Coupling of a lightweight model of reduced convolutional autoencoder with linear SVM classifier to detect brain tumours on FPGA
In the field of computer assisted diagnosis, classification of tumours using lightweight machine learning algorithms require a complete detection chain of pattern recognition process. The diagnosis system can be made portable by using Field Programmable Gate Arrays (FPGAs) which accommodates the cap...
Saved in:
| Published in: | Expert systems with applications Vol. 290; p. 128444 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
25.09.2025
|
| Subjects: | |
| ISSN: | 0957-4174 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In the field of computer assisted diagnosis, classification of tumours using lightweight machine learning algorithms require a complete detection chain of pattern recognition process. The diagnosis system can be made portable by using Field Programmable Gate Arrays (FPGAs) which accommodates the capabilities of high speed parallel processing. This work proposes the design of a lightweight custom Intellectual Property (IP) core on FPGA to discriminate brain tumours into benign and malignant categories. The framework of the proposed IP core is initiated by a preprocessing module to get a clear outline of tumours. Following this preprocessing step, a dual-stack Reduced Convolutional Autoencoder (RCA) unit is coupled with a linear Support Vector Machine (SVM) classifier. The proposed RCA unit extracts a set of 64 numbers of significant feature maps which in turn eliminate the necessity of deep learning based complex classifiers. This IP core has been tested and validated by the standard benchmark datasets of brain tumours and we have found the overall accuracy of 98.77 % using only 3.08 % of available resources in the FPGA board. Further, inclusion of loop unrolling optimization technique boosts up its pipeline processing power. In this view, the customized design of such lightweight embedded IP core is able to resolve the challenges of achieving high quality results in a resource/power constrained environment. |
|---|---|
| AbstractList | In the field of computer assisted diagnosis, classification of tumours using lightweight machine learning algorithms require a complete detection chain of pattern recognition process. The diagnosis system can be made portable by using Field Programmable Gate Arrays (FPGAs) which accommodates the capabilities of high speed parallel processing. This work proposes the design of a lightweight custom Intellectual Property (IP) core on FPGA to discriminate brain tumours into benign and malignant categories. The framework of the proposed IP core is initiated by a preprocessing module to get a clear outline of tumours. Following this preprocessing step, a dual-stack Reduced Convolutional Autoencoder (RCA) unit is coupled with a linear Support Vector Machine (SVM) classifier. The proposed RCA unit extracts a set of 64 numbers of significant feature maps which in turn eliminate the necessity of deep learning based complex classifiers. This IP core has been tested and validated by the standard benchmark datasets of brain tumours and we have found the overall accuracy of 98.77 % using only 3.08 % of available resources in the FPGA board. Further, inclusion of loop unrolling optimization technique boosts up its pipeline processing power. In this view, the customized design of such lightweight embedded IP core is able to resolve the challenges of achieving high quality results in a resource/power constrained environment. |
| ArticleNumber | 128444 |
| Author | Chatterjee, Soumita Pandit, Soumya Das, Arpita |
| Author_xml | – sequence: 1 givenname: Soumita orcidid: 0009-0006-4559-5775 surname: Chatterjee fullname: Chatterjee, Soumita email: csoumita45@gmail.com – sequence: 2 givenname: Soumya surname: Pandit fullname: Pandit, Soumya email: sprpe@caluniv.ac.in – sequence: 3 givenname: Arpita orcidid: 0000-0002-5939-2382 surname: Das fullname: Das, Arpita email: adrpe@caluniv.ac.in |
| BookMark | eNp9kE1PAjEQhnvARED_gKf-gcV2v7okXggRNMFo4se16bZTKFla0nYhnvzrdoNnL52kM89knneCRtZZQOiOkhkltL7fzyCcxSwneTWjeVOW5QiNybxiWUlZeY0mIewJoYwQNkY_S9cfO2O32GkscGe2u3iG4cUHp6Abvj2oXoLC0tmT6_ponBUdFn10YGUa8vhs4i6xFoTH718vWHYiBKNNakWHFUSQEbdeGItjf3C9D9hZvHpbL27QlRZdgNu_OkWfq8eP5VO2eV0_LxebTOYNjVkJVV0wUVQK2rbQBRGEtiKvqBRVkpJENUIVCuS80VA3VavnumZaC1YSJlReTFF-2Su9C8GD5kdvDsJ_c0r4EBvf8yE2PsTGL7El6OECQbrslGx4kCY5gzI-GXHlzH_4L-9hfWA |
| Cites_doi | 10.1007/s11042-023-17895-1 10.1109/ACCESS.2024.3506334 10.1016/j.vlsi.2023.04.003 10.1016/j.eswa.2020.114410 10.1109/ACCESS.2018.2890150 10.1186/s12859-021-04347-6 10.3390/app8040504 10.1016/j.patcog.2023.109879 10.1109/ACCESS.2022.3229767 10.1007/s00034-025-03071-3 10.1109/TIP.2024.3381435 10.1109/ACCESS.2020.3029576 10.1016/j.compbiomed.2024.109258 10.14569/IJACSA.2024.0150161 10.1109/ACCESS.2023.3242666 10.1007/s00034-022-02233-x 10.1016/j.vlsi.2021.08.004 10.1016/j.eswa.2024.123329 10.1016/j.micpro.2018.12.005 10.1109/DevIC63749.2025.11012554 10.1007/s40747-022-00815-5 10.3390/s21082637 10.1007/s13198-022-01819-7 10.1007/s11042-023-15121-6 10.1186/s12911-023-02114-6 10.1109/ISAECT47714.2019.9069724 10.1109/VDAT63601.2024.10705706 10.1007/s40747-021-00563-y 10.4236/jcc.2019.73002 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2025.128444 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2025_128444 S0957417425020639 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACLOT ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAAKG AAQXK AAYXX ABKBG ABUFD ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT |
| ID | FETCH-LOGICAL-c281t-4e5637a35debb3f30a01ba251ca5174c0d8ad3dec98fe685bf9f67ffa7407ad23 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001508615200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 07:40:04 EST 2025 Sat Sep 27 17:13:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FPGAs Feature maps Reduced Convolutional Autoencoder Linear SVM Brain Tumour Loop unrolling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c281t-4e5637a35debb3f30a01ba251ca5174c0d8ad3dec98fe685bf9f67ffa7407ad23 |
| ORCID | 0000-0002-5939-2382 0009-0006-4559-5775 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_128444 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128444 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-25 |
| PublicationDateYYYYMMDD | 2025-09-25 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ahmadilivani, Bosio, Deveautour, Santos, Balaguera, Jenihhin, Traiola (b0010) 2022; 10 Chatterjee, Pandit, Das (b0040) 2024 Rayapati, Gogireddy, Gandi, Gajawada, Sanampudi, Rao (b0140) 2024 Liu, Tong, Chen, Jiang, Zhou, Zhang, Zhang, Jin, Zhou (b0105) 2022; 9 Xiong, Wu, Fan, Feng, Huang, Cao, Shi (b0190) 2021; 22 Deepesh, Latha (b0065) 2025 Liu, He, Cai, Kwak, Wang (bib201) 2024 Zhou, Chen, Li, Wang, Cheng, Jupeng (b0200) 2021; 168 Retrieved November 20, 2024 from . Saidi, Othman, Dhouibi, Saoud (b0155) 2021; 81 Afifi, Gholam Hosseini, Sinha (b0005) 2018; 65 Li, Zhang, Wang, Zhang, Wang, Gu, Xu (b0095) 2024; 183 Saeedi, Rezayi, Keshavarz, Kalhori (b0145) 2023; 23 Lu, Zhang, Zhao, Liu, Wang, Li (b0110) 2024; 33 Phu, Tan, Men, Hieu, Cuong (b0125) 2019 Pérez, Figueroa (b0120) 2021; 21 Saglam, S., Tat, F., and Bayar, S. (2019, November). FPGA implementation of CNN algorithm for detecting malaria diseased blood cells. 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). https://doi.org/10.1109/isaect47714.2019.9069724. Biswas, S., Pandit, S., and Das, A. (2024). Retrieved November 20, 2024, from Que, Zhang, Fan, Li, Guo, Luk (b0130) 2024; 1 Sara, Akter, Uddin (b0160) 2019; 7 Zhao, Jia, Wei, Wang (b0195) 2018; 8 Ramtekkar, Pandey, Pawar (b0135) 2023; 14 Amin, Sharif, Haldorai, Yasmin, Nayak (b0015) 2021; 8 28th International Symposium on VLSI Design and Test (VDAT), 2024, pp. 1–6. 10.1109/VDAT63601.2024.10705706. Bhuvaji, S. (n.d.). Brain tumor classification (MRI). Li, Zhu, Zhu, Yang, Shi, Jiang, Xing (b0100) 2021 Solanki, Singh, Chouhan, Jain (b0175) 2023; 11 Chatterjee, S., Pandit, S., and Das, A. (April, 2025). Design of Lightweight Custom IP Core on FPGA to Discriminate Brain Tumors of MR Data. 6th IEEE Conference on Devices for Integrated Circuits (DevIC 2025), Kalyani, India, 2025, pp. 412–417, doi: 10.1109/DevIC63749.2025.11012148. . Das, Das (b0055) 2023; 144 Issa, Helmi, Elsheikh, Elaziz (b0080) 2021; 189 Shin, Onizawa, Gross, Hanyu (b0170) 2020; 8 Gereon, Hands-on machine learning with sci-kit learn, keras and Tensorflow: Concepts, tools and techniques to build intelligent systems., 3rd Edition, O’Reilly Media, Sebastopol, CA, 2022. Lal, Chanchal, Kini, Upadhyay (b0085) 2024; 83 Brain Tumor Dataset. (2017). Dao-Xuan, Nghiem-Tuan, Truong-Dai, Ong-Tung, Hoang-Phuong, Nguyen-Duc (b0050) 2024; 2024 Baba, Bonny (b0020) 2023; 92 Das, Das (b0060) 2024; 247 Guddati, Dash, Tripathy (b0075) 2024; 1 Laxmisagar, Hanumantharaju (b0090) 2023; 82 Neiso, Muchuka, Mambo (b0115) 2024; 15 Tabassum, Islam, Bulbul (b0180) 2022; 42 Vinod, Guddati, Panda, Tripathy (b0185) 2024; 12 Shawahna, Sait, El-Maleh (b0165) 2018; 7 10.1016/j.eswa.2025.128444_b0025 Que (10.1016/j.eswa.2025.128444_b0130) 2024; 1 10.1016/j.eswa.2025.128444_b0045 Chatterjee (10.1016/j.eswa.2025.128444_b0040) 2024 Sara (10.1016/j.eswa.2025.128444_b0160) 2019; 7 Issa (10.1016/j.eswa.2025.128444_b0080) 2021; 189 Solanki (10.1016/j.eswa.2025.128444_b0175) 2023; 11 Phu (10.1016/j.eswa.2025.128444_b0125) 2019 Shin (10.1016/j.eswa.2025.128444_b0170) 2020; 8 Amin (10.1016/j.eswa.2025.128444_b0015) 2021; 8 Pérez (10.1016/j.eswa.2025.128444_b0120) 2021; 21 Neiso (10.1016/j.eswa.2025.128444_b0115) 2024; 15 Afifi (10.1016/j.eswa.2025.128444_b0005) 2018; 65 Zhao (10.1016/j.eswa.2025.128444_b0195) 2018; 8 Xiong (10.1016/j.eswa.2025.128444_b0190) 2021; 22 Lal (10.1016/j.eswa.2025.128444_b0085) 2024; 83 Tabassum (10.1016/j.eswa.2025.128444_b0180) 2022; 42 Lu (10.1016/j.eswa.2025.128444_b0110) 2024; 33 Deepesh (10.1016/j.eswa.2025.128444_b0065) 2025 Li (10.1016/j.eswa.2025.128444_b0095) 2024; 183 10.1016/j.eswa.2025.128444_b0035 Shawahna (10.1016/j.eswa.2025.128444_b0165) 2018; 7 Vinod (10.1016/j.eswa.2025.128444_b0185) 2024; 12 Zhou (10.1016/j.eswa.2025.128444_b0200) 2021; 168 Ahmadilivani (10.1016/j.eswa.2025.128444_b0010) 2022; 10 Rayapati (10.1016/j.eswa.2025.128444_b0140) 2024 10.1016/j.eswa.2025.128444_b0150 Saidi (10.1016/j.eswa.2025.128444_b0155) 2021; 81 10.1016/j.eswa.2025.128444_b0070 10.1016/j.eswa.2025.128444_b0030 Guddati (10.1016/j.eswa.2025.128444_b0075) 2024; 1 Dao-Xuan (10.1016/j.eswa.2025.128444_b0050) 2024; 2024 Das (10.1016/j.eswa.2025.128444_b0060) 2024; 247 Liu (10.1016/j.eswa.2025.128444_bib201) 2024 Baba (10.1016/j.eswa.2025.128444_b0020) 2023; 92 Laxmisagar (10.1016/j.eswa.2025.128444_b0090) 2023; 82 Ramtekkar (10.1016/j.eswa.2025.128444_b0135) 2023; 14 Liu (10.1016/j.eswa.2025.128444_b0105) 2022; 9 Das (10.1016/j.eswa.2025.128444_b0055) 2023; 144 Li (10.1016/j.eswa.2025.128444_b0100) 2021 Saeedi (10.1016/j.eswa.2025.128444_b0145) 2023; 23 |
| References_xml | – volume: 81 start-page: 280 year: 2021 end-page: 299 ident: b0155 article-title: FPGA-based implementation of classification techniques: A survey – volume: 33 start-page: 2770 year: 2024 end-page: 2782 ident: b0110 article-title: Anomaly detection for medical images using heterogeneous auto-encoder – volume: 83 start-page: 60583 year: 2024 end-page: 60601 ident: b0085 article-title: FPGA implementation of deep learning architecture for kidney cancer detection from histopathological images – volume: 23 year: 2023 ident: b0145 article-title: MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques – start-page: 298 year: 2019 end-page: 302 ident: b0125 article-title: Design and implementation of configurable convolutional neural network on FPGA – volume: 22 year: 2021 ident: b0190 article-title: MRI-based brain tumor segmentation using FPGA-accelerated neural network – reference: Gereon, Hands-on machine learning with sci-kit learn, keras and Tensorflow: Concepts, tools and techniques to build intelligent systems., 3rd Edition, O’Reilly Media, Sebastopol, CA, 2022. – volume: 1 year: 2024 ident: b0075 article-title: FPGA implementation of the proposed DCNN model for detection of tuberculosis and pneumonia using CXR images – volume: 92 start-page: 15 year: 2023 end-page: 23 ident: b0020 article-title: FPGA-based parallel implementation to classify hyperspectral images by using a convolutional neural network – reference: Brain Tumor Dataset. (2017). – volume: 247 year: 2024 ident: b0060 article-title: Multi-scale cross spectral coherence and phase spectral distribution based measurement in non-subsampled shearlet domain for classification of brain tumors – reference: Biswas, S., Pandit, S., and Das, A. (2024). – start-page: 1 year: 2024 end-page: 6 ident: b0040 publication-title: 28th International Symposium on VLSI Design and Test (VDAT) – volume: 21 start-page: 2637 year: 2021 ident: b0120 article-title: A heterogeneous hardware accelerator for image classification in embedded systems – volume: 189 year: 2021 ident: b0080 article-title: A biological sub-sequences detection using integrated BA-PSO based on infection propagation mechanism: Case study COVID-19 – volume: 7 start-page: 7823 year: 2018 end-page: 7859 ident: b0165 article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review – volume: 82 start-page: 41105 year: 2023 end-page: 41128 ident: b0090 article-title: FPGA implementation of breast cancer detection using SVM linear classifier – volume: 9 start-page: 1001 year: 2022 end-page: 1026 ident: b0105 article-title: Deep learning based brain tumor segmentation: A survey – reference: . Retrieved November 20, 2024, from – reference: Saglam, S., Tat, F., and Bayar, S. (2019, November). FPGA implementation of CNN algorithm for detecting malaria diseased blood cells. 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). https://doi.org/10.1109/isaect47714.2019.9069724. – reference: Chatterjee, S., Pandit, S., and Das, A. (April, 2025). Design of Lightweight Custom IP Core on FPGA to Discriminate Brain Tumors of MR Data. 6th IEEE Conference on Devices for Integrated Circuits (DevIC 2025), Kalyani, India, 2025, pp. 412–417, doi: 10.1109/DevIC63749.2025.11012148. – volume: 1 year: 2024 ident: b0130 article-title: Low latency variational autoencoder on FPGAs – reference: . Retrieved November 20, 2024 from . – year: 2025 ident: b0065 article-title: FPGA based MRI brain tumor segmentation using modified FCM method – volume: 10 start-page: 131788 year: 2022 end-page: 131828 ident: b0010 article-title: Efficient hardware architectures for accelerating deep neural networks: Survey – volume: 65 start-page: 57 year: 2018 end-page: 68 ident: b0005 article-title: A system on chip for melanoma detection using FPGA-based SVM classifier – year: 2024 ident: bib201 article-title: Synthesizing Document Database Queries using Collection Abstractions – reference: . – volume: 14 start-page: 459 year: 2023 end-page: 473 ident: b0135 article-title: Innovative brain tumor detection using optimized deep learning techniques – year: 2021 ident: b0100 publication-title: 2021 IEEE Int. Conf. Advances in Electrical Engg. and Computer Applications (AEECA) – volume: 15 year: 2024 ident: b0115 article-title: FPGA-based implementation of a resource-efficient UNET model for brain tumour segmentation – volume: 8 start-page: 3161 year: 2021 end-page: 3183 ident: b0015 article-title: Brain tumor detection and classification using machine learning: A comprehensive survey – volume: 183 year: 2024 ident: b0095 article-title: Lightweight skin cancer detection IP hardware implementation using cycle expansion and optimal computation arrays methods – volume: 11 start-page: 12870 year: 2023 end-page: 12886 ident: b0175 article-title: Brain tumor detection and classification using intelligence techniques: An overview – reference: Bhuvaji, S. (n.d.). Brain tumor classification (MRI). – volume: 2024 start-page: 113 year: 2024 end-page: 118 ident: b0050 article-title: Implementing convolutional auto encoder on FPGA using high level synthesis – volume: 12 start-page: 179190 year: 2024 end-page: 179203 ident: b0185 article-title: A lightweight deep convolutional neural network implemented on FPGA and android devices for detection of breast cancer using ultrasound images – volume: 8 start-page: 504 year: 2018 ident: b0195 article-title: An FPGA implementation of a convolutional auto-encoder – volume: 8 start-page: 188004 year: 2020 end-page: 188014 ident: b0170 article-title: Training hardware for binarized convolutional neural network based on CMOS invertible logic – volume: 168 year: 2021 ident: b0200 article-title: 3D multi-view tumor detection in automated whole breast ultrasound using deep convolutional neural network – volume: 144 year: 2023 ident: b0055 article-title: Estimation of interlayer textural relationships to discriminate the benignancy/malignancy of brain tumors – volume: 7 start-page: 8 year: 2019 end-page: 18 ident: b0160 article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study – reference: , 28th International Symposium on VLSI Design and Test (VDAT), 2024, pp. 1–6. 10.1109/VDAT63601.2024.10705706. – year: 2024 ident: b0140 article-title: FPGA-based hardware software co-design to accelerate brain tumour segmentation – volume: 42 start-page: 724 year: 2022 end-page: 747 ident: b0180 article-title: Brain tumor detection from brain MRI using soft IP core on FPGA – volume: 83 start-page: 60583 issue: 21 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0085 article-title: FPGA implementation of deep learning architecture for kidney cancer detection from histopathological images publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-17895-1 – volume: 12 start-page: 179190 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0185 article-title: A lightweight deep convolutional neural network implemented on FPGA and android devices for detection of breast cancer using ultrasound images publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3506334 – volume: 92 start-page: 15 year: 2023 ident: 10.1016/j.eswa.2025.128444_b0020 article-title: FPGA-based parallel implementation to classify hyperspectral images by using a convolutional neural network publication-title: Integration doi: 10.1016/j.vlsi.2023.04.003 – ident: 10.1016/j.eswa.2025.128444_b0070 – year: 2021 ident: 10.1016/j.eswa.2025.128444_b0100 article-title: FPGA realization of stacked auto-encoder with three fully connected layers – volume: 168 year: 2021 ident: 10.1016/j.eswa.2025.128444_b0200 article-title: 3D multi-view tumor detection in automated whole breast ultrasound using deep convolutional neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114410 – volume: 2024 start-page: 113 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0050 article-title: Implementing convolutional auto encoder on FPGA using high level synthesis publication-title: Tenth International Conference on Communications and Electronics (ICCE) – year: 2024 ident: 10.1016/j.eswa.2025.128444_bib201 – volume: 7 start-page: 7823 year: 2018 ident: 10.1016/j.eswa.2025.128444_b0165 article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890150 – volume: 1 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0075 article-title: FPGA implementation of the proposed DCNN model for detection of tuberculosis and pneumonia using CXR images publication-title: IEEE Embedded Systems Letters – volume: 22 issue: 1 year: 2021 ident: 10.1016/j.eswa.2025.128444_b0190 article-title: MRI-based brain tumor segmentation using FPGA-accelerated neural network publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-04347-6 – volume: 8 start-page: 504 issue: 4 year: 2018 ident: 10.1016/j.eswa.2025.128444_b0195 article-title: An FPGA implementation of a convolutional auto-encoder publication-title: Applied Sciences doi: 10.3390/app8040504 – volume: 144 year: 2023 ident: 10.1016/j.eswa.2025.128444_b0055 article-title: Estimation of interlayer textural relationships to discriminate the benignancy/malignancy of brain tumors publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.109879 – volume: 10 start-page: 131788 year: 2022 ident: 10.1016/j.eswa.2025.128444_b0010 article-title: Efficient hardware architectures for accelerating deep neural networks: Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3229767 – ident: 10.1016/j.eswa.2025.128444_b0035 – year: 2025 ident: 10.1016/j.eswa.2025.128444_b0065 article-title: FPGA based MRI brain tumor segmentation using modified FCM method publication-title: Circuits Systems and Signal Processing doi: 10.1007/s00034-025-03071-3 – volume: 33 start-page: 2770 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0110 article-title: Anomaly detection for medical images using heterogeneous auto-encoder publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2024.3381435 – year: 2024 ident: 10.1016/j.eswa.2025.128444_b0140 article-title: FPGA-based hardware software co-design to accelerate brain tumour segmentation – volume: 8 start-page: 188004 year: 2020 ident: 10.1016/j.eswa.2025.128444_b0170 article-title: Training hardware for binarized convolutional neural network based on CMOS invertible logic publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029576 – volume: 183 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0095 article-title: Lightweight skin cancer detection IP hardware implementation using cycle expansion and optimal computation arrays methods publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2024.109258 – volume: 15 issue: 1 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0115 article-title: FPGA-based implementation of a resource-efficient UNET model for brain tumour segmentation publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2024.0150161 – volume: 1 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0130 article-title: Low latency variational autoencoder on FPGAs publication-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems – volume: 11 start-page: 12870 year: 2023 ident: 10.1016/j.eswa.2025.128444_b0175 article-title: Brain tumor detection and classification using intelligence techniques: An overview publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3242666 – volume: 42 start-page: 724 issue: 2 year: 2022 ident: 10.1016/j.eswa.2025.128444_b0180 article-title: Brain tumor detection from brain MRI using soft IP core on FPGA publication-title: Circuits Systems and Signal Processing doi: 10.1007/s00034-022-02233-x – volume: 81 start-page: 280 year: 2021 ident: 10.1016/j.eswa.2025.128444_b0155 article-title: FPGA-based implementation of classification techniques: A survey publication-title: Integration doi: 10.1016/j.vlsi.2021.08.004 – volume: 247 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0060 article-title: Multi-scale cross spectral coherence and phase spectral distribution based measurement in non-subsampled shearlet domain for classification of brain tumors publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2024.123329 – volume: 189 year: 2021 ident: 10.1016/j.eswa.2025.128444_b0080 article-title: A biological sub-sequences detection using integrated BA-PSO based on infection propagation mechanism: Case study COVID-19 publication-title: Expert Systems with Applications – ident: 10.1016/j.eswa.2025.128444_b0025 – volume: 65 start-page: 57 year: 2018 ident: 10.1016/j.eswa.2025.128444_b0005 article-title: A system on chip for melanoma detection using FPGA-based SVM classifier publication-title: Microprocessors and Microsystems doi: 10.1016/j.micpro.2018.12.005 – ident: 10.1016/j.eswa.2025.128444_b0045 doi: 10.1109/DevIC63749.2025.11012554 – start-page: 298 year: 2019 ident: 10.1016/j.eswa.2025.128444_b0125 article-title: Design and implementation of configurable convolutional neural network on FPGA – volume: 9 start-page: 1001 issue: 1 year: 2022 ident: 10.1016/j.eswa.2025.128444_b0105 article-title: Deep learning based brain tumor segmentation: A survey publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-022-00815-5 – volume: 21 start-page: 2637 issue: 8 year: 2021 ident: 10.1016/j.eswa.2025.128444_b0120 article-title: A heterogeneous hardware accelerator for image classification in embedded systems publication-title: Sensors doi: 10.3390/s21082637 – volume: 14 start-page: 459 issue: 1 year: 2023 ident: 10.1016/j.eswa.2025.128444_b0135 article-title: Innovative brain tumor detection using optimized deep learning techniques publication-title: International Journal of Systems Assurance Engineering and Management doi: 10.1007/s13198-022-01819-7 – volume: 82 start-page: 41105 issue: 26 year: 2023 ident: 10.1016/j.eswa.2025.128444_b0090 article-title: FPGA implementation of breast cancer detection using SVM linear classifier publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-15121-6 – volume: 23 issue: 1 year: 2023 ident: 10.1016/j.eswa.2025.128444_b0145 article-title: MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-023-02114-6 – ident: 10.1016/j.eswa.2025.128444_b0150 doi: 10.1109/ISAECT47714.2019.9069724 – ident: 10.1016/j.eswa.2025.128444_b0030 doi: 10.1109/VDAT63601.2024.10705706 – volume: 8 start-page: 3161 issue: 4 year: 2021 ident: 10.1016/j.eswa.2025.128444_b0015 article-title: Brain tumor detection and classification using machine learning: A comprehensive survey publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-021-00563-y – volume: 7 start-page: 8 issue: 3 year: 2019 ident: 10.1016/j.eswa.2025.128444_b0160 article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study publication-title: Journal of Computer and Communications doi: 10.4236/jcc.2019.73002 – start-page: 1 year: 2024 ident: 10.1016/j.eswa.2025.128444_b0040 article-title: Design of FPGA based custom IP core to detect the edges of brain tumors |
| SSID | ssj0017007 |
| Score | 2.478744 |
| Snippet | In the field of computer assisted diagnosis, classification of tumours using lightweight machine learning algorithms require a complete detection chain of... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 128444 |
| SubjectTerms | Brain Tumour Feature maps FPGAs Linear SVM Loop unrolling Reduced Convolutional Autoencoder |
| Title | Coupling of a lightweight model of reduced convolutional autoencoder with linear SVM classifier to detect brain tumours on FPGA |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.128444 |
| Volume | 290 |
| WOSCitedRecordID | wos001508615200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydIdd9h7WvaDDboYLvy0fg67dA1sRoF2RmyFZEpAgtQPXbrtT_3pJS0rSbhi2AbsYhhLLAvlZoijyIyHvM6Yl7NG4H4iA-4ngyhcsVT6s5lUcKVHkgyv79Gt-dMRms2I6GvUuF-Zimdc1u7oqVv9V1dAGysbU2b9Q97pTaIB7UDpcQe1w_SPF7zf9amljmbm3xM335eD_NFVvsLlFvlYlh5BzOxakDOi7BmktkV1icM-iBcpb7_j0m1ehkT3XmJoCxqpUePTgCSwv4XX9GQxrOHU4nH6c3HL1I49yZ9miXR7d1on5VmwBJhUtLGl_05_Nu_VyMcXEm8798GPd_sGkok3alfuzdV5EKUZamERn41FzWTWbECbjmsz9JDTVe9wsHZmqoj_N-Mb5sNhT55dIIxWle7jiGk7JO0zax9gx9gtmX4Sm2T2yE-VpwcZkZ_L5YPZlffwEAM0NSaMZiM22MoGBd9_0a4tmy0o5eUwe2u0FnRhYPCEjVT8lj1zpDmpn8mfk2qGENppyuoUSOqAEmy1K6C2U0C2UUFQoNSihgBK6QQntGmpQQgeUUIsS2tQUUfKcfD88ONn_5NtaHH4VsbDzE5Vmcc7jFL5sEes44EEoOBjHFUeu8yqQjMtYqqpgWmUsFbrQWa41z5Mg5zKKX5Bx3dTqJaFayTBLBSyViiUwQ_AkC0MZpjKMQCdc7BLPybNcGcqV0sUiLkqUfonSL430d0nqRF5ao9EYgyUg5DfPvfrH516TBxsgvyHjru3VW3K_uujm5-07C6Qb_SyZHQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+of+a+lightweight+model+of+reduced+convolutional+autoencoder+with+linear+SVM+classifier+to+detect+brain+tumours+on+FPGA&rft.jtitle=Expert+systems+with+applications&rft.au=Chatterjee%2C+Soumita&rft.au=Pandit%2C+Soumya&rft.au=Das%2C+Arpita&rft.date=2025-09-25&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=290&rft_id=info:doi/10.1016%2Fj.eswa.2025.128444&rft.externalDocID=S0957417425020639 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |