Color three-dimensional imaging based on patterned illumination using a negative pinhole array
Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal...
Saved in:
| Published in: | Optics express Vol. 29; no. 5; p. 6509 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.03.2021
|
| ISSN: | 1094-4087, 1094-4087 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning. |
|---|---|
| AbstractList | Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning.Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning. Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning. |
| Author | Yoo, Hongki Kim, Chang-Soo Kim, Junyoung |
| Author_xml | – sequence: 1 givenname: Chang-Soo surname: Kim fullname: Kim, Chang-Soo – sequence: 2 givenname: Junyoung surname: Kim fullname: Kim, Junyoung – sequence: 3 givenname: Hongki orcidid: 0000-0001-9819-3135 surname: Yoo fullname: Yoo, Hongki |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33726170$$D View this record in MEDLINE/PubMed |
| BookMark | eNpN0MtKAzEUBuAgFWurC19AstTF1NzmtpRSL1DoRrcOmclJG8kkYzIj9O2d0iquzoWPA-efoYnzDhC6oWRBeSYeNquFoFlZlmfokpJSJIIU-eRfP0WzGD8JoSIv8ws05TxnGc3JJfpYeusD7ncBIFGmBReNd9Ji08qtcVtcywgKe4c72fcQ3DgYa4fWONmPEg_xoCR2sB0X34A743beApYhyP0VOtfSRrg-1Tl6f1q9LV-S9eb5dfm4ThpWkD4BorOmprrQVBOtGHDRQAqFFqpmSvOaaa2pFE1KS57JXBdMyXTEqUxBsYLP0d3xbhf81wCxr1oTG7BWOvBDrFhKGCOZ4Ad6e6JD3YKqujC-GvbVbyYjuD-CJvgYA-g_Qkl1yLvarKpj3vwH1_dz2g |
| Cites_doi | 10.1007/BF00697444 10.1016/j.optlaseng.2013.02.012 10.1364/AO.33.000585 10.1371/journal.pone.0072265 10.1038/nmeth815 10.1117/1.601023 10.1364/OE.24.003806 10.1364/AO.26.003232 10.1016/j.optlaseng.2003.11.002 10.1364/AOP.3.000128 10.1109/34.216735 10.1364/AO.39.002605 10.1364/AO.38.006565 10.1016/j.optcom.2013.02.013 10.1016/j.optlaseng.2016.03.018 10.1364/OE.20.023061 10.1364/OE.27.028466 10.1016/S0262-8856(97)00053-X 10.1117/1.602155 10.1016/0146-664X(82)90096-X 10.1016/j.optlaseng.2018.02.017 10.1364/AO.56.005198 10.1016/j.gie.2011.07.020 10.1364/OE.21.023611 10.1016/0734-189X(85)90056-8 10.1364/OL.10.000053 10.5772/14545 10.1142/3014 10.1046/j.1365-2818.1997.2080772.x |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1364/OE.416999 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 33726170 10_1364_OE_416999 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
| ID | FETCH-LOGICAL-c280t-e0f6cb1f8f1f0fd2e34ce5e8f4db2df3b2fff1a4c51936a7f82da5f1f5a5ed283 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624968100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Sun Nov 09 11:28:36 EST 2025 Wed Feb 19 02:29:17 EST 2025 Sat Nov 29 02:57:40 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c280t-e0f6cb1f8f1f0fd2e34ce5e8f4db2df3b2fff1a4c51936a7f82da5f1f5a5ed283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9819-3135 |
| OpenAccessLink | https://doi.org/10.1364/oe.416999 |
| PMID | 33726170 |
| PQID | 2502206438 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2502206438 pubmed_primary_33726170 crossref_primary_10_1364_OE_416999 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 2021-Mar-01 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics express |
| PublicationTitleAlternate | Opt Express |
| PublicationYear | 2021 |
| References | Jeong (oe-29-5-6509-R20) 2016; 24 Belcher (oe-29-5-6509-R6) 2013; 8 Carlsson (oe-29-5-6509-R12) 1985; 10 Fewer (oe-29-5-6509-R16) 1997; 187 Zhang (oe-29-5-6509-R22) 2018; 106 Valkenburg (oe-29-5-6509-R24) 1998; 16 Ishihara (oe-29-5-6509-R17) 1999; 38 Chen (oe-29-5-6509-R33) 2013; 298–299 Hamilton (oe-29-5-6509-R7) 1982; 27 Kaplonek (oe-29-5-6509-R5) 2012; 7 Maruyama (oe-29-5-6509-R38) 1993; 15 Geng (oe-29-5-6509-R23) 2011; 3 Zuo (oe-29-5-6509-R28) 2013; 51 Carrihill (oe-29-5-6509-R26) 1985; 32 Carlsson (oe-29-5-6509-R10) 1987; 26 Cha (oe-29-5-6509-R4) 1999 Conchello (oe-29-5-6509-R2) 2005; 2 Cha (oe-29-5-6509-R39) 2000; 39 Leeghim (oe-29-5-6509-R1) 2012; 20 Choi (oe-29-5-6509-R13) 2013; 21 Xi (oe-29-5-6509-R14) 2011 Silva (oe-29-5-6509-R35) 2017; 56 Kim (oe-29-5-6509-R21) 2019; 27 Geng (oe-29-5-6509-R34) 1996; 35 Gu (oe-29-5-6509-R3) 1996 Sansoni (oe-29-5-6509-R32) 1999; 38 Conchello (oe-29-5-6509-R15) 1994; 33 Yoo (oe-29-5-6509-R9) 2011; 74 Xing (oe-29-5-6509-R29) 2016; 87 Su (oe-29-5-6509-R31) 2004; 42 Sheppard (oe-29-5-6509-R40) 1997 Posdamer (oe-29-5-6509-R27) 1982; 18 |
| References_xml | – volume: 27 start-page: 211 year: 1982 ident: oe-29-5-6509-R7 publication-title: Appl. Phys. B doi: 10.1007/BF00697444 – volume: 51 start-page: 953 year: 2013 ident: oe-29-5-6509-R28 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2013.02.012 – volume: 33 start-page: 585 year: 1994 ident: oe-29-5-6509-R15 publication-title: Appl. Opt. doi: 10.1364/AO.33.000585 – volume: 8 start-page: e72265 year: 2013 ident: oe-29-5-6509-R6 publication-title: PLoS One doi: 10.1371/journal.pone.0072265 – year: 1999 ident: oe-29-5-6509-R4 article-title: 3D profilometry using a dynamically configurable confocal microscope – volume: 2 start-page: 920 year: 2005 ident: oe-29-5-6509-R2 publication-title: Nat. Methods doi: 10.1038/nmeth815 – volume: 35 start-page: 376 year: 1996 ident: oe-29-5-6509-R34 publication-title: Opt. Eng. doi: 10.1117/1.601023 – volume: 24 start-page: 3806 year: 2016 ident: oe-29-5-6509-R20 publication-title: Opt. Express doi: 10.1364/OE.24.003806 – volume: 26 start-page: 3232 year: 1987 ident: oe-29-5-6509-R10 publication-title: Appl. Opt. doi: 10.1364/AO.26.003232 – volume: 42 start-page: 245 year: 2004 ident: oe-29-5-6509-R31 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2003.11.002 – volume: 3 start-page: 128 year: 2011 ident: oe-29-5-6509-R23 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.3.000128 – volume: 15 start-page: 647 year: 1993 ident: oe-29-5-6509-R38 publication-title: IEEE Trans. Pattern Anal. Machine Intell. doi: 10.1109/34.216735 – volume: 39 start-page: 2605 year: 2000 ident: oe-29-5-6509-R39 publication-title: Appl. Opt. doi: 10.1364/AO.39.002605 – volume: 38 start-page: 6565 year: 1999 ident: oe-29-5-6509-R32 publication-title: Appl. Opt. doi: 10.1364/AO.38.006565 – volume: 298–299 start-page: 54 year: 2013 ident: oe-29-5-6509-R33 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2013.02.013 – volume: 87 start-page: 97 year: 2016 ident: oe-29-5-6509-R29 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.03.018 – volume: 7 start-page: 661 year: 2012 ident: oe-29-5-6509-R5 publication-title: Journal of Engineering Science and Technology – volume: 20 start-page: 23061 year: 2012 ident: oe-29-5-6509-R1 publication-title: Opt. Express doi: 10.1364/OE.20.023061 – volume: 27 start-page: 28466 year: 2019 ident: oe-29-5-6509-R21 publication-title: Opt. Express doi: 10.1364/OE.27.028466 – volume: 16 start-page: 99 year: 1998 ident: oe-29-5-6509-R24 publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(97)00053-X – volume: 38 start-page: 1035 year: 1999 ident: oe-29-5-6509-R17 publication-title: Opt. Eng. doi: 10.1117/1.602155 – volume: 18 start-page: 1 year: 1982 ident: oe-29-5-6509-R27 publication-title: Comput Vis Graph Image Process doi: 10.1016/0146-664X(82)90096-X – volume: 106 start-page: 119 year: 2018 ident: oe-29-5-6509-R22 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.02.017 – volume: 56 start-page: 5198 year: 2017 ident: oe-29-5-6509-R35 publication-title: Appl. Opt. doi: 10.1364/AO.56.005198 – volume: 74 start-page: 992 year: 2011 ident: oe-29-5-6509-R9 publication-title: Gastrointestinal Endoscopy doi: 10.1016/j.gie.2011.07.020 – year: 1997 ident: oe-29-5-6509-R40 – volume: 21 start-page: 23611 year: 2013 ident: oe-29-5-6509-R13 publication-title: Opt. Express doi: 10.1364/OE.21.023611 – volume: 32 start-page: 337 year: 1985 ident: oe-29-5-6509-R26 publication-title: Comput Vis Graph Image Process doi: 10.1016/0734-189X(85)90056-8 – volume: 10 start-page: 53 year: 1985 ident: oe-29-5-6509-R12 publication-title: Opt. Lett. doi: 10.1364/OL.10.000053 – year: 2011 ident: oe-29-5-6509-R14 article-title: Scanning and Image Reconstruction Techniques in Confocal Laser Scanning Microscopy doi: 10.5772/14545 – year: 1996 ident: oe-29-5-6509-R3 article-title: Principles of Three-Dimensional Imaging in Confocal Microscopes doi: 10.1142/3014 – volume: 187 start-page: 54 year: 1997 ident: oe-29-5-6509-R16 publication-title: J. Microsc. doi: 10.1046/j.1365-2818.1997.2080772.x |
| SSID | ssj0014797 |
| Score | 2.3560169 |
| Snippet | Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 6509 |
| Title | Color three-dimensional imaging based on patterned illumination using a negative pinhole array |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33726170 https://www.proquest.com/docview/2502206438 |
| Volume | 29 |
| WOSCitedRecordID | wos000624968100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYBSQuiDflURmEuFRhGyeOkyNaZbVCpUWiK_VE5MT2KgKckLaoXPjtjB_NtrBIy4FLFFl5ab5kMp4Zfx9Cr5jR1yMlDZgSAiYoMQvKjGWBpMKUnWgWCrtQeMKm03SxyD74JvallRNgWqebTdb-V6hhDMA2S2f_Ae7-ojAA-wA6bAF22F4J-OPmi-0c7KQMhOHud7wbo_qrEyQy_y1hagStpdYENzuqjdxx7fKCo7XNHvCRlueOFLyttRHRHfGu43tF4FlrOZ7lpu37OHivz2yXLQQfm-a38Xdr_cN4mAt3Y5O1p40-_1zv5iDIThOWd5swSQSg_a9TXjLmfa3PbtS71WzrOA2R36UePUpisPgsfwORY-a0lPZZs6ez4uRsMinm-WL-uv0WGEExU3j36ioH6DphNDPdfu9_5n2BKWZOd2f7kJ50Cu521N9rP1T5y_zDxiHzO-i2n0Dgtw74u-ia1PfQTdvIWy3vo08WfvwH_NjDjy38uNG4hx_vwo8t_JjjLfzYw48t_A_Q2Uk-Pz4NvIZGUJF0vArkWCVVGapUhWqsBJFRXEkqUxWLkggVlUQpFfK4MpF8wplKieAUDqacSgGx50N0qBstHyMcySodxwmnSWy-46o0RdxSqJKGcDzPBujl1lxF66hSClsvTeJilhfOpgP0YmvIAhyZqU5xLZv1soBYnBATIKcD9MhZuL9MFDGrHPDkCmc_RbcuXtFn6HDVreVzdKP6vqqX3RAdsEU6tJmXoX0jfgGliHks |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+three-dimensional+imaging+based+on+patterned+illumination+using+a+negative+pinhole+array&rft.jtitle=Optics+express&rft.au=Kim%2C+Chang-Soo&rft.au=Kim%2C+Junyoung&rft.au=Yoo%2C+Hongki&rft.date=2021-03-01&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=29&rft.issue=5&rft.spage=6509&rft_id=info:doi/10.1364%2FOE.416999&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |