Coupling of a lightweight model of reduced convolutional autoencoder with linear SVM classifier to detect brain tumours on FPGA

In the field of computer assisted diagnosis, classification of tumours using lightweight machine learning algorithms require a complete detection chain of pattern recognition process. The diagnosis system can be made portable by using Field Programmable Gate Arrays (FPGAs) which accommodates the cap...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 290; p. 128444
Main Authors: Chatterjee, Soumita, Pandit, Soumya, Das, Arpita
Format: Journal Article
Language:English
Published: Elsevier Ltd 25.09.2025
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the field of computer assisted diagnosis, classification of tumours using lightweight machine learning algorithms require a complete detection chain of pattern recognition process. The diagnosis system can be made portable by using Field Programmable Gate Arrays (FPGAs) which accommodates the capabilities of high speed parallel processing. This work proposes the design of a lightweight custom Intellectual Property (IP) core on FPGA to discriminate brain tumours into benign and malignant categories. The framework of the proposed IP core is initiated by a preprocessing module to get a clear outline of tumours. Following this preprocessing step, a dual-stack Reduced Convolutional Autoencoder (RCA) unit is coupled with a linear Support Vector Machine (SVM) classifier. The proposed RCA unit extracts a set of 64 numbers of significant feature maps which in turn eliminate the necessity of deep learning based complex classifiers. This IP core has been tested and validated by the standard benchmark datasets of brain tumours and we have found the overall accuracy of 98.77 % using only 3.08 % of available resources in the FPGA board. Further, inclusion of loop unrolling optimization technique boosts up its pipeline processing power. In this view, the customized design of such lightweight embedded IP core is able to resolve the challenges of achieving high quality results in a resource/power constrained environment.
AbstractList In the field of computer assisted diagnosis, classification of tumours using lightweight machine learning algorithms require a complete detection chain of pattern recognition process. The diagnosis system can be made portable by using Field Programmable Gate Arrays (FPGAs) which accommodates the capabilities of high speed parallel processing. This work proposes the design of a lightweight custom Intellectual Property (IP) core on FPGA to discriminate brain tumours into benign and malignant categories. The framework of the proposed IP core is initiated by a preprocessing module to get a clear outline of tumours. Following this preprocessing step, a dual-stack Reduced Convolutional Autoencoder (RCA) unit is coupled with a linear Support Vector Machine (SVM) classifier. The proposed RCA unit extracts a set of 64 numbers of significant feature maps which in turn eliminate the necessity of deep learning based complex classifiers. This IP core has been tested and validated by the standard benchmark datasets of brain tumours and we have found the overall accuracy of 98.77 % using only 3.08 % of available resources in the FPGA board. Further, inclusion of loop unrolling optimization technique boosts up its pipeline processing power. In this view, the customized design of such lightweight embedded IP core is able to resolve the challenges of achieving high quality results in a resource/power constrained environment.
ArticleNumber 128444
Author Chatterjee, Soumita
Pandit, Soumya
Das, Arpita
Author_xml – sequence: 1
  givenname: Soumita
  orcidid: 0009-0006-4559-5775
  surname: Chatterjee
  fullname: Chatterjee, Soumita
  email: csoumita45@gmail.com
– sequence: 2
  givenname: Soumya
  surname: Pandit
  fullname: Pandit, Soumya
  email: sprpe@caluniv.ac.in
– sequence: 3
  givenname: Arpita
  orcidid: 0000-0002-5939-2382
  surname: Das
  fullname: Das, Arpita
  email: adrpe@caluniv.ac.in
BookMark eNp9kE1PAjEQhnvARED_gKf-gcV2v7okXggRNMFo4se16bZTKFla0nYhnvzrdoNnL52kM89knneCRtZZQOiOkhkltL7fzyCcxSwneTWjeVOW5QiNybxiWUlZeY0mIewJoYwQNkY_S9cfO2O32GkscGe2u3iG4cUHp6Abvj2oXoLC0tmT6_ponBUdFn10YGUa8vhs4i6xFoTH718vWHYiBKNNakWHFUSQEbdeGItjf3C9D9hZvHpbL27QlRZdgNu_OkWfq8eP5VO2eV0_LxebTOYNjVkJVV0wUVQK2rbQBRGEtiKvqBRVkpJENUIVCuS80VA3VavnumZaC1YSJlReTFF-2Su9C8GD5kdvDsJ_c0r4EBvf8yE2PsTGL7El6OECQbrslGx4kCY5gzI-GXHlzH_4L-9hfWA
Cites_doi 10.1007/s11042-023-17895-1
10.1109/ACCESS.2024.3506334
10.1016/j.vlsi.2023.04.003
10.1016/j.eswa.2020.114410
10.1109/ACCESS.2018.2890150
10.1186/s12859-021-04347-6
10.3390/app8040504
10.1016/j.patcog.2023.109879
10.1109/ACCESS.2022.3229767
10.1007/s00034-025-03071-3
10.1109/TIP.2024.3381435
10.1109/ACCESS.2020.3029576
10.1016/j.compbiomed.2024.109258
10.14569/IJACSA.2024.0150161
10.1109/ACCESS.2023.3242666
10.1007/s00034-022-02233-x
10.1016/j.vlsi.2021.08.004
10.1016/j.eswa.2024.123329
10.1016/j.micpro.2018.12.005
10.1109/DevIC63749.2025.11012554
10.1007/s40747-022-00815-5
10.3390/s21082637
10.1007/s13198-022-01819-7
10.1007/s11042-023-15121-6
10.1186/s12911-023-02114-6
10.1109/ISAECT47714.2019.9069724
10.1109/VDAT63601.2024.10705706
10.1007/s40747-021-00563-y
10.4236/jcc.2019.73002
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.128444
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_128444
S0957417425020639
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACLOT
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c281t-4e5637a35debb3f30a01ba251ca5174c0d8ad3dec98fe685bf9f67ffa7407ad23
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001508615200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:40:04 EST 2025
Sat Sep 27 17:13:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords FPGAs
Feature maps
Reduced Convolutional Autoencoder
Linear SVM
Brain Tumour
Loop unrolling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-4e5637a35debb3f30a01ba251ca5174c0d8ad3dec98fe685bf9f67ffa7407ad23
ORCID 0000-0002-5939-2382
0009-0006-4559-5775
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_128444
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128444
PublicationCentury 2000
PublicationDate 2025-09-25
PublicationDateYYYYMMDD 2025-09-25
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-25
  day: 25
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahmadilivani, Bosio, Deveautour, Santos, Balaguera, Jenihhin, Traiola (b0010) 2022; 10
Chatterjee, Pandit, Das (b0040) 2024
Rayapati, Gogireddy, Gandi, Gajawada, Sanampudi, Rao (b0140) 2024
Liu, Tong, Chen, Jiang, Zhou, Zhang, Zhang, Jin, Zhou (b0105) 2022; 9
Xiong, Wu, Fan, Feng, Huang, Cao, Shi (b0190) 2021; 22
Deepesh, Latha (b0065) 2025
Liu, He, Cai, Kwak, Wang (bib201) 2024
Zhou, Chen, Li, Wang, Cheng, Jupeng (b0200) 2021; 168
Retrieved November 20, 2024 from .
Saidi, Othman, Dhouibi, Saoud (b0155) 2021; 81
Afifi, Gholam Hosseini, Sinha (b0005) 2018; 65
Li, Zhang, Wang, Zhang, Wang, Gu, Xu (b0095) 2024; 183
Saeedi, Rezayi, Keshavarz, Kalhori (b0145) 2023; 23
Lu, Zhang, Zhao, Liu, Wang, Li (b0110) 2024; 33
Phu, Tan, Men, Hieu, Cuong (b0125) 2019
Pérez, Figueroa (b0120) 2021; 21
Saglam, S., Tat, F., and Bayar, S. (2019, November). FPGA implementation of CNN algorithm for detecting malaria diseased blood cells. 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). https://doi.org/10.1109/isaect47714.2019.9069724.
Biswas, S., Pandit, S., and Das, A. (2024).
Retrieved November 20, 2024, from
Que, Zhang, Fan, Li, Guo, Luk (b0130) 2024; 1
Sara, Akter, Uddin (b0160) 2019; 7
Zhao, Jia, Wei, Wang (b0195) 2018; 8
Ramtekkar, Pandey, Pawar (b0135) 2023; 14
Amin, Sharif, Haldorai, Yasmin, Nayak (b0015) 2021; 8
28th International Symposium on VLSI Design and Test (VDAT), 2024, pp. 1–6. 10.1109/VDAT63601.2024.10705706.
Bhuvaji, S. (n.d.). Brain tumor classification (MRI).
Li, Zhu, Zhu, Yang, Shi, Jiang, Xing (b0100) 2021
Solanki, Singh, Chouhan, Jain (b0175) 2023; 11
Chatterjee, S., Pandit, S., and Das, A. (April, 2025). Design of Lightweight Custom IP Core on FPGA to Discriminate Brain Tumors of MR Data. 6th IEEE Conference on Devices for Integrated Circuits (DevIC 2025), Kalyani, India, 2025, pp. 412–417, doi: 10.1109/DevIC63749.2025.11012148.
.
Das, Das (b0055) 2023; 144
Issa, Helmi, Elsheikh, Elaziz (b0080) 2021; 189
Shin, Onizawa, Gross, Hanyu (b0170) 2020; 8
Gereon, Hands-on machine learning with sci-kit learn, keras and Tensorflow: Concepts, tools and techniques to build intelligent systems., 3rd Edition, O’Reilly Media, Sebastopol, CA, 2022.
Lal, Chanchal, Kini, Upadhyay (b0085) 2024; 83
Brain Tumor Dataset. (2017).
Dao-Xuan, Nghiem-Tuan, Truong-Dai, Ong-Tung, Hoang-Phuong, Nguyen-Duc (b0050) 2024; 2024
Baba, Bonny (b0020) 2023; 92
Das, Das (b0060) 2024; 247
Guddati, Dash, Tripathy (b0075) 2024; 1
Laxmisagar, Hanumantharaju (b0090) 2023; 82
Neiso, Muchuka, Mambo (b0115) 2024; 15
Tabassum, Islam, Bulbul (b0180) 2022; 42
Vinod, Guddati, Panda, Tripathy (b0185) 2024; 12
Shawahna, Sait, El-Maleh (b0165) 2018; 7
10.1016/j.eswa.2025.128444_b0025
Que (10.1016/j.eswa.2025.128444_b0130) 2024; 1
10.1016/j.eswa.2025.128444_b0045
Chatterjee (10.1016/j.eswa.2025.128444_b0040) 2024
Sara (10.1016/j.eswa.2025.128444_b0160) 2019; 7
Issa (10.1016/j.eswa.2025.128444_b0080) 2021; 189
Solanki (10.1016/j.eswa.2025.128444_b0175) 2023; 11
Phu (10.1016/j.eswa.2025.128444_b0125) 2019
Shin (10.1016/j.eswa.2025.128444_b0170) 2020; 8
Amin (10.1016/j.eswa.2025.128444_b0015) 2021; 8
Pérez (10.1016/j.eswa.2025.128444_b0120) 2021; 21
Neiso (10.1016/j.eswa.2025.128444_b0115) 2024; 15
Afifi (10.1016/j.eswa.2025.128444_b0005) 2018; 65
Zhao (10.1016/j.eswa.2025.128444_b0195) 2018; 8
Xiong (10.1016/j.eswa.2025.128444_b0190) 2021; 22
Lal (10.1016/j.eswa.2025.128444_b0085) 2024; 83
Tabassum (10.1016/j.eswa.2025.128444_b0180) 2022; 42
Lu (10.1016/j.eswa.2025.128444_b0110) 2024; 33
Deepesh (10.1016/j.eswa.2025.128444_b0065) 2025
Li (10.1016/j.eswa.2025.128444_b0095) 2024; 183
10.1016/j.eswa.2025.128444_b0035
Shawahna (10.1016/j.eswa.2025.128444_b0165) 2018; 7
Vinod (10.1016/j.eswa.2025.128444_b0185) 2024; 12
Zhou (10.1016/j.eswa.2025.128444_b0200) 2021; 168
Ahmadilivani (10.1016/j.eswa.2025.128444_b0010) 2022; 10
Rayapati (10.1016/j.eswa.2025.128444_b0140) 2024
10.1016/j.eswa.2025.128444_b0150
Saidi (10.1016/j.eswa.2025.128444_b0155) 2021; 81
10.1016/j.eswa.2025.128444_b0070
10.1016/j.eswa.2025.128444_b0030
Guddati (10.1016/j.eswa.2025.128444_b0075) 2024; 1
Dao-Xuan (10.1016/j.eswa.2025.128444_b0050) 2024; 2024
Das (10.1016/j.eswa.2025.128444_b0060) 2024; 247
Liu (10.1016/j.eswa.2025.128444_bib201) 2024
Baba (10.1016/j.eswa.2025.128444_b0020) 2023; 92
Laxmisagar (10.1016/j.eswa.2025.128444_b0090) 2023; 82
Ramtekkar (10.1016/j.eswa.2025.128444_b0135) 2023; 14
Liu (10.1016/j.eswa.2025.128444_b0105) 2022; 9
Das (10.1016/j.eswa.2025.128444_b0055) 2023; 144
Li (10.1016/j.eswa.2025.128444_b0100) 2021
Saeedi (10.1016/j.eswa.2025.128444_b0145) 2023; 23
References_xml – volume: 81
  start-page: 280
  year: 2021
  end-page: 299
  ident: b0155
  article-title: FPGA-based implementation of classification techniques: A survey
– volume: 33
  start-page: 2770
  year: 2024
  end-page: 2782
  ident: b0110
  article-title: Anomaly detection for medical images using heterogeneous auto-encoder
– volume: 83
  start-page: 60583
  year: 2024
  end-page: 60601
  ident: b0085
  article-title: FPGA implementation of deep learning architecture for kidney cancer detection from histopathological images
– volume: 23
  year: 2023
  ident: b0145
  article-title: MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques
– start-page: 298
  year: 2019
  end-page: 302
  ident: b0125
  article-title: Design and implementation of configurable convolutional neural network on FPGA
– volume: 22
  year: 2021
  ident: b0190
  article-title: MRI-based brain tumor segmentation using FPGA-accelerated neural network
– reference: Gereon, Hands-on machine learning with sci-kit learn, keras and Tensorflow: Concepts, tools and techniques to build intelligent systems., 3rd Edition, O’Reilly Media, Sebastopol, CA, 2022.
– volume: 1
  year: 2024
  ident: b0075
  article-title: FPGA implementation of the proposed DCNN model for detection of tuberculosis and pneumonia using CXR images
– volume: 92
  start-page: 15
  year: 2023
  end-page: 23
  ident: b0020
  article-title: FPGA-based parallel implementation to classify hyperspectral images by using a convolutional neural network
– reference: Brain Tumor Dataset. (2017).
– volume: 247
  year: 2024
  ident: b0060
  article-title: Multi-scale cross spectral coherence and phase spectral distribution based measurement in non-subsampled shearlet domain for classification of brain tumors
– reference: Biswas, S., Pandit, S., and Das, A. (2024).
– start-page: 1
  year: 2024
  end-page: 6
  ident: b0040
  publication-title: 28th International Symposium on VLSI Design and Test (VDAT)
– volume: 21
  start-page: 2637
  year: 2021
  ident: b0120
  article-title: A heterogeneous hardware accelerator for image classification in embedded systems
– volume: 189
  year: 2021
  ident: b0080
  article-title: A biological sub-sequences detection using integrated BA-PSO based on infection propagation mechanism: Case study COVID-19
– volume: 7
  start-page: 7823
  year: 2018
  end-page: 7859
  ident: b0165
  article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review
– volume: 82
  start-page: 41105
  year: 2023
  end-page: 41128
  ident: b0090
  article-title: FPGA implementation of breast cancer detection using SVM linear classifier
– volume: 9
  start-page: 1001
  year: 2022
  end-page: 1026
  ident: b0105
  article-title: Deep learning based brain tumor segmentation: A survey
– reference: . Retrieved November 20, 2024, from
– reference: Saglam, S., Tat, F., and Bayar, S. (2019, November). FPGA implementation of CNN algorithm for detecting malaria diseased blood cells. 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). https://doi.org/10.1109/isaect47714.2019.9069724.
– reference: Chatterjee, S., Pandit, S., and Das, A. (April, 2025). Design of Lightweight Custom IP Core on FPGA to Discriminate Brain Tumors of MR Data. 6th IEEE Conference on Devices for Integrated Circuits (DevIC 2025), Kalyani, India, 2025, pp. 412–417, doi: 10.1109/DevIC63749.2025.11012148.
– volume: 1
  year: 2024
  ident: b0130
  article-title: Low latency variational autoencoder on FPGAs
– reference: . Retrieved November 20, 2024 from .
– year: 2025
  ident: b0065
  article-title: FPGA based MRI brain tumor segmentation using modified FCM method
– volume: 10
  start-page: 131788
  year: 2022
  end-page: 131828
  ident: b0010
  article-title: Efficient hardware architectures for accelerating deep neural networks: Survey
– volume: 65
  start-page: 57
  year: 2018
  end-page: 68
  ident: b0005
  article-title: A system on chip for melanoma detection using FPGA-based SVM classifier
– year: 2024
  ident: bib201
  article-title: Synthesizing Document Database Queries using Collection Abstractions
– reference: .
– volume: 14
  start-page: 459
  year: 2023
  end-page: 473
  ident: b0135
  article-title: Innovative brain tumor detection using optimized deep learning techniques
– year: 2021
  ident: b0100
  publication-title: 2021 IEEE Int. Conf. Advances in Electrical Engg. and Computer Applications (AEECA)
– volume: 15
  year: 2024
  ident: b0115
  article-title: FPGA-based implementation of a resource-efficient UNET model for brain tumour segmentation
– volume: 8
  start-page: 3161
  year: 2021
  end-page: 3183
  ident: b0015
  article-title: Brain tumor detection and classification using machine learning: A comprehensive survey
– volume: 183
  year: 2024
  ident: b0095
  article-title: Lightweight skin cancer detection IP hardware implementation using cycle expansion and optimal computation arrays methods
– volume: 11
  start-page: 12870
  year: 2023
  end-page: 12886
  ident: b0175
  article-title: Brain tumor detection and classification using intelligence techniques: An overview
– reference: Bhuvaji, S. (n.d.). Brain tumor classification (MRI).
– volume: 2024
  start-page: 113
  year: 2024
  end-page: 118
  ident: b0050
  article-title: Implementing convolutional auto encoder on FPGA using high level synthesis
– volume: 12
  start-page: 179190
  year: 2024
  end-page: 179203
  ident: b0185
  article-title: A lightweight deep convolutional neural network implemented on FPGA and android devices for detection of breast cancer using ultrasound images
– volume: 8
  start-page: 504
  year: 2018
  ident: b0195
  article-title: An FPGA implementation of a convolutional auto-encoder
– volume: 8
  start-page: 188004
  year: 2020
  end-page: 188014
  ident: b0170
  article-title: Training hardware for binarized convolutional neural network based on CMOS invertible logic
– volume: 168
  year: 2021
  ident: b0200
  article-title: 3D multi-view tumor detection in automated whole breast ultrasound using deep convolutional neural network
– volume: 144
  year: 2023
  ident: b0055
  article-title: Estimation of interlayer textural relationships to discriminate the benignancy/malignancy of brain tumors
– volume: 7
  start-page: 8
  year: 2019
  end-page: 18
  ident: b0160
  article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study
– reference: , 28th International Symposium on VLSI Design and Test (VDAT), 2024, pp. 1–6. 10.1109/VDAT63601.2024.10705706.
– year: 2024
  ident: b0140
  article-title: FPGA-based hardware software co-design to accelerate brain tumour segmentation
– volume: 42
  start-page: 724
  year: 2022
  end-page: 747
  ident: b0180
  article-title: Brain tumor detection from brain MRI using soft IP core on FPGA
– volume: 83
  start-page: 60583
  issue: 21
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0085
  article-title: FPGA implementation of deep learning architecture for kidney cancer detection from histopathological images
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-023-17895-1
– volume: 12
  start-page: 179190
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0185
  article-title: A lightweight deep convolutional neural network implemented on FPGA and android devices for detection of breast cancer using ultrasound images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3506334
– volume: 92
  start-page: 15
  year: 2023
  ident: 10.1016/j.eswa.2025.128444_b0020
  article-title: FPGA-based parallel implementation to classify hyperspectral images by using a convolutional neural network
  publication-title: Integration
  doi: 10.1016/j.vlsi.2023.04.003
– ident: 10.1016/j.eswa.2025.128444_b0070
– year: 2021
  ident: 10.1016/j.eswa.2025.128444_b0100
  article-title: FPGA realization of stacked auto-encoder with three fully connected layers
– volume: 168
  year: 2021
  ident: 10.1016/j.eswa.2025.128444_b0200
  article-title: 3D multi-view tumor detection in automated whole breast ultrasound using deep convolutional neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114410
– volume: 2024
  start-page: 113
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0050
  article-title: Implementing convolutional auto encoder on FPGA using high level synthesis
  publication-title: Tenth International Conference on Communications and Electronics (ICCE)
– year: 2024
  ident: 10.1016/j.eswa.2025.128444_bib201
– volume: 7
  start-page: 7823
  year: 2018
  ident: 10.1016/j.eswa.2025.128444_b0165
  article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890150
– volume: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0075
  article-title: FPGA implementation of the proposed DCNN model for detection of tuberculosis and pneumonia using CXR images
  publication-title: IEEE Embedded Systems Letters
– volume: 22
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2025.128444_b0190
  article-title: MRI-based brain tumor segmentation using FPGA-accelerated neural network
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04347-6
– volume: 8
  start-page: 504
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2025.128444_b0195
  article-title: An FPGA implementation of a convolutional auto-encoder
  publication-title: Applied Sciences
  doi: 10.3390/app8040504
– volume: 144
  year: 2023
  ident: 10.1016/j.eswa.2025.128444_b0055
  article-title: Estimation of interlayer textural relationships to discriminate the benignancy/malignancy of brain tumors
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.109879
– volume: 10
  start-page: 131788
  year: 2022
  ident: 10.1016/j.eswa.2025.128444_b0010
  article-title: Efficient hardware architectures for accelerating deep neural networks: Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3229767
– ident: 10.1016/j.eswa.2025.128444_b0035
– year: 2025
  ident: 10.1016/j.eswa.2025.128444_b0065
  article-title: FPGA based MRI brain tumor segmentation using modified FCM method
  publication-title: Circuits Systems and Signal Processing
  doi: 10.1007/s00034-025-03071-3
– volume: 33
  start-page: 2770
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0110
  article-title: Anomaly detection for medical images using heterogeneous auto-encoder
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2024.3381435
– year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0140
  article-title: FPGA-based hardware software co-design to accelerate brain tumour segmentation
– volume: 8
  start-page: 188004
  year: 2020
  ident: 10.1016/j.eswa.2025.128444_b0170
  article-title: Training hardware for binarized convolutional neural network based on CMOS invertible logic
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029576
– volume: 183
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0095
  article-title: Lightweight skin cancer detection IP hardware implementation using cycle expansion and optimal computation arrays methods
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2024.109258
– volume: 15
  issue: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0115
  article-title: FPGA-based implementation of a resource-efficient UNET model for brain tumour segmentation
  publication-title: International Journal of Advanced Computer Science and Applications
  doi: 10.14569/IJACSA.2024.0150161
– volume: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0130
  article-title: Low latency variational autoencoder on FPGAs
  publication-title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems
– volume: 11
  start-page: 12870
  year: 2023
  ident: 10.1016/j.eswa.2025.128444_b0175
  article-title: Brain tumor detection and classification using intelligence techniques: An overview
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3242666
– volume: 42
  start-page: 724
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2025.128444_b0180
  article-title: Brain tumor detection from brain MRI using soft IP core on FPGA
  publication-title: Circuits Systems and Signal Processing
  doi: 10.1007/s00034-022-02233-x
– volume: 81
  start-page: 280
  year: 2021
  ident: 10.1016/j.eswa.2025.128444_b0155
  article-title: FPGA-based implementation of classification techniques: A survey
  publication-title: Integration
  doi: 10.1016/j.vlsi.2021.08.004
– volume: 247
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0060
  article-title: Multi-scale cross spectral coherence and phase spectral distribution based measurement in non-subsampled shearlet domain for classification of brain tumors
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2024.123329
– volume: 189
  year: 2021
  ident: 10.1016/j.eswa.2025.128444_b0080
  article-title: A biological sub-sequences detection using integrated BA-PSO based on infection propagation mechanism: Case study COVID-19
  publication-title: Expert Systems with Applications
– ident: 10.1016/j.eswa.2025.128444_b0025
– volume: 65
  start-page: 57
  year: 2018
  ident: 10.1016/j.eswa.2025.128444_b0005
  article-title: A system on chip for melanoma detection using FPGA-based SVM classifier
  publication-title: Microprocessors and Microsystems
  doi: 10.1016/j.micpro.2018.12.005
– ident: 10.1016/j.eswa.2025.128444_b0045
  doi: 10.1109/DevIC63749.2025.11012554
– start-page: 298
  year: 2019
  ident: 10.1016/j.eswa.2025.128444_b0125
  article-title: Design and implementation of configurable convolutional neural network on FPGA
– volume: 9
  start-page: 1001
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2025.128444_b0105
  article-title: Deep learning based brain tumor segmentation: A survey
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-022-00815-5
– volume: 21
  start-page: 2637
  issue: 8
  year: 2021
  ident: 10.1016/j.eswa.2025.128444_b0120
  article-title: A heterogeneous hardware accelerator for image classification in embedded systems
  publication-title: Sensors
  doi: 10.3390/s21082637
– volume: 14
  start-page: 459
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128444_b0135
  article-title: Innovative brain tumor detection using optimized deep learning techniques
  publication-title: International Journal of Systems Assurance Engineering and Management
  doi: 10.1007/s13198-022-01819-7
– volume: 82
  start-page: 41105
  issue: 26
  year: 2023
  ident: 10.1016/j.eswa.2025.128444_b0090
  article-title: FPGA implementation of breast cancer detection using SVM linear classifier
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-023-15121-6
– volume: 23
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128444_b0145
  article-title: MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-023-02114-6
– ident: 10.1016/j.eswa.2025.128444_b0150
  doi: 10.1109/ISAECT47714.2019.9069724
– ident: 10.1016/j.eswa.2025.128444_b0030
  doi: 10.1109/VDAT63601.2024.10705706
– volume: 8
  start-page: 3161
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2025.128444_b0015
  article-title: Brain tumor detection and classification using machine learning: A comprehensive survey
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-021-00563-y
– volume: 7
  start-page: 8
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2025.128444_b0160
  article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study
  publication-title: Journal of Computer and Communications
  doi: 10.4236/jcc.2019.73002
– start-page: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.128444_b0040
  article-title: Design of FPGA based custom IP core to detect the edges of brain tumors
SSID ssj0017007
Score 2.478744
Snippet In the field of computer assisted diagnosis, classification of tumours using lightweight machine learning algorithms require a complete detection chain of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128444
SubjectTerms Brain Tumour
Feature maps
FPGAs
Linear SVM
Loop unrolling
Reduced Convolutional Autoencoder
Title Coupling of a lightweight model of reduced convolutional autoencoder with linear SVM classifier to detect brain tumours on FPGA
URI https://dx.doi.org/10.1016/j.eswa.2025.128444
Volume 290
WOSCitedRecordID wos001508615200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydIdd9h7WvaDDboYLvy0fg67dA1sRoF2RmyFZEpAgtQPXbrtT_3pJS0rSbhi2AbsYhhLLAvlZoijyIyHvM6Yl7NG4H4iA-4ngyhcsVT6s5lUcKVHkgyv79Gt-dMRms2I6GvUuF-Zimdc1u7oqVv9V1dAGysbU2b9Q97pTaIB7UDpcQe1w_SPF7zf9amljmbm3xM335eD_NFVvsLlFvlYlh5BzOxakDOi7BmktkV1icM-iBcpb7_j0m1ehkT3XmJoCxqpUePTgCSwv4XX9GQxrOHU4nH6c3HL1I49yZ9miXR7d1on5VmwBJhUtLGl_05_Nu_VyMcXEm8798GPd_sGkok3alfuzdV5EKUZamERn41FzWTWbECbjmsz9JDTVe9wsHZmqoj_N-Mb5sNhT55dIIxWle7jiGk7JO0zax9gx9gtmX4Sm2T2yE-VpwcZkZ_L5YPZlffwEAM0NSaMZiM22MoGBd9_0a4tmy0o5eUwe2u0FnRhYPCEjVT8lj1zpDmpn8mfk2qGENppyuoUSOqAEmy1K6C2U0C2UUFQoNSihgBK6QQntGmpQQgeUUIsS2tQUUfKcfD88ONn_5NtaHH4VsbDzE5Vmcc7jFL5sEes44EEoOBjHFUeu8yqQjMtYqqpgWmUsFbrQWa41z5Mg5zKKX5Bx3dTqJaFayTBLBSyViiUwQ_AkC0MZpjKMQCdc7BLPybNcGcqV0sUiLkqUfonSL430d0nqRF5ao9EYgyUg5DfPvfrH516TBxsgvyHjru3VW3K_uujm5-07C6Qb_SyZHQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+of+a+lightweight+model+of+reduced+convolutional+autoencoder+with+linear+SVM+classifier+to+detect+brain+tumours+on+FPGA&rft.jtitle=Expert+systems+with+applications&rft.au=Chatterjee%2C+Soumita&rft.au=Pandit%2C+Soumya&rft.au=Das%2C+Arpita&rft.date=2025-09-25&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=290&rft_id=info:doi/10.1016%2Fj.eswa.2025.128444&rft.externalDocID=S0957417425020639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon