Color three-dimensional imaging based on patterned illumination using a negative pinhole array

Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optics express Ročník 29; číslo 5; s. 6509
Hlavní autoři: Kim, Chang-Soo, Kim, Junyoung, Yoo, Hongki
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.03.2021
ISSN:1094-4087, 1094-4087
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Reflectance confocal microscopy is widely used for non-destructive optical three-dimensional (3D) imaging. In confocal microscopy, a stack of sequential two-dimensional (2D) images with respect to the axial position is typically needed to reconstruct a 3D image. As a result, in conventional confocal microscopy, acquisition speed is often limited by the rate of mechanical scanning in both the transverse and axial directions. We previously reported a high-speed parallel confocal detection method using a pinhole array for color 3D imaging without any mechanical scanners. Here, we report a high-speed color 3D imaging method based on patterned illumination employing a negative pinhole array, whose optical characteristics are the reverse of the conventional pinhole array for transmitting light. The negative pinhole array solves the inherent limitation of a conventional pinhole array, i.e., low transmittance, meaning brighter color images with abundant color information can be acquired. We also propose a 3D image processing algorithm based on the 2D cross-correlation between the acquired image and filtering masks, to produce an axial response. By using four-different filtering masks, we were able to increase the sampling points in calculation of height and enhance the lateral resolution of the color acquisition by a factor of four. The feasibility of high-speed non-contact color 3D measurement with the improved lateral resolution and brightness provided by the negative pinhole array was demonstrated by imaging various specimens. We anticipate that this high-speed color 3D measurement technology with negative pinhole array will be a useful tool in a variety of fields where rapid and accurate non-contact measurement are required, such as industrial inspection and dental scanning.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.416999