Recursive definitions and fixed-points on well-founded structures

An expression such as ∀ x ( P ( x ) ↔ ϕ ( P ) ) , where P occurs in ϕ ( P ) , does not always define P . When such an expression implicitly defines P , in the sense of Beth (1953) [1] and Padoa (1900) [13], we call it a recursive definition. In the Least Fixed-Point Logic (LFP), we have theories whe...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 412; no. 37; pp. 4893 - 4904
Main Authors: Ferreira, Francicleber Martins, Martins, Ana Teresa
Format: Journal Article
Language:English
Published: Elsevier B.V 26.08.2011
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An expression such as ∀ x ( P ( x ) ↔ ϕ ( P ) ) , where P occurs in ϕ ( P ) , does not always define P . When such an expression implicitly defines P , in the sense of Beth (1953) [1] and Padoa (1900) [13], we call it a recursive definition. In the Least Fixed-Point Logic (LFP), we have theories where interesting relations can be recursively defined (Ebbinghaus, 1995 [4], Libkin, 2004 [12]). We will show that for some sorts of recursive definitions there are explicit definitions on sufficiently strong theories of LFP. It is known that LFP, restricted to finite models, does not have Beth’s Definability Theorem (Gurevich, 1996 [7], Hodkinson, 1993 [8], Dawar, 1995 [3]). Beth’s Definability Theorem states that, if a relation is implicitly defined, then there is an explicit definition for it. We will also give a proof that Beth’s Definability Theorem fails for LFP without this finite model restriction. We will investigate fragments of LFP for which Beth’s Definability Theorem holds, specifically theories whose models are well-founded structures.
AbstractList An expression such as ∀ x ( P ( x ) ↔ ϕ ( P ) ) , where P occurs in ϕ ( P ) , does not always define P . When such an expression implicitly defines P , in the sense of Beth (1953) [1] and Padoa (1900) [13], we call it a recursive definition. In the Least Fixed-Point Logic (LFP), we have theories where interesting relations can be recursively defined (Ebbinghaus, 1995 [4], Libkin, 2004 [12]). We will show that for some sorts of recursive definitions there are explicit definitions on sufficiently strong theories of LFP. It is known that LFP, restricted to finite models, does not have Beth’s Definability Theorem (Gurevich, 1996 [7], Hodkinson, 1993 [8], Dawar, 1995 [3]). Beth’s Definability Theorem states that, if a relation is implicitly defined, then there is an explicit definition for it. We will also give a proof that Beth’s Definability Theorem fails for LFP without this finite model restriction. We will investigate fragments of LFP for which Beth’s Definability Theorem holds, specifically theories whose models are well-founded structures.
An expression such as ax ( P ( x ) a" phi ( P ) ) , where P occurs in phi ( P ) , does not always define P . When such an expression implicitly defines P , in the sense of Beth (1953) and Padoa (1900) , we call it a recursive definition. In the Least Fixed-Point Logic (LFP), we have theories where interesting relations can be recursively defined (Ebbinghaus, 1995 , Libkin, 2004 ). We will show that for some sorts of recursive definitions there are explicit definitions on sufficiently strong theories of LFP. It is known that LFP, restricted to finite models, does not have Beth's Definability Theorem (Gurevich, 1996 , Hodkinson, 1993 , Dawar, 1995 ). Beth's Definability Theorem states that, if a relation is implicitly defined, then there is an explicit definition for it. We will also give a proof that Beth's Definability Theorem fails for LFP without this finite model restriction. We will investigate fragments of LFP for which Beth's Definability Theorem holds, specifically theories whose models are well-founded structures.
Author Martins, Ana Teresa
Ferreira, Francicleber Martins
Author_xml – sequence: 1
  givenname: Francicleber Martins
  surname: Ferreira
  fullname: Ferreira, Francicleber Martins
  email: fran@lia.ufc.br, francicleber.ferreira@gmail.com
– sequence: 2
  givenname: Ana Teresa
  surname: Martins
  fullname: Martins, Ana Teresa
  email: ana@lia.ufc.br
BookMark eNp9kEtLAzEUhYMo2FZ_gLvZuZoxyTyS4KoUX1AQRNchk9xASpvUJFP135tS114O3M35LueeOTr3wQNCNwQ3BJPhbtNknRqKCWlwEeVnaEY4EzWlojtHM9zirm4F6y_RPKUNLtOzYYaWb6CnmNwBKgPWeZdd8KlS3lTWfYOp98H5nKrgqy_YbmsbJm_AVCnHSecpQrpCF1ZtE1z_7QX6eHx4Xz3X69enl9VyXWvKSa456UfV825QpsRSne2MIWAH07dqGIXg_SgYtK2lLQzE4lF3QNnAOHTMjqNoF-j2dHcfw-cEKcudS7pkUh7ClKQgQmDeMVyc5OTUMaQUwcp9dDsVfyTB8tiW3MjSljy2JXER5YW5PzFQXjg4iDJpB16DcRF0lia4f-hfH9d1Bw
Cites_doi 10.1109/LICS.2002.1029848
10.1016/j.entcs.2009.07.046
10.1016/S1385-7258(53)50042-3
10.2140/pjm.1955.5.285
10.2307/2275675
10.2178/bsl/1182353853
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.tcs.2011.01.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 4904
ExternalDocumentID 10_1016_j_tcs_2011_01_028
S0304397511000727
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c281t-815ba5846ad879a4f4dd1ef6d53a6b9985b97e33f23e61f0bc4e27678e47fbb93
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294145700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Thu Oct 02 11:36:41 EDT 2025
Sat Nov 29 05:15:05 EST 2025
Fri Feb 23 02:16:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords Beth’s definability theorem
Recursive definitions
Fixed-points
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-815ba5846ad879a4f4dd1ef6d53a6b9985b97e33f23e61f0bc4e27678e47fbb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2011.01.028
PQID 919908470
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_919908470
crossref_primary_10_1016_j_tcs_2011_01_028
elsevier_sciencedirect_doi_10_1016_j_tcs_2011_01_028
PublicationCentury 2000
PublicationDate 2011-08-26
PublicationDateYYYYMMDD 2011-08-26
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-26
  day: 26
PublicationDecade 2010
PublicationTitle Theoretical computer science
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dawar, Gurevich (br000010) 2002; 8
Dawar, Hella, Kolaitis (br000015) 1995
S. Kreutzer, Pure and applied fixed-point logics, Ph.D. Thesis, von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2002.
Tarski (br000070) 1955; 5
Kolaitis (br000045) 1990
Gurevich, Shelah (br000035) 1996; 61
Libkin (br000060) 2004
Hodkinson (br000040) 1993; 51
Ebbinghaus, Flum, Thomas (br000025) 1994
S. Kreutzer, Expressive equivalence of least and inflationary fixed-point logic, in: Proceedings of 17th IEEE Symp. on Logic in Computer Science, LICS’02, 2002, pp. 403–410.
Ebbinghaus, Flum (br000020) 1995
Beth (br000005) 1953; 15
Ferreira, Martins (br000030) 2009; 247
Padoa (br000065) 1900; vol. 3
Ebbinghaus (10.1016/j.tcs.2011.01.028_br000025) 1994
Libkin (10.1016/j.tcs.2011.01.028_br000060) 2004
10.1016/j.tcs.2011.01.028_br000055
Tarski (10.1016/j.tcs.2011.01.028_br000070) 1955; 5
Gurevich (10.1016/j.tcs.2011.01.028_br000035) 1996; 61
Hodkinson (10.1016/j.tcs.2011.01.028_br000040) 1993; 51
Dawar (10.1016/j.tcs.2011.01.028_br000010) 2002; 8
Ferreira (10.1016/j.tcs.2011.01.028_br000030) 2009; 247
Ebbinghaus (10.1016/j.tcs.2011.01.028_br000020) 1995
Dawar (10.1016/j.tcs.2011.01.028_br000015) 1995
Padoa (10.1016/j.tcs.2011.01.028_br000065) 1900; vol. 3
Beth (10.1016/j.tcs.2011.01.028_br000005) 1953; 15
Kolaitis (10.1016/j.tcs.2011.01.028_br000045) 1990
10.1016/j.tcs.2011.01.028_br000050
References_xml – volume: 15
  start-page: 330
  year: 1953
  end-page: 339
  ident: br000005
  article-title: On Padoa’s method in the theory of definitions
  publication-title: Indagtiones Mathematicae
– year: 1995
  ident: br000020
  article-title: Finite Model Theory
– start-page: 624
  year: 1995
  end-page: 635
  ident: br000015
  article-title: Implicit definability and infinitary logic in finite model theory
  publication-title: Proceedings 22nd Int’l Coll. on Automata, Languages, and Programming, ICALP’95, Szeged, Hungary, 10–14 July 1995, Vol. 944
– volume: 8
  start-page: 65
  year: 2002
  end-page: 88
  ident: br000010
  article-title: Fixed-point logics
  publication-title: Bulletin of Symbolic Logic
– reference: S. Kreutzer, Pure and applied fixed-point logics, Ph.D. Thesis, von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2002.
– volume: 5
  start-page: 285
  year: 1955
  end-page: 309
  ident: br000070
  article-title: A lattice-theoretical fixpoint theorem and its applications
  publication-title: Pacific Journal of Mathematics
– year: 1994
  ident: br000025
  article-title: Mathematical Logic
– reference: S. Kreutzer, Expressive equivalence of least and inflationary fixed-point logic, in: Proceedings of 17th IEEE Symp. on Logic in Computer Science, LICS’02, 2002, pp. 403–410.
– volume: 61
  start-page: 549
  year: 1996
  end-page: 562
  ident: br000035
  article-title: On finite rigid structures
  publication-title: Journal of Symbolic Logic
– volume: 247
  start-page: 19
  year: 2009
  end-page: 37
  ident: br000030
  article-title: Recursive definitions and fixed-points
  publication-title: Electronic Notes in Theoretical Computer Science
– volume: 51
  start-page: 111
  year: 1993
  end-page: 140
  ident: br000040
  article-title: Finite variable logics
  publication-title: Bulletin of the EATCS
– start-page: 168
  year: 1990
  end-page: 180
  ident: br000045
  article-title: Implicit definability on finite structures and unambiguous computations (preliminary report)
  publication-title: Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science
– year: 2004
  ident: br000060
  article-title: Elements of Finite Model Theory
– volume: vol. 3
  start-page: 118
  year: 1900
  end-page: 123
  ident: br000065
  article-title: Essai d’une théorie algébrique des nombres entiers, precedé d’une introduction logique a une théorie deductive quelconque
  publication-title: Bibliothèque Du Congrès International de Philosophie
– ident: 10.1016/j.tcs.2011.01.028_br000050
  doi: 10.1109/LICS.2002.1029848
– start-page: 168
  year: 1990
  ident: 10.1016/j.tcs.2011.01.028_br000045
  article-title: Implicit definability on finite structures and unambiguous computations (preliminary report)
– volume: 51
  start-page: 111
  year: 1993
  ident: 10.1016/j.tcs.2011.01.028_br000040
  article-title: Finite variable logics
  publication-title: Bulletin of the EATCS
– year: 1995
  ident: 10.1016/j.tcs.2011.01.028_br000020
– volume: 247
  start-page: 19
  year: 2009
  ident: 10.1016/j.tcs.2011.01.028_br000030
  article-title: Recursive definitions and fixed-points
  publication-title: Electronic Notes in Theoretical Computer Science
  doi: 10.1016/j.entcs.2009.07.046
– year: 2004
  ident: 10.1016/j.tcs.2011.01.028_br000060
– volume: 15
  start-page: 330
  year: 1953
  ident: 10.1016/j.tcs.2011.01.028_br000005
  article-title: On Padoa’s method in the theory of definitions
  publication-title: Indagtiones Mathematicae
  doi: 10.1016/S1385-7258(53)50042-3
– start-page: 624
  year: 1995
  ident: 10.1016/j.tcs.2011.01.028_br000015
  article-title: Implicit definability and infinitary logic in finite model theory
– year: 1994
  ident: 10.1016/j.tcs.2011.01.028_br000025
– volume: 5
  start-page: 285
  year: 1955
  ident: 10.1016/j.tcs.2011.01.028_br000070
  article-title: A lattice-theoretical fixpoint theorem and its applications
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1955.5.285
– volume: 61
  start-page: 549
  year: 1996
  ident: 10.1016/j.tcs.2011.01.028_br000035
  article-title: On finite rigid structures
  publication-title: Journal of Symbolic Logic
  doi: 10.2307/2275675
– ident: 10.1016/j.tcs.2011.01.028_br000055
– volume: vol. 3
  start-page: 118
  year: 1900
  ident: 10.1016/j.tcs.2011.01.028_br000065
  article-title: Essai d’une théorie algébrique des nombres entiers, precedé d’une introduction logique a une théorie deductive quelconque
– volume: 8
  start-page: 65
  year: 2002
  ident: 10.1016/j.tcs.2011.01.028_br000010
  article-title: Fixed-point logics
  publication-title: Bulletin of Symbolic Logic
  doi: 10.2178/bsl/1182353853
SSID ssj0000576
Score 1.9484953
Snippet An expression such as ∀ x ( P ( x ) ↔ ϕ ( P ) ) , where P occurs in ϕ ( P ) , does not always define P . When such an expression implicitly defines P , in the...
An expression such as ax ( P ( x ) a" phi ( P ) ) , where P occurs in phi ( P ) , does not always define P . When such an expression implicitly defines P , in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 4893
SubjectTerms Beth’s definability theorem
Computer simulation
Constrictions
Fixed points (mathematics)
Fixed-points
Fragments
Logic
Mathematical analysis
Mathematical models
Recursive
Recursive definitions
Theorems
Title Recursive definitions and fixed-points on well-founded structures
URI https://dx.doi.org/10.1016/j.tcs.2011.01.028
https://www.proquest.com/docview/919908470
Volume 412
WOSCitedRecordID wos000294145700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywEOPBYQy0s-IA6sgvJwavtYoa4ALQWhrNSbZce2lB7c0nRX_fk7jp00WsTrgFRFTZSXZr6MxzPj-RB6wy0tVWFlor0JJIWGbw6gkShqswL8j9qotCOboIsFWy75t8jZ2nZ0AtQ5tt_zzX9VNRwDZfuls_-g7uGmcAD-g9JhC2qH7V8p_ruPoHdF6drYxoWSrC5HYJu90clm3biQJPBxu8R6XiXwOkMj2cttrClcDSga1jnWkQDiNI6ao1D01jQdX1Hk6YA3UnBeaFEwOO1xN5RRytPKwLPkOOoQwqhhaXu_2spnVHhgPektKcnyEWRCM5doGH2Pm9EgS3ggHf7JgIdYwur9rm5jf1XfU5UdRqs-Q7_4Ks4uzs9FNV9Wbzc_Es8j5vPtkVTlNjrKacnZBB3NPs2Xnw-jc0lD_jq-f5_p7mr-bjz1V77KjVG7c0Wqh-h-nEPgWdD9I3TLuGP0oOfnwNFcH6N7X4aevO1jNBuAgUfAwAAMPAYGXjs8BgY-AOMJujibVx8-JpFAI6lzlu0SlpVKeg9Taka5JJZonRk71WUhpwom2qXi1BSFzQszzWyqamJyCu6LIdQqxYunaOLWzjxDmMFMzFjCck0USeHaegq3Tgk10ua8tCfoXS8qsQl9UkRfQLgSIFfh5SpS-OXsBJFemCJCNjhwAmDwu8twL3gBRtBntqQz68tW8AycKvCz0ud_PuUFunsA9Es0ASGaV-hOfbVr2u3rCJdrOrqBQA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+definitions+and+fixed-points+on+well-founded+structures&rft.jtitle=Theoretical+computer+science&rft.au=Ferreira%2C+Francicleber+Martins&rft.au=Martins%2C+Ana+Teresa&rft.date=2011-08-26&rft.issn=0304-3975&rft.volume=412&rft.issue=37&rft.spage=4893&rft.epage=4904&rft_id=info:doi/10.1016%2Fj.tcs.2011.01.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon