Colloquium on Automata, Languages, and Programming, pp. 366–377. Springer (1992) GasieniecLJanssonJLingasAÖstlinAOn the complexity of constructing evolutionary treesJ. Comb. Optim.199932/3183197170861610.1023/A:1009833626004 NagamochiHIbarakiTComputing edge-connectivity in multigraphs and capacitated graphsSIAM J. Discrete Math.1992515466114689610.1137/0405004 ChandrasekaranKXuCYuXHypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut in randomized polynomial timeMath. Program.20211861–285113421447710.1007/s10107-019-01443-7 FukunagaTComputing minimum multiway cuts in hypergraphsDiscrete Optim.2013104371382312862410.1016/j.disopt.2013.10.002 XiaoMHongSHNagamochiHFukunagaTAn improved divide-and-conquer algorithm for finding all minimum k-way cutsAlgorithms and Computation2008BerlinSpringer20821910.1007/978-3-540-92182-0_21 BeidemanCChandrasekaranKXuCMulticriteria cuts and size-constrained k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cuts in hypergraphsMath. Program.202110.1007/s10107-021-01732-0 OkumotoKFukunagaTNagamochiHDivide-and-conquer algorithms for partitioning hypergraphs and submodular systemsAlgorithmica201010.1007/s00453-010-9483-0 ZhaoLNagamochiHIbarakiTOn generalized greedy splitting algorithms for multiway partition problemsDiscrete Appl. Math.20041431130143208787510.1016/j.dam.2003.10.007 GuptaAHarrisDGLeeELiJOptimal bounds for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut problemJ. ACM202110.1145/3478018 NagamochiHKatayamaSIbarakiTA faster algorithm for computing minimum 5-way and 6-way cuts in graphsJ. Comb. Optim.200042151169177282310.1023/A:1009804919645 ChandrasekaranKChekuriCHypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} in deterministic polynomial timeMath. Oper. Res.2022451550710.1287/moor.2021.1250 NagamochiHIbarakiTA fast algorithm for computing minimum 3-way and 4-way cutsMath. Program.2000883507520178215310.1007/PL00011383 ChekuriCXuCMinimum cuts and sparsification in hypergraphsSIAM J. Comput.201847621182156388124610.1137/18M1163865 XiaoMFinding minimum 3-way cuts in hypergraphsInf. Process. Lett.201011014–15554558267497010.1016/j.ipl.2010.05.003 Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 807–816. IEEE, Palm Springs, CA, USA (2011). https://doi.org/10.1109/FOCS.2011.34 OkumotoKFukunagaTNagamochiHDongYDuDZIbarraODivide-and-conquer algorithms for partitioning hypergraphs and submodular systemsAlgorithms and Computation2009BerlinSpringer556410.1007/978-3-642-10631-6_8 Chandrasekaran, K., Chekuri, C.: Min–max partitioning of hypergraphs and symmetric submodular functions. In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’21, pp. 1026–1038. Society for Industrial and Applied Mathematics, USA (2021) QueyranneMMinimizing symmetric submodular functionsMath. Program.1998821312162769310.1007/BF01585863 YehLPWangBFSuHHEfficient algorithms for the problems of enumerating cuts by non-decreasing weightsAlgorithmica2010563297312258106810.1007/s00453-009-9284-5 Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its implications for combinatorial and convex optimization. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 1049–1065 (2015). https://doi.org/10.1109/FOCS.2015.68 KamidoiYYoshidaNNagamochiHA deterministic algorithm for finding all minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-way cutsSIAM J. Comput.200636513291341228408310.1137/050631616 Thorup, M.: Minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-way cuts via deterministic greedy tree packing. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 159–165 (2008). https://doi.org/10.1145/1374376.1374402 Beideman, C., Chandrasekaran, K., Wang, W.: Counting and enumerating optimum cut sets for hypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partitioning problems for fixed k. In: Bojańczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol. 229, pp. 16:1–16:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.16. https://drops.dagstuhl.de/opus/volltexte/2022/16357 MakWKWongDFFast hypergraph min-cut algorithm for circuit partitioningIntegr. VLSI J.200030111110.1016/S0167-9260(00)00008-0 ZhaoLNagamochiHIbarakiTGreedy splitting algorithms for approximating multiway partition problemsMath. Program.20051021167183211548510.1007/s10107-004-0510-2 ChekuriCQuanrudKXuCLP Relaxation and tree packing for minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end O Goldschmidt (2029_CR13) 1994; 19 M Queyranne (2029_CR28) 1998; 82 M Xiao (2029_CR32) 2010; 110 T Fukunaga (2029_CR11) 2013; 10 L Gasieniec (2029_CR12) 1999; 3 2029_CR20 L Zhao (2029_CR34) 2004; 143 K Okumoto (2029_CR27) 2010 K Chandrasekaran (2029_CR5) 2022 H Nagamochi (2029_CR24) 2000; 88 2029_CR29 2029_CR14 2029_CR16 Y Kamidoi (2029_CR18) 2006; 36 2029_CR17 2029_CR10 K Okumoto (2029_CR26) 2009 LP Yeh (2029_CR33) 2010; 56 2029_CR7 2029_CR30 2029_CR4 2029_CR2 C Chekuri (2029_CR9) 2018; 47 H Nagamochi (2029_CR22) 2007; 90 M Xiao (2029_CR31) 2008 2029_CR1 WK Mak (2029_CR21) 2000; 30 L Zhao (2029_CR35) 2005; 102 C Beideman (2029_CR3) 2021 K Chandrasekaran (2029_CR6) 2021; 186 H Nagamochi (2029_CR25) 2000; 4 C Chekuri (2029_CR8) 2020; 34 A Gupta (2029_CR15) 2021 2029_CR19 H Nagamochi (2029_CR23) 1992; 5 |
| References_xml | – reference: Vazirani, V.V., Yannakakis, M.: Suboptimal cuts: Their enumeration, weight and number. In: International Colloquium on Automata, Languages, and Programming, pp. 366–377. Springer (1992) – reference: Hirayama, T., Liu, Y., Makino, K., Shi, K., Xu, C.: A polynomial time algorithm for finding a minimum 4-partition of a submodular function. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1680–1691. https://doi.org/10.1137/1.9781611977554.ch64 – reference: Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 807–816. IEEE, Palm Springs, CA, USA (2011). https://doi.org/10.1109/FOCS.2011.34 – reference: OkumotoKFukunagaTNagamochiHDongYDuDZIbarraODivide-and-conquer algorithms for partitioning hypergraphs and submodular systemsAlgorithms and Computation2009BerlinSpringer556410.1007/978-3-642-10631-6_8 – reference: Beideman, C., Chandrasekaran, K., Wang, W.: Counting and enumerating optimum cut sets for hypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partitioning problems for fixed k. In: Bojańczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), Leibniz International Proceedings in Informatics (LIPIcs), vol. 229, pp. 16:1–16:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.16. https://drops.dagstuhl.de/opus/volltexte/2022/16357 – reference: FukunagaTComputing minimum multiway cuts in hypergraphsDiscrete Optim.2013104371382312862410.1016/j.disopt.2013.10.002 – reference: NagamochiHIbarakiTA fast algorithm for computing minimum 3-way and 4-way cutsMath. Program.2000883507520178215310.1007/PL00011383 – reference: GasieniecLJanssonJLingasAÖstlinAOn the complexity of constructing evolutionary treesJ. Comb. Optim.199932/3183197170861610.1023/A:1009833626004 – reference: KamidoiYYoshidaNNagamochiHA deterministic algorithm for finding all minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-way cutsSIAM J. Comput.200636513291341228408310.1137/050631616 – reference: ChandrasekaranKChekuriCHypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} in deterministic polynomial timeMath. Oper. Res.2022451550710.1287/moor.2021.1250 – reference: ChekuriCXuCMinimum cuts and sparsification in hypergraphsSIAM J. Comput.201847621182156388124610.1137/18M1163865 – reference: MakWKWongDFFast hypergraph min-cut algorithm for circuit partitioningIntegr. VLSI J.200030111110.1016/S0167-9260(00)00008-0 – reference: Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Tech. Rep. B 96-02, FU Berlin Fachbereich Mathematik und Informatik (1996) – reference: Guinez, F., Queyranne, M.: The size-constrained submodular k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-partition problem (2012). https://docs.google.com/viewer?a=v &pid=sites &srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1. Unpublished manuscript. See also https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf – reference: Chandrasekaran, K., Chekuri, C.: Min–max partitioning of hypergraphs and symmetric submodular functions. In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’21, pp. 1026–1038. Society for Industrial and Applied Mathematics, USA (2021) – reference: Lee, Y.T., Sidford, A., Wong, S.C.W.: A faster cutting plane method and its implications for combinatorial and convex optimization. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 1049–1065 (2015). https://doi.org/10.1109/FOCS.2015.68 – reference: Beideman, C., Chandrasekaran, K., Wang, W.: Deterministic enumeration of all minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut-sets in hypergraphs for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2208–2228. Society for Industrial and Applied Mathematics, Philadelphia (2022). https://doi.org/10.1137/1.9781611977073 – reference: ChekuriCQuanrudKXuCLP Relaxation and tree packing for minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cutSIAM J. Discrete Math.202034213341353411166810.1137/19M1299359 – reference: Gupta, A., Lee, E., Li, J.: Faster exact and approximate algorithms for k-cut. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 113–123 (2018). https://doi.org/10.1109/FOCS.2018.00020 – reference: NagamochiHKatayamaSIbarakiTA faster algorithm for computing minimum 5-way and 6-way cuts in graphsJ. Comb. Optim.200042151169177282310.1023/A:1009804919645 – reference: GoldschmidtOHochbaumDSA polynomial algorithm for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut problem for fixed k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}Math. Oper. Res.1994192437129000810.1287/moor.19.1.24 – reference: YehLPWangBFSuHHEfficient algorithms for the problems of enumerating cuts by non-decreasing weightsAlgorithmica2010563297312258106810.1007/s00453-009-9284-5 – reference: GuptaAHarrisDGLeeELiJOptimal bounds for the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut problemJ. ACM202110.1145/3478018 – reference: Fox, K., Panigrahi, D., Zhang, F.: Minimum cut and minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut in hypergraphs via branching contractions. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 881–896. SIAM (2019) – reference: ZhaoLNagamochiHIbarakiTGreedy splitting algorithms for approximating multiway partition problemsMath. Program.20051021167183211548510.1007/s10107-004-0510-2 – reference: ZhaoLNagamochiHIbarakiTOn generalized greedy splitting algorithms for multiway partition problemsDiscrete Appl. Math.20041431130143208787510.1016/j.dam.2003.10.007 – reference: OkumotoKFukunagaTNagamochiHDivide-and-conquer algorithms for partitioning hypergraphs and submodular systemsAlgorithmica201010.1007/s00453-010-9483-0 – reference: Thorup, M.: Minimum k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-way cuts via deterministic greedy tree packing. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 159–165 (2008). https://doi.org/10.1145/1374376.1374402 – reference: XiaoMHongSHNagamochiHFukunagaTAn improved divide-and-conquer algorithm for finding all minimum k-way cutsAlgorithms and Computation2008BerlinSpringer20821910.1007/978-3-540-92182-0_21 – reference: QueyranneMMinimizing symmetric submodular functionsMath. Program.1998821312162769310.1007/BF01585863 – reference: NagamochiHIbarakiTComputing edge-connectivity in multigraphs and capacitated graphsSIAM J. Discrete Math.1992515466114689610.1137/0405004 – reference: BeidemanCChandrasekaranKXuCMulticriteria cuts and size-constrained k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cuts in hypergraphsMath. Program.202110.1007/s10107-021-01732-0 – reference: ChandrasekaranKXuCYuXHypergraph k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-cut in randomized polynomial timeMath. Program.20211861–285113421447710.1007/s10107-019-01443-7 – reference: XiaoMFinding minimum 3-way cuts in hypergraphsInf. Process. Lett.201011014–15554558267497010.1016/j.ipl.2010.05.003 – reference: NagamochiHAlgorithms for the minimum partitioning problems in graphsElectron. Commun. Jpn.20079010637810.1002/ecjc.20341Part III Fundamental Electronic Science – volume: 110 start-page: 554 issue: 14–15 year: 2010 ident: 2029_CR32 publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2010.05.003 – volume: 19 start-page: 24 year: 1994 ident: 2029_CR13 publication-title: Math. Oper. Res. doi: 10.1287/moor.19.1.24 – volume: 4 start-page: 151 issue: 2 year: 2000 ident: 2029_CR25 publication-title: J. Comb. Optim. doi: 10.1023/A:1009804919645 – ident: 2029_CR4 doi: 10.1137/1.9781611976465.64 – ident: 2029_CR20 doi: 10.1109/FOCS.2015.68 – ident: 2029_CR30 doi: 10.1007/3-540-55719-9_88 – ident: 2029_CR17 doi: 10.1137/1.9781611977554.ch64 – volume: 5 start-page: 54 issue: 1 year: 1992 ident: 2029_CR23 publication-title: SIAM J. Discrete Math. doi: 10.1137/0405004 – start-page: 55 volume-title: Algorithms and Computation year: 2009 ident: 2029_CR26 doi: 10.1007/978-3-642-10631-6_8 – ident: 2029_CR1 doi: 10.4230/LIPIcs.ICALP.2022.16 – volume: 186 start-page: 85 issue: 1–2 year: 2021 ident: 2029_CR6 publication-title: Math. Program. doi: 10.1007/s10107-019-01443-7 – year: 2021 ident: 2029_CR15 publication-title: J. ACM doi: 10.1145/3478018 – volume: 143 start-page: 130 issue: 1 year: 2004 ident: 2029_CR34 publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2003.10.007 – year: 2010 ident: 2029_CR27 publication-title: Algorithmica doi: 10.1007/s00453-010-9483-0 – ident: 2029_CR10 doi: 10.1137/1.9781611975482.54 – ident: 2029_CR14 – ident: 2029_CR7 doi: 10.1109/FOCS.2011.34 – volume: 34 start-page: 1334 issue: 2 year: 2020 ident: 2029_CR8 publication-title: SIAM J. Discrete Math. doi: 10.1137/19M1299359 – volume: 30 start-page: 1 issue: 1 year: 2000 ident: 2029_CR21 publication-title: Integr. VLSI J. doi: 10.1016/S0167-9260(00)00008-0 – volume: 88 start-page: 507 issue: 3 year: 2000 ident: 2029_CR24 publication-title: Math. Program. doi: 10.1007/PL00011383 – ident: 2029_CR16 doi: 10.1109/FOCS.2018.00020 – volume: 90 start-page: 63 issue: 10 year: 2007 ident: 2029_CR22 publication-title: Electron. Commun. Jpn. doi: 10.1002/ecjc.20341 – volume: 102 start-page: 167 issue: 1 year: 2005 ident: 2029_CR35 publication-title: Math. Program. doi: 10.1007/s10107-004-0510-2 – volume: 10 start-page: 371 issue: 4 year: 2013 ident: 2029_CR11 publication-title: Discrete Optim. doi: 10.1016/j.disopt.2013.10.002 – volume: 3 start-page: 183 issue: 2/3 year: 1999 ident: 2029_CR12 publication-title: J. Comb. Optim. doi: 10.1023/A:1009833626004 – year: 2021 ident: 2029_CR3 publication-title: Math. Program. doi: 10.1007/s10107-021-01732-0 – volume: 47 start-page: 2118 issue: 6 year: 2018 ident: 2029_CR9 publication-title: SIAM J. Comput. doi: 10.1137/18M1163865 – ident: 2029_CR2 doi: 10.1137/1.9781611977073 – start-page: 208 volume-title: Algorithms and Computation year: 2008 ident: 2029_CR31 doi: 10.1007/978-3-540-92182-0_21 – volume: 56 start-page: 297 issue: 3 year: 2010 ident: 2029_CR33 publication-title: Algorithmica doi: 10.1007/s00453-009-9284-5 – ident: 2029_CR29 doi: 10.1145/1374376.1374402 – volume: 36 start-page: 1329 issue: 5 year: 2006 ident: 2029_CR18 publication-title: SIAM J. Comput. doi: 10.1137/050631616 – volume: 82 start-page: 3 issue: 1 year: 1998 ident: 2029_CR28 publication-title: Math. Program. doi: 10.1007/BF01585863 – year: 2022 ident: 2029_CR5 publication-title: Math. Oper. Res. doi: 10.1287/moor.2021.1250 – ident: 2029_CR19 |
| SSID | ssj0001388 |
| Score | 2.4217703 |
| Snippet | In this paper, we study the minimum
k
-partition problem of submodular functions, i.e., given a finite set
V
and a submodular function
f
:
2
V
→
R
, computing... In this paper, we study the minimum k-partition problem of submodular functions, i.e., given a finite set V and a submodular function [Formula omitted],... |
| SourceID | gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 717 |
| SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| Title | A polynomial time algorithm for finding a minimum 4-partition of a submodular function |
| URI | https://link.springer.com/article/10.1007/s10107-023-02029-0 |
| Volume | 207 |
| WOSCitedRecordID | wos001114584700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yfdAHv8X5RR4EH7TQpG2SPg5x-OIQ1LG3kjTtHGztWDvB_967rp0biKDQh5a0abm75O56d78j5FpbngTWcse1Ujh-7FpHCSYc7hkNa4-LVKRVswnZ66nBIHyui8KKJtu9CUlWO_VKsRvD32oc446YtAGO-maAaDPoo7_0l_sv85RqGrWidVCXyvw8x5o6ajbl9ZBopWm6e__7xn2yW1uWtLMQhQOykWSHZGcFbxCunpYgrcUR6XfoNB9_Yl0yPIdN5qkeD_PZqHyfULBlaRXPzoZUUwQgmcwn1HemKGrITJqnMFCAOs0tprJS1JA4cEzeug-v949O3WbBiblipRO6OnaNtC4cVkrlezy2HHGXwfiRHvgUTCRhypgGXyUNhUqsUQYMj0CHRmvmnZBWlmfJKaGx8jnXoW9icLOkDI3RDOYJuRRglgSiTW4bakfTBZpG9I2bjLSLgHZRRbvIbZMbZEiES62c6VjXFQPwLgStijqqitsyztvkruFHVK_B4peJz_52-znZhhN_kVl2QVrlbJ5ckq34oxwVs6tK-L4A9jvRag |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-igvrgtzg_8yD4oIUm7ZL0cYiiuA3BOXwLadPOwbaOtRP8773rWt1ABIW-tGnTcnfJ3fXufkfIhbE8rlvLHddK4fiRax0lmHC4FxpYe1wkIimaTch2W72-Bk9lUVhWZbtXIclip54rdmP4W41j3BGTNsBRX_GxzQ766M_dr_2XeUpVjVrROihLZX6eY0EdVZvyYki00DR3W__7xm2yWVqWtDEThR2yFI92ycYc3iCctb5AWrM90m3QcTr4wLpkeA6bzFMz6KWTfv42pGDL0iKePepRQxGAZDgdUt8Zo6ghM2mawEAG6jS1mMpKUUPiwD55ubvt3Nw7ZZsFJ-KK5U7gmsgNpXXhsFIq3-OR5Yi7DMaP9MCnYCIOEsYM-CpJIFRsQxWC4VE3QWgM8w7I8igdxYeERsrn3AR-GIGbJWUQhobBPAGXAsySuqiRq4raejxD09DfuMlIOw200wXttFsjl8gQjUstn5jIlBUD8C4ErdINVcRtGec1cl3xQ5drMPtl4qO_3X5O1u47raZuPrQfj8k6XPRnWWYnZDmfTONTshq95_1sclYI4ifQeNRO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfTBb3F-5kHwQcuatEvSx6EORR3ix9hbSJt2Cq4dWxX8773rWp0gggh9adIm5S7J3fXufkfIobE8blrLHddK4fiRax0lmHC4FxrYe1wkIimKTchOR_V6we1UFn8R7V65JCc5DYjSlOaNoU0aU4lvDH-xcfRBYgAHGO2zPjRhUNfdfffzLGaeUlXRVtQUyrSZn8f4JpqqA_q7e7SQOu3l_3_vClkqNU7amiyRVTITp2tkcQqHEO5uPsFbx-uk26LD7OUd85XhPSw-T81LPxs9508DCjouLfzcaZ8aisAkg9cB9Z0hLkFkMs0S6BiDmM0shrhSlJzYsUEe2-cPpxdOWX7BibhiuRO4JnJDaV24rJTK93hkOeIxg1IkPbA1mIiDhDEDNkwSCBXbUIWgkDRNEBrDvE1SS7M03iI0Uj7nJvDDCMwvKYMwNAzGCbgUoK40RZ0cV5TXwwnKhv7CU0baaaCdLmin3To5QuZo3IL5yESmzCSAuRDMSrdU4c9lnNfJScUbXe7N8S8Db__t8QMyf3vW1teXnasdsgBt_iT4bJfU8tFrvEfmorf8eTzaL9bkBym_3TI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+polynomial+time+algorithm+for+finding+a+minimum+4-partition+of+a+submodular+function&rft.jtitle=Mathematical+programming&rft.au=Hirayama%2C+Tsuyoshi&rft.au=Liu%2C+Yuhao&rft.au=Makino%2C+Kazuhisa&rft.au=Shi%2C+Ke&rft.date=2024-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=207&rft.issue=1-2&rft.spage=717&rft.epage=732&rft_id=info:doi/10.1007%2Fs10107-023-02029-0&rft.externalDocID=10_1007_s10107_023_02029_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |