Effective Dimension Extraction Mechanism: A novel mechanism for meta-heuristic algorithms in solving complex high-dimensional problems
•Proposing a mechanism to improve heuristics by extracting effective dimensions.•Using manifold learning to filter redundant dimensions in particles.•Mapping particles to high-dimensional space while preserving distance relations.•Based on the two mappings, Effective Dimension Extraction Mechanism i...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 285; s. 127733 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.08.2025
|
| Predmet: | |
| ISSN: | 0957-4174 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Proposing a mechanism to improve heuristics by extracting effective dimensions.•Using manifold learning to filter redundant dimensions in particles.•Mapping particles to high-dimensional space while preserving distance relations.•Based on the two mappings, Effective Dimension Extraction Mechanism is designed.•EDEM enhances DE and PSO, demonstrating its value in meta-heuristic optimization.
In recent years, meta-heuristic optimization algorithms have been increasingly studied due to their wide applicability in practical applications. However, the interference of redundant dimensions in complex high-dimensional problems often leads to performance degradation. To solve this problem, a new Effective Dimension Extraction Mechanism (EDEM) is proposed, which extracts effective dimensional information during the optimization using a Manifold Learning-based Mapping from high-dimensional to low-dimensional space and a Feature Mapping from low-dimensional to the original high-dimensional space, thereby providing direct guidance information for meta-heuristic optimization algorithms to correct the evolution direction of particle populations. As an independent mechanism, EDEM can be easily applied to multiple meta-heuristic optimization algorithms, providing a new way for these algorithms to solve the problems. A series of experiments are conducted to validate the effectiveness and advancement of EDEM. First, experiments on fifteen complex high-dimensional problems demonstrate its effectiveness in improving DE, PSO and ASO performance. Next, the comparative evaluation experiments with the state-of-art PSO and DE variant algorithms are performed, and the results confirm that EDEM is an effective mechanism, which provides a promising solution for the optimization on complex high-dimensional problems. Finally, EDEM is applied to the Capacitated Vehicle Routing Problem, and the experimental results show that the improved meta-heuristic optimization algorithm of EDEM can solve this practical problem well, which shows the practical ability of this new mechanism. |
|---|---|
| AbstractList | •Proposing a mechanism to improve heuristics by extracting effective dimensions.•Using manifold learning to filter redundant dimensions in particles.•Mapping particles to high-dimensional space while preserving distance relations.•Based on the two mappings, Effective Dimension Extraction Mechanism is designed.•EDEM enhances DE and PSO, demonstrating its value in meta-heuristic optimization.
In recent years, meta-heuristic optimization algorithms have been increasingly studied due to their wide applicability in practical applications. However, the interference of redundant dimensions in complex high-dimensional problems often leads to performance degradation. To solve this problem, a new Effective Dimension Extraction Mechanism (EDEM) is proposed, which extracts effective dimensional information during the optimization using a Manifold Learning-based Mapping from high-dimensional to low-dimensional space and a Feature Mapping from low-dimensional to the original high-dimensional space, thereby providing direct guidance information for meta-heuristic optimization algorithms to correct the evolution direction of particle populations. As an independent mechanism, EDEM can be easily applied to multiple meta-heuristic optimization algorithms, providing a new way for these algorithms to solve the problems. A series of experiments are conducted to validate the effectiveness and advancement of EDEM. First, experiments on fifteen complex high-dimensional problems demonstrate its effectiveness in improving DE, PSO and ASO performance. Next, the comparative evaluation experiments with the state-of-art PSO and DE variant algorithms are performed, and the results confirm that EDEM is an effective mechanism, which provides a promising solution for the optimization on complex high-dimensional problems. Finally, EDEM is applied to the Capacitated Vehicle Routing Problem, and the experimental results show that the improved meta-heuristic optimization algorithm of EDEM can solve this practical problem well, which shows the practical ability of this new mechanism. |
| ArticleNumber | 127733 |
| Author | He, Rui Song, Jiahao Su, Fang |
| Author_xml | – sequence: 1 givenname: Fang surname: Su fullname: Su, Fang email: sufang@bupt.edu.cn – sequence: 2 givenname: Jiahao surname: Song fullname: Song, Jiahao email: songjh@bupt.edu.cn – sequence: 3 givenname: Rui surname: He fullname: He, Rui email: bupt-hr@bupt.cn |
| BookMark | eNp9kEtOwzAQhr0oEm3hAqx8gQTbeThFbKpSHlIRG1hbjj1pXDl2ZYdQLsC5SVW6ZTUzv_TNjL4ZmjjvAKEbSlJKaHm7SyF-yZQRVqSUcZ5lEzQli4InOeX5JZrFuCOEckL4FP2smwZUbwbAD6YDF413eH3ogxzDsX0F1UpnYneHl9j5ASzuzhFufBinXiYtfAYTe6OwtFsfTN92ERuHo7eDcVusfLe3cMCt2baJPt-RFu-Dry108QpdNNJGuP6rc_TxuH5fPSebt6eX1XKTKFbRPikV5ywvKt2UixpqqSvOCiWZykuqmAZdsQWplS4UZ3VVEJaDBlpoxnRWKp1nc8ROe1XwMQZoxD6YToZvQYk42hM7cbQnjvbEyd4I3Z8gGD8bDAQRlQGnQJswuhPam__wX57_gLQ |
| Cites_doi | 10.1038/scientificamerican0792-66 10.1016/j.ejor.2016.08.012 10.1016/j.ins.2008.02.017 10.1126/science.290.5500.2268 10.1002/pri.66 10.1109/TEVC.2021.3130838 10.1016/j.ins.2009.03.004 10.1016/S0166-218X(01)00351-1 10.1016/j.ins.2019.12.047 10.1016/j.ins.2023.03.086 10.1002/sim.4780040112 10.1109/CEC.2002.1004493 10.1109/TEVC.2021.3130835 10.1109/TNNLS.2021.3068828 10.1109/MCI.2006.329691 10.1016/j.swevo.2018.08.005 10.1109/TEVC.2020.2985672 10.1109/TEVC.2013.2281543 10.1016/j.ins.2014.08.039 10.1287/mnsc.6.1.80 10.1109/34.368147 10.1109/TCYB.2014.2322602 10.1109/TCYB.2019.2933499 10.1109/SMC42975.2020.9283143 10.1016/j.knosys.2018.08.030 10.1023/A:1008202821328 10.1109/TEVC.2017.2743016 10.1016/j.asoc.2019.105744 10.1109/CEC.2008.4631014 10.1109/TPAMI.1979.4766873 10.1126/science.290.5500.2319 10.1126/science.290.5500.2323 10.1093/mnras/225.1.155 10.1016/j.swevo.2023.101322 10.1016/j.amc.2009.03.090 10.1109/TEVC.2022.3201691 10.1109/ICNN.1995.488968 10.1016/j.swevo.2023.101248 10.1002/9780470479216.corpsy0491 10.1109/TCYB.2020.2977956 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2025.127733 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2025_127733 S0957417425013557 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ABUFD ACDAQ ACGFS ACHRH ACLOT ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT |
| ID | FETCH-LOGICAL-c281t-6c772458df69bebad8725ca2c461c2ded8290bcd5c72b85024ede15d22d36cd43 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001490662200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:10:38 EST 2025 Sat Nov 15 16:53:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Meta-heuristic optimization algorithm Manifold learning Capacitated Vehicle Routing Problem Complex high-dimensional problems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c281t-6c772458df69bebad8725ca2c461c2ded8290bcd5c72b85024ede15d22d36cd43 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_127733 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_127733 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mousavirad, S. J., & Rahnamayan, S. (2020). CenPSO: A Novel Center-based Particle Swarm Optimization Algorithm for Large-scale Optimization. Tenenbaum, Silva, Langford (b0195) 2000; 290 Cheng, Jin (b0025) 2015; 291 Wang, Zhan, Yu, Lin, Zhang, Gu, Zhang (b0225) 2020; 50 Kachitvichyanukul (b0005) 2007; 2 Fasano, Franceschini (b0050) 1987; 225 Sheldon, Fillyaw, Thompson (b0165) 1996; 1 Tang, Li, Suganthan, Yang, Weise (b0190) 2007; 24 Shi, Teng, Li (b0170) 2005; Vol. 3611 Omidvar, Li, Yao (b0115) 2022; 26 Verveer, Duin (b0210) 1995; 17 Karaboga, Akay (b0065) 2009; 214 Omidvar, Li, Yao (b0110) 2010; 1–8 Rashedi, Nezamabadi-pour, Saryazdi (b0145) 2009; 179 Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. Belkin, Niyogi, Sindhwani (b0010) 2006; 7 Wu, Song, Cao, Zhang, Lim (b0230) 2022; 33 , (1st ed., pp. 1–1). Wiley. https://doi.org/10.1002/9780470479216.corpsy0491. Potter, Jong (b0135) 1994; Vol. 866 Yang, Tang, Yao (b0245) 2008; 178 Ma, Wu, Suganthan, Song, Luo (b0090) 2023; 77 Storn, Price (b0175) 1997; 11 Omidvar, Li, Yao (b0120) 2022; 26 Yang, Tang, Yao (b0265) 2008; 2008 Sun, Yang, Liu (b0180) 2019; 85 Roweis, Saul (b0150) 2000; 290 Sepesy Maučec, Brest (b0155) 2019; 50 Brest, Maucec, Boskovic (b0020) 2016; 2016 Van der Maaten, Hinton (b0215) 2008; 9 Wang, Zhan, Kwong, Jin, Zhang (b0220) 2021; 51 Yang, Chen, Deng, Li, Gu, Zhang (b0240) 2018; 22 Pettis, Bailey, Jain, Dubes (b0130) 1979; PAMI-1(1) Cheng, Jin (b0140) 2015; 45 Dantzig, Ramser (b0035) 1959; 6 Takahama, Sakai (b0185) 2012; 2012 Bolufe-Rohler, Chen, Tamayo-Vera (b0015) 2019; 2019 Holland (b0055) 1992; 267 Li, Tang, Omidvar, Yang, Qin, China (b0080) 2013; 7 Uchoa, Pecin, Pessoa, Poggi, Vidal, Subramanian (b0205) 2017; 257 McKight, P. E., & Najab, J. (2010). Kruskal‐Wallis Test. In I. B. Weiner & W. E. Craighead (Eds.) Perron, L., & Furnon, V. (2019). Or-tools. Toth, Vigo (b0200) 2002; 123 Zhao, Wang, Zhang (b0260) 2019; 163 Eberhart, Kennedy (b0045) 1995; 4 Zhang, Nie, Yang, Wang, Liu, Jeon, Zhang (b0250) 2023; 633 Dorigo, Birattari, Stutzle (b0040) 2006; 1 Xu, Luo, Lin, Chang, Tang (b0235) 2023; 27 2066–2071. https://doi.org/10.1109/SMC42975.2020.9283143. Kushida, Hara, Takahama (b0075) 2015; 2015 Seung, Lee (b0160) 2000; 290 Liu, Wang, Fan (b0085) 2020; 24 Cuzick (b0030) 1985; 4 Omidvar, Li, Mei, Yao (b0105) 2014; 18 Giladi, Sintov (b0060) 2020; 517 Zhang, Zheng, Zheng (b0255) 2023; 80 1671–1676. https://doi.org/10.1109/CEC.2002.1004493. Omidvar (10.1016/j.eswa.2025.127733_b0110) 2010; 1–8 Zhang (10.1016/j.eswa.2025.127733_b0255) 2023; 80 Yang (10.1016/j.eswa.2025.127733_b0240) 2018; 22 10.1016/j.eswa.2025.127733_b0125 Uchoa (10.1016/j.eswa.2025.127733_b0205) 2017; 257 Yang (10.1016/j.eswa.2025.127733_b0245) 2008; 178 Omidvar (10.1016/j.eswa.2025.127733_b0105) 2014; 18 Kachitvichyanukul (10.1016/j.eswa.2025.127733_b0005) 2007; 2 Takahama (10.1016/j.eswa.2025.127733_b0185) 2012; 2012 Fasano (10.1016/j.eswa.2025.127733_b0050) 1987; 225 Wang (10.1016/j.eswa.2025.127733_b0220) 2021; 51 Li (10.1016/j.eswa.2025.127733_b0080) 2013; 7 Belkin (10.1016/j.eswa.2025.127733_b0010) 2006; 7 Sun (10.1016/j.eswa.2025.127733_b0180) 2019; 85 10.1016/j.eswa.2025.127733_b0070 Cheng (10.1016/j.eswa.2025.127733_b0025) 2015; 291 Bolufe-Rohler (10.1016/j.eswa.2025.127733_b0015) 2019; 2019 Ma (10.1016/j.eswa.2025.127733_b0090) 2023; 77 Eberhart (10.1016/j.eswa.2025.127733_b0045) 1995; 4 Karaboga (10.1016/j.eswa.2025.127733_b0065) 2009; 214 Sheldon (10.1016/j.eswa.2025.127733_b0165) 1996; 1 Holland (10.1016/j.eswa.2025.127733_b0055) 1992; 267 Wang (10.1016/j.eswa.2025.127733_b0225) 2020; 50 Wu (10.1016/j.eswa.2025.127733_b0230) 2022; 33 Liu (10.1016/j.eswa.2025.127733_b0085) 2020; 24 Zhao (10.1016/j.eswa.2025.127733_b0260) 2019; 163 Yang (10.1016/j.eswa.2025.127733_b0265) 2008; 2008 Brest (10.1016/j.eswa.2025.127733_b0020) 2016; 2016 Tenenbaum (10.1016/j.eswa.2025.127733_b0195) 2000; 290 Seung (10.1016/j.eswa.2025.127733_b0160) 2000; 290 Kushida (10.1016/j.eswa.2025.127733_b0075) 2015; 2015 Verveer (10.1016/j.eswa.2025.127733_b0210) 1995; 17 Potter (10.1016/j.eswa.2025.127733_b0135) 1994; Vol. 866 Zhang (10.1016/j.eswa.2025.127733_b0250) 2023; 633 Rashedi (10.1016/j.eswa.2025.127733_b0145) 2009; 179 10.1016/j.eswa.2025.127733_b0100 Dantzig (10.1016/j.eswa.2025.127733_b0035) 1959; 6 Giladi (10.1016/j.eswa.2025.127733_b0060) 2020; 517 Xu (10.1016/j.eswa.2025.127733_b0235) 2023; 27 Dorigo (10.1016/j.eswa.2025.127733_b0040) 2006; 1 Storn (10.1016/j.eswa.2025.127733_b0175) 1997; 11 Omidvar (10.1016/j.eswa.2025.127733_b0120) 2022; 26 Toth (10.1016/j.eswa.2025.127733_b0200) 2002; 123 10.1016/j.eswa.2025.127733_b0095 Omidvar (10.1016/j.eswa.2025.127733_b0115) 2022; 26 Pettis (10.1016/j.eswa.2025.127733_b0130) 1979; PAMI-1(1) Sepesy Maučec (10.1016/j.eswa.2025.127733_b0155) 2019; 50 Van der Maaten (10.1016/j.eswa.2025.127733_b0215) 2008; 9 Cuzick (10.1016/j.eswa.2025.127733_b0030) 1985; 4 Tang (10.1016/j.eswa.2025.127733_b0190) 2007; 24 Cheng (10.1016/j.eswa.2025.127733_b0140) 2015; 45 Shi (10.1016/j.eswa.2025.127733_b0170) 2005; Vol. 3611 Roweis (10.1016/j.eswa.2025.127733_b0150) 2000; 290 |
| References_xml | – volume: 290 start-page: 2268 year: 2000 end-page: 2269 ident: b0160 article-title: The Manifold Ways of Perception – volume: 77 year: 2023 ident: b0090 article-title: Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms – volume: 123 start-page: 487 year: 2002 end-page: 512 ident: b0200 article-title: Models, relaxations and exact approaches for the capacitated vehicle routing problem – volume: 2019 start-page: 1228 year: 2019 end-page: 1235 ident: b0015 article-title: An Analysis of Minimum Population Search on Large Scale Global Optimization – volume: PAMI-1(1) start-page: 25 year: 1979 end-page: 37 ident: b0130 article-title: An Intrinsic Dimensionality Estimator from Near-Neighbor Information – volume: 17 start-page: 81 year: 1995 end-page: 86 ident: b0210 article-title: An evaluation of intrinsic dimensionality estimators – volume: 225 start-page: 155 year: 1987 end-page: 170 ident: b0050 article-title: A multidimensional version of the Kolmogorov–Smirnov test – volume: 24 start-page: 1 year: 2007 end-page: 18 ident: b0190 article-title: Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: b0065 article-title: A comparative study of Artificial Bee Colony algorithm – volume: Vol. 866 start-page: 249 year: 1994 end-page: 257 ident: b0135 article-title: A cooperative coevolutionary approach to function optimization – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: b0045 article-title: Particle swarm optimization – volume: 85 year: 2019 ident: b0180 article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0145 article-title: GSA: A Gravitational Search Algorithm – volume: 2015 start-page: 353 year: 2015 end-page: 360 ident: b0075 article-title: Rank-based differential evolution with multiple mutation strategies for large scale global optimization – volume: 33 start-page: 5057 year: 2022 end-page: 5069 ident: b0230 article-title: Learning Improvement Heuristics for Solving Routing Problems – volume: 178 start-page: 2985 year: 2008 end-page: 2999 ident: b0245 article-title: Large scale evolutionary optimization using cooperative coevolution – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: b0195 article-title: A Global Geometric Framework for Nonlinear Dimensionality Reduction – volume: 257 start-page: 845 year: 2017 end-page: 858 ident: b0205 article-title: New benchmark instances for the Capacitated Vehicle Routing Problem – volume: 45 start-page: 191 year: 2015 end-page: 204 ident: b0140 article-title: A Competitive Swarm Optimizer for Large Scale Optimization – reference: Mousavirad, S. J., & Rahnamayan, S. (2020). CenPSO: A Novel Center-based Particle Swarm Optimization Algorithm for Large-scale Optimization. – volume: 6 start-page: 80 year: 1959 end-page: 91 ident: b0035 article-title: The Truck Dispatching Problem – reference: Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. – reference: McKight, P. E., & Najab, J. (2010). Kruskal‐Wallis Test. In I. B. Weiner & W. E. Craighead (Eds.), – volume: 50 year: 2019 ident: b0155 article-title: A review of the recent use of Differential Evolution for Large-Scale Global Optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite – volume: 1 start-page: 221 year: 1996 end-page: 228 ident: b0165 article-title: The use and interpretation of the Friedman test in the analysis of ordinal‐scale data in repeated measures designs – volume: 290 start-page: 2323 year: 2000 end-page: 2326 ident: b0150 article-title: Nonlinear Dimensionality Reduction by Locally Linear Embedding – volume: 2012 start-page: 1 year: 2012 end-page: 8 ident: b0185 article-title: Large scale optimization by differential evolution with landscape modality detection and a diversity archive – volume: 27 start-page: 1355 year: 2023 end-page: 1369 ident: b0235 article-title: Difficulty and Contribution-Based Cooperative Coevolution for Large-Scale Optimization – volume: Vol. 3611 start-page: 1080 year: 2005 end-page: 1088 ident: b0170 article-title: Cooperative Co-evolutionary Differential Evolution for Function Optimization – volume: 267 start-page: 66 year: 1992 end-page: 73 ident: b0055 publication-title: Genetic algorithms. – volume: 18 start-page: 378 year: 2014 end-page: 393 ident: b0105 article-title: Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization – volume: 22 start-page: 578 year: 2018 end-page: 594 ident: b0240 article-title: A Level-Based Learning Swarm Optimizer for Large-Scale Optimization – volume: 2008 start-page: 1663 year: 2008 end-page: 1670 ident: b0265 article-title: Multilevel cooperative coevolution for large scale optimization – reference: , 2066–2071. https://doi.org/10.1109/SMC42975.2020.9283143. – reference: , – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0175 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b0040 article-title: Ant colony optimization – volume: 7 start-page: 8 year: 2013 ident: b0080 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization – volume: 51 start-page: 1175 year: 2021 end-page: 1188 ident: b0220 article-title: Adaptive Granularity Learning Distributed Particle Swarm Optimization for Large-Scale Optimization – volume: 517 start-page: 18 year: 2020 end-page: 36 ident: b0060 article-title: Manifold learning for efficient gravitational search algorithm – volume: 24 start-page: 1112 year: 2020 end-page: 1124 ident: b0085 article-title: A Hybrid Deep Grouping Algorithm for Large Scale Global Optimization – reference: (1st ed., pp. 1–1). Wiley. https://doi.org/10.1002/9780470479216.corpsy0491. – volume: 1–8 year: 2010 ident: b0110 article-title: Cooperative Co-evolution with delta grouping for large scale non-separable function optimization – volume: 163 start-page: 283 year: 2019 end-page: 304 ident: b0260 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem – volume: 26 start-page: 823 year: 2022 end-page: 843 ident: b0120 article-title: A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization—Part II – volume: 80 year: 2023 ident: b0255 article-title: Differential evolution with objective and dimension knowledge utilization – volume: 2016 start-page: 1188 year: 2016 end-page: 1195 ident: b0020 article-title: iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization – volume: 633 start-page: 321 year: 2023 end-page: 342 ident: b0250 article-title: Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems – volume: 291 start-page: 43 year: 2015 end-page: 60 ident: b0025 article-title: A social learning particle swarm optimization algorithm for scalable optimization – volume: 7 year: 2006 ident: b0010 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples – volume: 2 start-page: 50 year: 2007 end-page: 55 ident: b0005 article-title: A particle swarm optimization for the capacitated vehicle routing problem – volume: 4 start-page: 87 year: 1985 end-page: 90 ident: b0030 article-title: A wilcoxon‐type test for trend – reference: , 1671–1676. https://doi.org/10.1109/CEC.2002.1004493. – volume: 50 start-page: 2715 year: 2020 end-page: 2729 ident: b0225 article-title: Dynamic Group Learning Distributed Particle Swarm Optimization for Large-Scale Optimization and Its Application in Cloud Workflow Scheduling – volume: 26 start-page: 802 year: 2022 end-page: 822 ident: b0115 article-title: A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization—Part I – volume: 9 year: 2008 ident: b0215 article-title: Visualizing data using t-SNE – reference: Perron, L., & Furnon, V. (2019). Or-tools. – volume: 2 start-page: 50 issue: 1 year: 2007 ident: 10.1016/j.eswa.2025.127733_b0005 article-title: A particle swarm optimization for the capacitated vehicle routing problem publication-title: International Journal of Logistics and SCM Systems – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.eswa.2025.127733_b0055 publication-title: Genetic algorithms. Scientific american doi: 10.1038/scientificamerican0792-66 – volume: 257 start-page: 845 issue: 3 year: 2017 ident: 10.1016/j.eswa.2025.127733_b0205 article-title: New benchmark instances for the Capacitated Vehicle Routing Problem publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.08.012 – volume: 178 start-page: 2985 issue: 15 year: 2008 ident: 10.1016/j.eswa.2025.127733_b0245 article-title: Large scale evolutionary optimization using cooperative coevolution publication-title: Information Sciences doi: 10.1016/j.ins.2008.02.017 – volume: Vol. 3611 start-page: 1080 year: 2005 ident: 10.1016/j.eswa.2025.127733_b0170 article-title: Cooperative Co-evolutionary Differential Evolution for Function Optimization – volume: 290 start-page: 2268 issue: 5500 year: 2000 ident: 10.1016/j.eswa.2025.127733_b0160 article-title: The Manifold Ways of Perception publication-title: Science doi: 10.1126/science.290.5500.2268 – volume: 1 start-page: 221 issue: 4 year: 1996 ident: 10.1016/j.eswa.2025.127733_b0165 article-title: The use and interpretation of the Friedman test in the analysis of ordinal‐scale data in repeated measures designs publication-title: Physiotherapy Research International doi: 10.1002/pri.66 – volume: 9 issue: 11 year: 2008 ident: 10.1016/j.eswa.2025.127733_b0215 article-title: Visualizing data using t-SNE publication-title: Journal of machine learning research – volume: 26 start-page: 802 issue: 5 year: 2022 ident: 10.1016/j.eswa.2025.127733_b0115 article-title: A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization—Part I publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2021.3130838 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2025.127733_b0145 article-title: GSA: A Gravitational Search Algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – volume: 24 start-page: 1 year: 2007 ident: 10.1016/j.eswa.2025.127733_b0190 article-title: Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization publication-title: Nature inspired computation and applications laboratory, USTC, China – volume: 123 start-page: 487 issue: 1–3 year: 2002 ident: 10.1016/j.eswa.2025.127733_b0200 article-title: Models, relaxations and exact approaches for the capacitated vehicle routing problem publication-title: Discrete Applied Mathematics doi: 10.1016/S0166-218X(01)00351-1 – volume: 517 start-page: 18 year: 2020 ident: 10.1016/j.eswa.2025.127733_b0060 article-title: Manifold learning for efficient gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2019.12.047 – volume: 633 start-page: 321 year: 2023 ident: 10.1016/j.eswa.2025.127733_b0250 article-title: Heterogeneous cognitive learning particle swarm optimization for large-scale optimization problems publication-title: Information Sciences doi: 10.1016/j.ins.2023.03.086 – volume: 7 issue: 11 year: 2006 ident: 10.1016/j.eswa.2025.127733_b0010 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: Journal of machine learning research – volume: 4 start-page: 87 issue: 1 year: 1985 ident: 10.1016/j.eswa.2025.127733_b0030 article-title: A wilcoxon‐type test for trend publication-title: Statistics in Medicine doi: 10.1002/sim.4780040112 – ident: 10.1016/j.eswa.2025.127733_b0070 doi: 10.1109/CEC.2002.1004493 – volume: 2016 start-page: 1188 year: 2016 ident: 10.1016/j.eswa.2025.127733_b0020 article-title: iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 26 start-page: 823 issue: 5 year: 2022 ident: 10.1016/j.eswa.2025.127733_b0120 article-title: A Review of Population-Based Metaheuristics for Large-Scale Black-Box Global Optimization—Part II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2021.3130835 – volume: 33 start-page: 5057 issue: 9 year: 2022 ident: 10.1016/j.eswa.2025.127733_b0230 article-title: Learning Improvement Heuristics for Solving Routing Problems publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3068828 – volume: 2015 start-page: 353 year: 2015 ident: 10.1016/j.eswa.2025.127733_b0075 article-title: Rank-based differential evolution with multiple mutation strategies for large scale global optimization publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 2019 start-page: 1228 year: 2019 ident: 10.1016/j.eswa.2025.127733_b0015 article-title: An Analysis of Minimum Population Search on Large Scale Global Optimization publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.eswa.2025.127733_b0040 article-title: Ant colony optimization publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2006.329691 – volume: 50 year: 2019 ident: 10.1016/j.eswa.2025.127733_b0155 article-title: A review of the recent use of Differential Evolution for Large-Scale Global Optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.08.005 – volume: 24 start-page: 1112 issue: 6 year: 2020 ident: 10.1016/j.eswa.2025.127733_b0085 article-title: A Hybrid Deep Grouping Algorithm for Large Scale Global Optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2020.2985672 – volume: 18 start-page: 378 issue: 3 year: 2014 ident: 10.1016/j.eswa.2025.127733_b0105 article-title: Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281543 – volume: 291 start-page: 43 year: 2015 ident: 10.1016/j.eswa.2025.127733_b0025 article-title: A social learning particle swarm optimization algorithm for scalable optimization publication-title: Information Sciences doi: 10.1016/j.ins.2014.08.039 – ident: 10.1016/j.eswa.2025.127733_b0125 – volume: 6 start-page: 80 issue: 1 year: 1959 ident: 10.1016/j.eswa.2025.127733_b0035 article-title: The Truck Dispatching Problem publication-title: Management Science doi: 10.1287/mnsc.6.1.80 – volume: 1–8 year: 2010 ident: 10.1016/j.eswa.2025.127733_b0110 article-title: Cooperative Co-evolution with delta grouping for large scale non-separable function optimization publication-title: IEEE Congress on Evolutionary Computation – volume: 17 start-page: 81 issue: 1 year: 1995 ident: 10.1016/j.eswa.2025.127733_b0210 article-title: An evaluation of intrinsic dimensionality estimators publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.368147 – volume: 45 start-page: 191 issue: 2 year: 2015 ident: 10.1016/j.eswa.2025.127733_b0140 article-title: A Competitive Swarm Optimizer for Large Scale Optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2322602 – volume: 50 start-page: 2715 issue: 6 year: 2020 ident: 10.1016/j.eswa.2025.127733_b0225 article-title: Dynamic Group Learning Distributed Particle Swarm Optimization for Large-Scale Optimization and Its Application in Cloud Workflow Scheduling publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2019.2933499 – ident: 10.1016/j.eswa.2025.127733_b0100 doi: 10.1109/SMC42975.2020.9283143 – volume: 163 start-page: 283 year: 2019 ident: 10.1016/j.eswa.2025.127733_b0260 article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.08.030 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2025.127733_b0175 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 22 start-page: 578 issue: 4 year: 2018 ident: 10.1016/j.eswa.2025.127733_b0240 article-title: A Level-Based Learning Swarm Optimizer for Large-Scale Optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2017.2743016 – volume: 85 year: 2019 ident: 10.1016/j.eswa.2025.127733_b0180 article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105744 – volume: 2008 start-page: 1663 year: 2008 ident: 10.1016/j.eswa.2025.127733_b0265 article-title: Multilevel cooperative coevolution for large scale optimization publication-title: IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) doi: 10.1109/CEC.2008.4631014 – volume: PAMI-1(1) start-page: 25 year: 1979 ident: 10.1016/j.eswa.2025.127733_b0130 article-title: An Intrinsic Dimensionality Estimator from Near-Neighbor Information publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1979.4766873 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 10.1016/j.eswa.2025.127733_b0195 article-title: A Global Geometric Framework for Nonlinear Dimensionality Reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 10.1016/j.eswa.2025.127733_b0150 article-title: Nonlinear Dimensionality Reduction by Locally Linear Embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 225 start-page: 155 issue: 1 year: 1987 ident: 10.1016/j.eswa.2025.127733_b0050 article-title: A multidimensional version of the Kolmogorov–Smirnov test publication-title: Monthly Notices of the Royal Astronomical Society doi: 10.1093/mnras/225.1.155 – volume: 80 year: 2023 ident: 10.1016/j.eswa.2025.127733_b0255 article-title: Differential evolution with objective and dimension knowledge utilization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2023.101322 – volume: 214 start-page: 108 issue: 1 year: 2009 ident: 10.1016/j.eswa.2025.127733_b0065 article-title: A comparative study of Artificial Bee Colony algorithm publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2009.03.090 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.eswa.2025.127733_b0185 article-title: Large scale optimization by differential evolution with landscape modality detection and a diversity archive publication-title: IEEE Congress on Evolutionary Computation – volume: 27 start-page: 1355 issue: 5 year: 2023 ident: 10.1016/j.eswa.2025.127733_b0235 article-title: Difficulty and Contribution-Based Cooperative Coevolution for Large-Scale Optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2022.3201691 – volume: 7 start-page: 8 issue: 33 year: 2013 ident: 10.1016/j.eswa.2025.127733_b0080 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization publication-title: gene – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.eswa.2025.127733_b0045 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE International Conference on Neural Networks doi: 10.1109/ICNN.1995.488968 – volume: 77 year: 2023 ident: 10.1016/j.eswa.2025.127733_b0090 article-title: Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2023.101248 – ident: 10.1016/j.eswa.2025.127733_b0095 doi: 10.1002/9780470479216.corpsy0491 – volume: Vol. 866 start-page: 249 year: 1994 ident: 10.1016/j.eswa.2025.127733_b0135 article-title: A cooperative coevolutionary approach to function optimization – volume: 51 start-page: 1175 issue: 3 year: 2021 ident: 10.1016/j.eswa.2025.127733_b0220 article-title: Adaptive Granularity Learning Distributed Particle Swarm Optimization for Large-Scale Optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2020.2977956 |
| SSID | ssj0017007 |
| Score | 2.4745648 |
| Snippet | •Proposing a mechanism to improve heuristics by extracting effective dimensions.•Using manifold learning to filter redundant dimensions in particles.•Mapping... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 127733 |
| SubjectTerms | Capacitated Vehicle Routing Problem Complex high-dimensional problems Manifold learning Meta-heuristic optimization algorithm |
| Title | Effective Dimension Extraction Mechanism: A novel mechanism for meta-heuristic algorithms in solving complex high-dimensional problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.127733 |
| Volume | 285 |
| WOSCitedRecordID | wos001490662200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVglwMXvtEuX_KBW5TVxonjmFuFigDBColF6i1ybJdmtZtWbVr6C_jdzMR20i0IARKXqLIUJ8q8TCcz894Q8pKrBCVf0njKmERKjooleME4ZVIVgqWZVJ3O7AdxdlZMJvKTL8WsunECommK7VYu_qupYQ2MjdTZvzB3vykswG8wOhzB7HD8I8M7PeKuIQiV-zEbFo237dIPBf9okevr-y1GUTPfWOSP-MWu6_DKtiqe2bUTcY7U5df5sm5nV13rLNz8xhN1F5d2G6HecWzClZDX5UbUrK7l_FFQufWy0YFQt1M6H0pTXTCt_N8proSW4VrN1HzI3HbQWNe7SQvG-5Y5n0kLbJqhdcmlJEWcJW5qT_DOzE30-cnTu6TDxYldfUP5KMZPEiaEE9XYU9D-jBvjvhDuJRBfiZvkkAkuwY8fjt6NJ-_7spM4dfz6cCOeZeUaAvev9OtIZic6Ob9H7vjPCjpycLhPbtjmAbkbRnZQ78Efku89OmiPDjqgg_boeEVHtMMG7bFBARv0OjbogA1aN9Rjg3ps0H1s0ICNR-TLm_H567exH8URa1YkbZxr-ArLeGGmuaxspQy8x1wrprM80cxYg_X4ShuuBasKDoGfNTbhhjGT5tpk6WNy0Mwbe0QoV5plohLCqDQz6anUJpVFbvUUlc1sfkyi8FjLhVNcKUMr4kWJRijRCKUzwjHh4cmXPmZ0sWAJQPnNeU_-8byn5PaA52fkoF2u7XNyS2_aerV84fH0Ay9Gl1c |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Dimension+Extraction+Mechanism%3A+A+novel+mechanism+for+meta-heuristic+algorithms+in+solving+complex+high-dimensional+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Su%2C+Fang&rft.au=Song%2C+Jiahao&rft.au=He%2C+Rui&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=285&rft_id=info:doi/10.1016%2Fj.eswa.2025.127733&rft.externalDocID=S0957417425013557 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |