Effective Dimension Extraction Mechanism: A novel mechanism for meta-heuristic algorithms in solving complex high-dimensional problems

•Proposing a mechanism to improve heuristics by extracting effective dimensions.•Using manifold learning to filter redundant dimensions in particles.•Mapping particles to high-dimensional space while preserving distance relations.•Based on the two mappings, Effective Dimension Extraction Mechanism i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 285; s. 127733
Hlavní autori: Su, Fang, Song, Jiahao, He, Rui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2025
Predmet:
ISSN:0957-4174
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Proposing a mechanism to improve heuristics by extracting effective dimensions.•Using manifold learning to filter redundant dimensions in particles.•Mapping particles to high-dimensional space while preserving distance relations.•Based on the two mappings, Effective Dimension Extraction Mechanism is designed.•EDEM enhances DE and PSO, demonstrating its value in meta-heuristic optimization. In recent years, meta-heuristic optimization algorithms have been increasingly studied due to their wide applicability in practical applications. However, the interference of redundant dimensions in complex high-dimensional problems often leads to performance degradation. To solve this problem, a new Effective Dimension Extraction Mechanism (EDEM) is proposed, which extracts effective dimensional information during the optimization using a Manifold Learning-based Mapping from high-dimensional to low-dimensional space and a Feature Mapping from low-dimensional to the original high-dimensional space, thereby providing direct guidance information for meta-heuristic optimization algorithms to correct the evolution direction of particle populations. As an independent mechanism, EDEM can be easily applied to multiple meta-heuristic optimization algorithms, providing a new way for these algorithms to solve the problems. A series of experiments are conducted to validate the effectiveness and advancement of EDEM. First, experiments on fifteen complex high-dimensional problems demonstrate its effectiveness in improving DE, PSO and ASO performance. Next, the comparative evaluation experiments with the state-of-art PSO and DE variant algorithms are performed, and the results confirm that EDEM is an effective mechanism, which provides a promising solution for the optimization on complex high-dimensional problems. Finally, EDEM is applied to the Capacitated Vehicle Routing Problem, and the experimental results show that the improved meta-heuristic optimization algorithm of EDEM can solve this practical problem well, which shows the practical ability of this new mechanism.
AbstractList •Proposing a mechanism to improve heuristics by extracting effective dimensions.•Using manifold learning to filter redundant dimensions in particles.•Mapping particles to high-dimensional space while preserving distance relations.•Based on the two mappings, Effective Dimension Extraction Mechanism is designed.•EDEM enhances DE and PSO, demonstrating its value in meta-heuristic optimization. In recent years, meta-heuristic optimization algorithms have been increasingly studied due to their wide applicability in practical applications. However, the interference of redundant dimensions in complex high-dimensional problems often leads to performance degradation. To solve this problem, a new Effective Dimension Extraction Mechanism (EDEM) is proposed, which extracts effective dimensional information during the optimization using a Manifold Learning-based Mapping from high-dimensional to low-dimensional space and a Feature Mapping from low-dimensional to the original high-dimensional space, thereby providing direct guidance information for meta-heuristic optimization algorithms to correct the evolution direction of particle populations. As an independent mechanism, EDEM can be easily applied to multiple meta-heuristic optimization algorithms, providing a new way for these algorithms to solve the problems. A series of experiments are conducted to validate the effectiveness and advancement of EDEM. First, experiments on fifteen complex high-dimensional problems demonstrate its effectiveness in improving DE, PSO and ASO performance. Next, the comparative evaluation experiments with the state-of-art PSO and DE variant algorithms are performed, and the results confirm that EDEM is an effective mechanism, which provides a promising solution for the optimization on complex high-dimensional problems. Finally, EDEM is applied to the Capacitated Vehicle Routing Problem, and the experimental results show that the improved meta-heuristic optimization algorithm of EDEM can solve this practical problem well, which shows the practical ability of this new mechanism.
ArticleNumber 127733
Author He, Rui
Song, Jiahao
Su, Fang
Author_xml – sequence: 1
  givenname: Fang
  surname: Su
  fullname: Su, Fang
  email: sufang@bupt.edu.cn
– sequence: 2
  givenname: Jiahao
  surname: Song
  fullname: Song, Jiahao
  email: songjh@bupt.edu.cn
– sequence: 3
  givenname: Rui
  surname: He
  fullname: He, Rui
  email: bupt-hr@bupt.cn
BookMark eNp9kEtOwzAQhr0oEm3hAqx8gQTbeThFbKpSHlIRG1hbjj1pXDl2ZYdQLsC5SVW6ZTUzv_TNjL4ZmjjvAKEbSlJKaHm7SyF-yZQRVqSUcZ5lEzQli4InOeX5JZrFuCOEckL4FP2smwZUbwbAD6YDF413eH3ogxzDsX0F1UpnYneHl9j5ASzuzhFufBinXiYtfAYTe6OwtFsfTN92ERuHo7eDcVusfLe3cMCt2baJPt-RFu-Dry108QpdNNJGuP6rc_TxuH5fPSebt6eX1XKTKFbRPikV5ywvKt2UixpqqSvOCiWZykuqmAZdsQWplS4UZ3VVEJaDBlpoxnRWKp1nc8ROe1XwMQZoxD6YToZvQYk42hM7cbQnjvbEyd4I3Z8gGD8bDAQRlQGnQJswuhPam__wX57_gLQ
Cites_doi 10.1038/scientificamerican0792-66
10.1016/j.ejor.2016.08.012
10.1016/j.ins.2008.02.017
10.1126/science.290.5500.2268
10.1002/pri.66
10.1109/TEVC.2021.3130838
10.1016/j.ins.2009.03.004
10.1016/S0166-218X(01)00351-1
10.1016/j.ins.2019.12.047
10.1016/j.ins.2023.03.086
10.1002/sim.4780040112
10.1109/CEC.2002.1004493
10.1109/TEVC.2021.3130835
10.1109/TNNLS.2021.3068828
10.1109/MCI.2006.329691
10.1016/j.swevo.2018.08.005
10.1109/TEVC.2020.2985672
10.1109/TEVC.2013.2281543
10.1016/j.ins.2014.08.039
10.1287/mnsc.6.1.80
10.1109/34.368147
10.1109/TCYB.2014.2322602
10.1109/TCYB.2019.2933499
10.1109/SMC42975.2020.9283143
10.1016/j.knosys.2018.08.030
10.1023/A:1008202821328
10.1109/TEVC.2017.2743016
10.1016/j.asoc.2019.105744
10.1109/CEC.2008.4631014
10.1109/TPAMI.1979.4766873
10.1126/science.290.5500.2319
10.1126/science.290.5500.2323
10.1093/mnras/225.1.155
10.1016/j.swevo.2023.101322
10.1016/j.amc.2009.03.090
10.1109/TEVC.2022.3201691
10.1109/ICNN.1995.488968
10.1016/j.swevo.2023.101248
10.1002/9780470479216.corpsy0491
10.1109/TCYB.2020.2977956
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.127733
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_127733
S0957417425013557
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ABUFD
ACDAQ
ACGFS
ACHRH
ACLOT
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c281t-6c772458df69bebad8725ca2c461c2ded8290bcd5c72b85024ede15d22d36cd43
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001490662200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:10:38 EST 2025
Sat Nov 15 16:53:14 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Meta-heuristic optimization algorithm
Manifold learning
Capacitated Vehicle Routing Problem
Complex high-dimensional problems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-6c772458df69bebad8725ca2c461c2ded8290bcd5c72b85024ede15d22d36cd43
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_127733
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_127733
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mousavirad, S. J., & Rahnamayan, S. (2020). CenPSO: A Novel Center-based Particle Swarm Optimization Algorithm for Large-scale Optimization.
Tenenbaum, Silva, Langford (b0195) 2000; 290
Cheng, Jin (b0025) 2015; 291
Wang, Zhan, Yu, Lin, Zhang, Gu, Zhang (b0225) 2020; 50
Kachitvichyanukul (b0005) 2007; 2
Fasano, Franceschini (b0050) 1987; 225
Sheldon, Fillyaw, Thompson (b0165) 1996; 1
Tang, Li, Suganthan, Yang, Weise (b0190) 2007; 24
Shi, Teng, Li (b0170) 2005; Vol. 3611
Omidvar, Li, Yao (b0115) 2022; 26
Verveer, Duin (b0210) 1995; 17
Karaboga, Akay (b0065) 2009; 214
Omidvar, Li, Yao (b0110) 2010; 1–8
Rashedi, Nezamabadi-pour, Saryazdi (b0145) 2009; 179
Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance.
Belkin, Niyogi, Sindhwani (b0010) 2006; 7
Wu, Song, Cao, Zhang, Lim (b0230) 2022; 33
,
(1st ed., pp. 1–1). Wiley. https://doi.org/10.1002/9780470479216.corpsy0491.
Potter, Jong (b0135) 1994; Vol. 866
Yang, Tang, Yao (b0245) 2008; 178
Ma, Wu, Suganthan, Song, Luo (b0090) 2023; 77
Storn, Price (b0175) 1997; 11
Omidvar, Li, Yao (b0120) 2022; 26
Yang, Tang, Yao (b0265) 2008; 2008
Sun, Yang, Liu (b0180) 2019; 85
Roweis, Saul (b0150) 2000; 290
Sepesy Maučec, Brest (b0155) 2019; 50
Brest, Maucec, Boskovic (b0020) 2016; 2016
Van der Maaten, Hinton (b0215) 2008; 9
Wang, Zhan, Kwong, Jin, Zhang (b0220) 2021; 51
Yang, Chen, Deng, Li, Gu, Zhang (b0240) 2018; 22
Pettis, Bailey, Jain, Dubes (b0130) 1979; PAMI-1(1)
Cheng, Jin (b0140) 2015; 45
Dantzig, Ramser (b0035) 1959; 6
Takahama, Sakai (b0185) 2012; 2012
Bolufe-Rohler, Chen, Tamayo-Vera (b0015) 2019; 2019
Holland (b0055) 1992; 267
Li, Tang, Omidvar, Yang, Qin, China (b0080) 2013; 7
Uchoa, Pecin, Pessoa, Poggi, Vidal, Subramanian (b0205) 2017; 257
McKight, P. E., & Najab, J. (2010). Kruskal‐Wallis Test. In I. B. Weiner & W. E. Craighead (Eds.)
Perron, L., & Furnon, V. (2019). Or-tools.
Toth, Vigo (b0200) 2002; 123
Zhao, Wang, Zhang (b0260) 2019; 163
Eberhart, Kennedy (b0045) 1995; 4
Zhang, Nie, Yang, Wang, Liu, Jeon, Zhang (b0250) 2023; 633
Dorigo, Birattari, Stutzle (b0040) 2006; 1
Xu, Luo, Lin, Chang, Tang (b0235) 2023; 27
2066–2071. https://doi.org/10.1109/SMC42975.2020.9283143.
Kushida, Hara, Takahama (b0075) 2015; 2015
Seung, Lee (b0160) 2000; 290
Liu, Wang, Fan (b0085) 2020; 24
Cuzick (b0030) 1985; 4
Omidvar, Li, Mei, Yao (b0105) 2014; 18
Giladi, Sintov (b0060) 2020; 517
Zhang, Zheng, Zheng (b0255) 2023; 80
1671–1676. https://doi.org/10.1109/CEC.2002.1004493.
Omidvar (10.1016/j.eswa.2025.127733_b0110) 2010; 1–8
Zhang (10.1016/j.eswa.2025.127733_b0255) 2023; 80
Yang (10.1016/j.eswa.2025.127733_b0240) 2018; 22
10.1016/j.eswa.2025.127733_b0125
Uchoa (10.1016/j.eswa.2025.127733_b0205) 2017; 257
Yang (10.1016/j.eswa.2025.127733_b0245) 2008; 178
Omidvar (10.1016/j.eswa.2025.127733_b0105) 2014; 18
Kachitvichyanukul (10.1016/j.eswa.2025.127733_b0005) 2007; 2
Takahama (10.1016/j.eswa.2025.127733_b0185) 2012; 2012
Fasano (10.1016/j.eswa.2025.127733_b0050) 1987; 225
Wang (10.1016/j.eswa.2025.127733_b0220) 2021; 51
Li (10.1016/j.eswa.2025.127733_b0080) 2013; 7
Belkin (10.1016/j.eswa.2025.127733_b0010) 2006; 7
Sun (10.1016/j.eswa.2025.127733_b0180) 2019; 85
10.1016/j.eswa.2025.127733_b0070
Cheng (10.1016/j.eswa.2025.127733_b0025) 2015; 291
Bolufe-Rohler (10.1016/j.eswa.2025.127733_b0015) 2019; 2019
Ma (10.1016/j.eswa.2025.127733_b0090) 2023; 77
Eberhart (10.1016/j.eswa.2025.127733_b0045) 1995; 4
Karaboga (10.1016/j.eswa.2025.127733_b0065) 2009; 214
Sheldon (10.1016/j.eswa.2025.127733_b0165) 1996; 1
Holland (10.1016/j.eswa.2025.127733_b0055) 1992; 267
Wang (10.1016/j.eswa.2025.127733_b0225) 2020; 50
Wu (10.1016/j.eswa.2025.127733_b0230) 2022; 33
Liu (10.1016/j.eswa.2025.127733_b0085) 2020; 24
Zhao (10.1016/j.eswa.2025.127733_b0260) 2019; 163
Yang (10.1016/j.eswa.2025.127733_b0265) 2008; 2008
Brest (10.1016/j.eswa.2025.127733_b0020) 2016; 2016
Tenenbaum (10.1016/j.eswa.2025.127733_b0195) 2000; 290
Seung (10.1016/j.eswa.2025.127733_b0160) 2000; 290
Kushida (10.1016/j.eswa.2025.127733_b0075) 2015; 2015
Verveer (10.1016/j.eswa.2025.127733_b0210) 1995; 17
Potter (10.1016/j.eswa.2025.127733_b0135) 1994; Vol. 866
Zhang (10.1016/j.eswa.2025.127733_b0250) 2023; 633
Rashedi (10.1016/j.eswa.2025.127733_b0145) 2009; 179
10.1016/j.eswa.2025.127733_b0100
Dantzig (10.1016/j.eswa.2025.127733_b0035) 1959; 6
Giladi (10.1016/j.eswa.2025.127733_b0060) 2020; 517
Xu (10.1016/j.eswa.2025.127733_b0235) 2023; 27
Dorigo (10.1016/j.eswa.2025.127733_b0040) 2006; 1
Storn (10.1016/j.eswa.2025.127733_b0175) 1997; 11
Omidvar (10.1016/j.eswa.2025.127733_b0120) 2022; 26
Toth (10.1016/j.eswa.2025.127733_b0200) 2002; 123
10.1016/j.eswa.2025.127733_b0095
Omidvar (10.1016/j.eswa.2025.127733_b0115) 2022; 26
Pettis (10.1016/j.eswa.2025.127733_b0130) 1979; PAMI-1(1)
Sepesy Maučec (10.1016/j.eswa.2025.127733_b0155) 2019; 50
Van der Maaten (10.1016/j.eswa.2025.127733_b0215) 2008; 9
Cuzick (10.1016/j.eswa.2025.127733_b0030) 1985; 4
Tang (10.1016/j.eswa.2025.127733_b0190) 2007; 24
Cheng (10.1016/j.eswa.2025.127733_b0140) 2015; 45
Shi (10.1016/j.eswa.2025.127733_b0170) 2005; Vol. 3611
Roweis (10.1016/j.eswa.2025.127733_b0150) 2000; 290
References_xml – volume: 290
  start-page: 2268
  year: 2000
  end-page: 2269
  ident: b0160
  article-title: The Manifold Ways of Perception
– volume: 77
  year: 2023
  ident: b0090
  article-title: Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms
– volume: 123
  start-page: 487
  year: 2002
  end-page: 512
  ident: b0200
  article-title: Models, relaxations and exact approaches for the capacitated vehicle routing problem
– volume: 2019
  start-page: 1228
  year: 2019
  end-page: 1235
  ident: b0015
  article-title: An Analysis of Minimum Population Search on Large Scale Global Optimization
– volume: PAMI-1(1)
  start-page: 25
  year: 1979
  end-page: 37
  ident: b0130
  article-title: An Intrinsic Dimensionality Estimator from Near-Neighbor Information
– volume: 17
  start-page: 81
  year: 1995
  end-page: 86
  ident: b0210
  article-title: An evaluation of intrinsic dimensionality estimators
– volume: 225
  start-page: 155
  year: 1987
  end-page: 170
  ident: b0050
  article-title: A multidimensional version of the Kolmogorov–Smirnov test
– volume: 24
  start-page: 1
  year: 2007
  end-page: 18
  ident: b0190
  article-title: Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: b0065
  article-title: A comparative study of Artificial Bee Colony algorithm
– volume: Vol. 866
  start-page: 249
  year: 1994
  end-page: 257
  ident: b0135
  article-title: A cooperative coevolutionary approach to function optimization
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0045
  article-title: Particle swarm optimization
– volume: 85
  year: 2019
  ident: b0180
  article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0145
  article-title: GSA: A Gravitational Search Algorithm
– volume: 2015
  start-page: 353
  year: 2015
  end-page: 360
  ident: b0075
  article-title: Rank-based differential evolution with multiple mutation strategies for large scale global optimization
– volume: 33
  start-page: 5057
  year: 2022
  end-page: 5069
  ident: b0230
  article-title: Learning Improvement Heuristics for Solving Routing Problems
– volume: 178
  start-page: 2985
  year: 2008
  end-page: 2999
  ident: b0245
  article-title: Large scale evolutionary optimization using cooperative coevolution
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: b0195
  article-title: A Global Geometric Framework for Nonlinear Dimensionality Reduction
– volume: 257
  start-page: 845
  year: 2017
  end-page: 858
  ident: b0205
  article-title: New benchmark instances for the Capacitated Vehicle Routing Problem
– volume: 45
  start-page: 191
  year: 2015
  end-page: 204
  ident: b0140
  article-title: A Competitive Swarm Optimizer for Large Scale Optimization
– reference: Mousavirad, S. J., & Rahnamayan, S. (2020). CenPSO: A Novel Center-based Particle Swarm Optimization Algorithm for Large-scale Optimization.
– volume: 6
  start-page: 80
  year: 1959
  end-page: 91
  ident: b0035
  article-title: The Truck Dispatching Problem
– reference: Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance.
– reference: McKight, P. E., & Najab, J. (2010). Kruskal‐Wallis Test. In I. B. Weiner & W. E. Craighead (Eds.),
– volume: 50
  year: 2019
  ident: b0155
  article-title: A review of the recent use of Differential Evolution for Large-Scale Global Optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite
– volume: 1
  start-page: 221
  year: 1996
  end-page: 228
  ident: b0165
  article-title: The use and interpretation of the Friedman test in the analysis of ordinal‐scale data in repeated measures designs
– volume: 290
  start-page: 2323
  year: 2000
  end-page: 2326
  ident: b0150
  article-title: Nonlinear Dimensionality Reduction by Locally Linear Embedding
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 8
  ident: b0185
  article-title: Large scale optimization by differential evolution with landscape modality detection and a diversity archive
– volume: 27
  start-page: 1355
  year: 2023
  end-page: 1369
  ident: b0235
  article-title: Difficulty and Contribution-Based Cooperative Coevolution for Large-Scale Optimization
– volume: Vol. 3611
  start-page: 1080
  year: 2005
  end-page: 1088
  ident: b0170
  article-title: Cooperative Co-evolutionary Differential Evolution for Function Optimization
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b0055
  publication-title: Genetic algorithms.
– volume: 18
  start-page: 378
  year: 2014
  end-page: 393
  ident: b0105
  article-title: Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization
– volume: 22
  start-page: 578
  year: 2018
  end-page: 594
  ident: b0240
  article-title: A Level-Based Learning Swarm Optimizer for Large-Scale Optimization
– volume: 2008
  start-page: 1663
  year: 2008
  end-page: 1670
  ident: b0265
  article-title: Multilevel cooperative coevolution for large scale optimization
– reference: , 2066–2071. https://doi.org/10.1109/SMC42975.2020.9283143.
– reference: ,
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0175
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b0040
  article-title: Ant colony optimization
– volume: 7
  start-page: 8
  year: 2013
  ident: b0080
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
– volume: 51
  start-page: 1175
  year: 2021
  end-page: 1188
  ident: b0220
  article-title: Adaptive Granularity Learning Distributed Particle Swarm Optimization for Large-Scale Optimization
– volume: 517
  start-page: 18
  year: 2020
  end-page: 36
  ident: b0060
  article-title: Manifold learning for efficient gravitational search algorithm
– volume: 24
  start-page: 1112
  year: 2020
  end-page: 1124
  ident: b0085
  article-title: A Hybrid Deep Grouping Algorithm for Large Scale Global Optimization
– reference: (1st ed., pp. 1–1). Wiley. https://doi.org/10.1002/9780470479216.corpsy0491.
– volume: 1–8
  year: 2010
  ident: b0110
  article-title: Cooperative Co-evolution with delta grouping for large scale non-separable function optimization
– volume: 163
  start-page: 283
  year: 2019
  end-page: 304
  ident: b0260
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
– volume: 26
  start-page: 823
  year: 2022
  end-page: 843
  ident: b0120
  article-title: A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization—Part II
– volume: 80
  year: 2023
  ident: b0255
  article-title: Differential evolution with objective and dimension knowledge utilization
– volume: 2016
  start-page: 1188
  year: 2016
  end-page: 1195
  ident: b0020
  article-title: iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization
– volume: 633
  start-page: 321
  year: 2023
  end-page: 342
  ident: b0250
  article-title: Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems
– volume: 291
  start-page: 43
  year: 2015
  end-page: 60
  ident: b0025
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
– volume: 7
  year: 2006
  ident: b0010
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
– volume: 2
  start-page: 50
  year: 2007
  end-page: 55
  ident: b0005
  article-title: A particle swarm optimization for the capacitated vehicle routing problem
– volume: 4
  start-page: 87
  year: 1985
  end-page: 90
  ident: b0030
  article-title: A wilcoxon‐type test for trend
– reference: , 1671–1676. https://doi.org/10.1109/CEC.2002.1004493.
– volume: 50
  start-page: 2715
  year: 2020
  end-page: 2729
  ident: b0225
  article-title: Dynamic Group Learning Distributed Particle Swarm Optimization for Large-Scale Optimization and Its Application in Cloud Workflow Scheduling
– volume: 26
  start-page: 802
  year: 2022
  end-page: 822
  ident: b0115
  article-title: A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization—Part I
– volume: 9
  year: 2008
  ident: b0215
  article-title: Visualizing data using t-SNE
– reference: Perron, L., & Furnon, V. (2019). Or-tools.
– volume: 2
  start-page: 50
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2025.127733_b0005
  article-title: A particle swarm optimization for the capacitated vehicle routing problem
  publication-title: International Journal of Logistics and SCM Systems
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2025.127733_b0055
  publication-title: Genetic algorithms. Scientific american
  doi: 10.1038/scientificamerican0792-66
– volume: 257
  start-page: 845
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2025.127733_b0205
  article-title: New benchmark instances for the Capacitated Vehicle Routing Problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.08.012
– volume: 178
  start-page: 2985
  issue: 15
  year: 2008
  ident: 10.1016/j.eswa.2025.127733_b0245
  article-title: Large scale evolutionary optimization using cooperative coevolution
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2008.02.017
– volume: Vol. 3611
  start-page: 1080
  year: 2005
  ident: 10.1016/j.eswa.2025.127733_b0170
  article-title: Cooperative Co-evolutionary Differential Evolution for Function Optimization
– volume: 290
  start-page: 2268
  issue: 5500
  year: 2000
  ident: 10.1016/j.eswa.2025.127733_b0160
  article-title: The Manifold Ways of Perception
  publication-title: Science
  doi: 10.1126/science.290.5500.2268
– volume: 1
  start-page: 221
  issue: 4
  year: 1996
  ident: 10.1016/j.eswa.2025.127733_b0165
  article-title: The use and interpretation of the Friedman test in the analysis of ordinal‐scale data in repeated measures designs
  publication-title: Physiotherapy Research International
  doi: 10.1002/pri.66
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.eswa.2025.127733_b0215
  article-title: Visualizing data using t-SNE
  publication-title: Journal of machine learning research
– volume: 26
  start-page: 802
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2025.127733_b0115
  article-title: A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization—Part I
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3130838
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2025.127733_b0145
  article-title: GSA: A Gravitational Search Algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– volume: 24
  start-page: 1
  year: 2007
  ident: 10.1016/j.eswa.2025.127733_b0190
  article-title: Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization
  publication-title: Nature inspired computation and applications laboratory, USTC, China
– volume: 123
  start-page: 487
  issue: 1–3
  year: 2002
  ident: 10.1016/j.eswa.2025.127733_b0200
  article-title: Models, relaxations and exact approaches for the capacitated vehicle routing problem
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/S0166-218X(01)00351-1
– volume: 517
  start-page: 18
  year: 2020
  ident: 10.1016/j.eswa.2025.127733_b0060
  article-title: Manifold learning for efficient gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.12.047
– volume: 633
  start-page: 321
  year: 2023
  ident: 10.1016/j.eswa.2025.127733_b0250
  article-title: Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2023.03.086
– volume: 7
  issue: 11
  year: 2006
  ident: 10.1016/j.eswa.2025.127733_b0010
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: Journal of machine learning research
– volume: 4
  start-page: 87
  issue: 1
  year: 1985
  ident: 10.1016/j.eswa.2025.127733_b0030
  article-title: A wilcoxon‐type test for trend
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780040112
– ident: 10.1016/j.eswa.2025.127733_b0070
  doi: 10.1109/CEC.2002.1004493
– volume: 2016
  start-page: 1188
  year: 2016
  ident: 10.1016/j.eswa.2025.127733_b0020
  article-title: iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 26
  start-page: 823
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2025.127733_b0120
  article-title: A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization—Part II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2021.3130835
– volume: 33
  start-page: 5057
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2025.127733_b0230
  article-title: Learning Improvement Heuristics for Solving Routing Problems
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3068828
– volume: 2015
  start-page: 353
  year: 2015
  ident: 10.1016/j.eswa.2025.127733_b0075
  article-title: Rank-based differential evolution with multiple mutation strategies for large scale global optimization
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 2019
  start-page: 1228
  year: 2019
  ident: 10.1016/j.eswa.2025.127733_b0015
  article-title: An Analysis of Minimum Population Search on Large Scale Global Optimization
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2025.127733_b0040
  article-title: Ant colony optimization
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2006.329691
– volume: 50
  year: 2019
  ident: 10.1016/j.eswa.2025.127733_b0155
  article-title: A review of the recent use of Differential Evolution for Large-Scale Global Optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.08.005
– volume: 24
  start-page: 1112
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2025.127733_b0085
  article-title: A Hybrid Deep Grouping Algorithm for Large Scale Global Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.2985672
– volume: 18
  start-page: 378
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2025.127733_b0105
  article-title: Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281543
– volume: 291
  start-page: 43
  year: 2015
  ident: 10.1016/j.eswa.2025.127733_b0025
  article-title: A social learning particle swarm optimization algorithm for scalable optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.08.039
– ident: 10.1016/j.eswa.2025.127733_b0125
– volume: 6
  start-page: 80
  issue: 1
  year: 1959
  ident: 10.1016/j.eswa.2025.127733_b0035
  article-title: The Truck Dispatching Problem
  publication-title: Management Science
  doi: 10.1287/mnsc.6.1.80
– volume: 1–8
  year: 2010
  ident: 10.1016/j.eswa.2025.127733_b0110
  article-title: Cooperative Co-evolution with delta grouping for large scale non-separable function optimization
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 17
  start-page: 81
  issue: 1
  year: 1995
  ident: 10.1016/j.eswa.2025.127733_b0210
  article-title: An evaluation of intrinsic dimensionality estimators
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.368147
– volume: 45
  start-page: 191
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2025.127733_b0140
  article-title: A Competitive Swarm Optimizer for Large Scale Optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2322602
– volume: 50
  start-page: 2715
  issue: 6
  year: 2020
  ident: 10.1016/j.eswa.2025.127733_b0225
  article-title: Dynamic Group Learning Distributed Particle Swarm Optimization for Large-Scale Optimization and Its Application in Cloud Workflow Scheduling
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2933499
– ident: 10.1016/j.eswa.2025.127733_b0100
  doi: 10.1109/SMC42975.2020.9283143
– volume: 163
  start-page: 283
  year: 2019
  ident: 10.1016/j.eswa.2025.127733_b0260
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.08.030
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2025.127733_b0175
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 22
  start-page: 578
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2025.127733_b0240
  article-title: A Level-Based Learning Swarm Optimizer for Large-Scale Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2017.2743016
– volume: 85
  year: 2019
  ident: 10.1016/j.eswa.2025.127733_b0180
  article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105744
– volume: 2008
  start-page: 1663
  year: 2008
  ident: 10.1016/j.eswa.2025.127733_b0265
  article-title: Multilevel cooperative coevolution for large scale optimization
  publication-title: IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
  doi: 10.1109/CEC.2008.4631014
– volume: PAMI-1(1)
  start-page: 25
  year: 1979
  ident: 10.1016/j.eswa.2025.127733_b0130
  article-title: An Intrinsic Dimensionality Estimator from Near-Neighbor Information
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1979.4766873
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.eswa.2025.127733_b0195
  article-title: A Global Geometric Framework for Nonlinear Dimensionality Reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 10.1016/j.eswa.2025.127733_b0150
  article-title: Nonlinear Dimensionality Reduction by Locally Linear Embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 225
  start-page: 155
  issue: 1
  year: 1987
  ident: 10.1016/j.eswa.2025.127733_b0050
  article-title: A multidimensional version of the Kolmogorov–Smirnov test
  publication-title: Monthly Notices of the Royal Astronomical Society
  doi: 10.1093/mnras/225.1.155
– volume: 80
  year: 2023
  ident: 10.1016/j.eswa.2025.127733_b0255
  article-title: Differential evolution with objective and dimension knowledge utilization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2023.101322
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2025.127733_b0065
  article-title: A comparative study of Artificial Bee Colony algorithm
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2009.03.090
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2025.127733_b0185
  article-title: Large scale optimization by differential evolution with landscape modality detection and a diversity archive
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 27
  start-page: 1355
  issue: 5
  year: 2023
  ident: 10.1016/j.eswa.2025.127733_b0235
  article-title: Difficulty and Contribution-Based Cooperative Coevolution for Large-Scale Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2022.3201691
– volume: 7
  start-page: 8
  issue: 33
  year: 2013
  ident: 10.1016/j.eswa.2025.127733_b0080
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
  publication-title: gene
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2025.127733_b0045
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE International Conference on Neural Networks
  doi: 10.1109/ICNN.1995.488968
– volume: 77
  year: 2023
  ident: 10.1016/j.eswa.2025.127733_b0090
  article-title: Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2023.101248
– ident: 10.1016/j.eswa.2025.127733_b0095
  doi: 10.1002/9780470479216.corpsy0491
– volume: Vol. 866
  start-page: 249
  year: 1994
  ident: 10.1016/j.eswa.2025.127733_b0135
  article-title: A cooperative coevolutionary approach to function optimization
– volume: 51
  start-page: 1175
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2025.127733_b0220
  article-title: Adaptive Granularity Learning Distributed Particle Swarm Optimization for Large-Scale Optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2020.2977956
SSID ssj0017007
Score 2.4745648
Snippet •Proposing a mechanism to improve heuristics by extracting effective dimensions.•Using manifold learning to filter redundant dimensions in particles.•Mapping...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127733
SubjectTerms Capacitated Vehicle Routing Problem
Complex high-dimensional problems
Manifold learning
Meta-heuristic optimization algorithm
Title Effective Dimension Extraction Mechanism: A novel mechanism for meta-heuristic algorithms in solving complex high-dimensional problems
URI https://dx.doi.org/10.1016/j.eswa.2025.127733
Volume 285
WOSCitedRecordID wos001490662200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVglwMXvtEuX_KBW5TVxonjmFuFigDBColF6i1ybJdmtZtWbVr6C_jdzMR20i0IARKXqLIUJ8q8TCcz894Q8pKrBCVf0njKmERKjooleME4ZVIVgqWZVJ3O7AdxdlZMJvKTL8WsunECommK7VYu_qupYQ2MjdTZvzB3vykswG8wOhzB7HD8I8M7PeKuIQiV-zEbFo237dIPBf9okevr-y1GUTPfWOSP-MWu6_DKtiqe2bUTcY7U5df5sm5nV13rLNz8xhN1F5d2G6HecWzClZDX5UbUrK7l_FFQufWy0YFQt1M6H0pTXTCt_N8proSW4VrN1HzI3HbQWNe7SQvG-5Y5n0kLbJqhdcmlJEWcJW5qT_DOzE30-cnTu6TDxYldfUP5KMZPEiaEE9XYU9D-jBvjvhDuJRBfiZvkkAkuwY8fjt6NJ-_7spM4dfz6cCOeZeUaAvev9OtIZic6Ob9H7vjPCjpycLhPbtjmAbkbRnZQ78Efku89OmiPDjqgg_boeEVHtMMG7bFBARv0OjbogA1aN9Rjg3ps0H1s0ICNR-TLm_H567exH8URa1YkbZxr-ArLeGGmuaxspQy8x1wrprM80cxYg_X4ShuuBasKDoGfNTbhhjGT5tpk6WNy0Mwbe0QoV5plohLCqDQz6anUJpVFbvUUlc1sfkyi8FjLhVNcKUMr4kWJRijRCKUzwjHh4cmXPmZ0sWAJQPnNeU_-8byn5PaA52fkoF2u7XNyS2_aerV84fH0Ay9Gl1c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Dimension+Extraction+Mechanism%3A+A+novel+mechanism+for+meta-heuristic+algorithms+in+solving+complex+high-dimensional+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Su%2C+Fang&rft.au=Song%2C+Jiahao&rft.au=He%2C+Rui&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=285&rft_id=info:doi/10.1016%2Fj.eswa.2025.127733&rft.externalDocID=S0957417425013557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon