Plasmonic enhancement of the magneto-optical response of MnP nanoclusters embedded in GaP epilayers

We report on the magneto-optical activity of MnP nanoclusters embedded in GaP epilayers and MnP thin film as a function of temperature, magnetic field, and wavelength in the near infrared and visible. The measured Faraday rotation originates from the ferromagnetic magnetization of the metallic MnP p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Jg. 86; H. 24
Hauptverfasser: Monette, Gabriel, Nateghi, Nima, Masut, Remo A., Francoeur, Sébastien, Ménard, David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 14.12.2012
Schlagworte:
ISSN:1098-0121, 1550-235X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We report on the magneto-optical activity of MnP nanoclusters embedded in GaP epilayers and MnP thin film as a function of temperature, magnetic field, and wavelength in the near infrared and visible. The measured Faraday rotation originates from the ferromagnetic magnetization of the metallic MnP phase and exhibits a hysteretic behavior as a function of an externally applied magnetic field closely matching that of the magnetization. The Faraday rotation spectrum of MnP shows a magnetoplasmonic resonance whose energy depends on the MnP filling factor and surrounding matrix permittivity. At resonance, the measured rotary power for the epilayer systems increases by a factor of 2 compared to that of the MnP film in terms of degrees of rotation per MnP thickness for an applied magnetic field of 410 mT. We propose an effective medium model, which qualitatively reproduces the Faraday rotation and the magnetocircular dichroism spectra, quantitatively determines the spectral shift induced by variations in the MnP volume fraction, and demonstrates the influence of the shape and orientation distributions of ellipsoidal MnP nanoclusters on the magneto-optical activity and absorption spectra.
AbstractList We report on the magneto-optical activity of MnP nanoclusters embedded in GaP epilayers and MnP thin film as a function of temperature, magnetic field, and wavelength in the near infrared and visible. The measured Faraday rotation originates from the ferromagnetic magnetization of the metallic MnP phase and exhibits a hysteretic behavior as a function of an externally applied magnetic field closely matching that of the magnetization. The Faraday rotation spectrum of MnP shows a magnetoplasmonic resonance whose energy depends on the MnP filling factor and surrounding matrix permittivity. At resonance, the measured rotary power for the epilayer systems increases by a factor of 2 compared to that of the MnP film in terms of degrees of rotation per MnP thickness for an applied magnetic field of 410 mT. We propose an effective medium model, which qualitatively reproduces the Faraday rotation and the magnetocircular dichroism spectra, quantitatively determines the spectral shift induced by variations in the MnP volume fraction, and demonstrates the influence of the shape and orientation distributions of ellipsoidal MnP nanoclusters on the magneto-optical activity and absorption spectra.
ArticleNumber 245312
Author Monette, Gabriel
Nateghi, Nima
Francoeur, Sébastien
Ménard, David
Masut, Remo A.
Author_xml – sequence: 1
  givenname: Gabriel
  surname: Monette
  fullname: Monette, Gabriel
– sequence: 2
  givenname: Nima
  surname: Nateghi
  fullname: Nateghi, Nima
– sequence: 3
  givenname: Remo A.
  surname: Masut
  fullname: Masut, Remo A.
– sequence: 4
  givenname: Sébastien
  surname: Francoeur
  fullname: Francoeur, Sébastien
– sequence: 5
  givenname: David
  surname: Ménard
  fullname: Ménard, David
BookMark eNp9kLFOwzAURS0EEm3hB5g8sqT4OXESj1BBQSoiQiCxRa7zQo0SO9guUv-eVIWFgek-6d7zhjMlx9ZZJOQC2ByApVfVZhee8etmXuZznokU-BGZgBAs4al4Ox5vJsuEAYdTMg3hgzHIZMYnRFedCr2zRlO0G2U19mgjdS2NG6S9ercYXeKGaLTqqMcwOBtw3z_ailplne62IaIPFPs1Ng021Fi6VBXFwXRqNzZn5KRVXcDzn5yR17vbl8V9snpaPiyuV4nmJYtJkSqWtrDGtciLnIPWfMyStXlaMqnXUhYgoRGsLRuulZKYA5eomRQyF1mTzsjl4e_g3ecWQ6x7EzR2nbLotqGGggGDQshinJaHqfYuBI9trU1U0TgbvTJdDazee61_vdZlXh-8jij_gw7e9Mrv_oO-AaOYgJk
CitedBy_id crossref_primary_10_1088_1361_6463_aaab97
crossref_primary_10_1063_1_4826454
crossref_primary_10_1116_6_0000024
crossref_primary_10_1063_1_4896910
crossref_primary_10_1116_6_0001958
crossref_primary_10_1016_j_jmmm_2022_169705
crossref_primary_10_3390_nano13091478
crossref_primary_10_1016_j_jcrysgro_2016_02_034
Cites_doi 10.1063/1.3367982
10.1088/0034-4885/33/3/307
10.1063/1.2992558
10.1063/1.3580270
10.1063/1.2837600
10.1049/PBEW047E
10.1063/1.357445
10.1016/j.jmmm.2010.03.022
10.1016/j.nano.2011.09.004
10.1016/S0304-8853(01)01067-8
10.1103/PhysRevB.64.235422
10.1103/PhysRev.135.A1033
10.1017/CBO9780511845000
10.1016/j.physb.2011.06.045
10.1103/PhysRevLett.102.247202
10.1063/1.2822192
10.1103/PhysRevLett.73.3584
10.1109/36.3045
10.1016/j.jmmm.2006.01.195
10.1063/1.365401
10.1021/nl1042243
10.1063/1.3070646
10.1103/PhysRevB.25.923
10.1364/AO.30.001176
10.1364/OL.36.000514
10.1088/0022-3727/44/30/305003
10.1103/PhysRevB.33.879
ContentType Journal Article
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1103/PhysRevB.86.245312
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1550-235X
ExternalDocumentID 10_1103_PhysRevB_86_245312
GroupedDBID -~X
123
186
2-P
29O
3MX
6TJ
8NH
AAYXX
ABDPE
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CITATION
CS3
DU5
EBS
EJD
F5P
MVM
NEJ
NPBMV
P2P
RNS
ROL
S7W
SJN
TN5
WH7
YNT
ZPR
7U5
8FD
H8D
L7M
XJT
ID FETCH-LOGICAL-c280t-73a03f1beb567621cc267680f63809cb997191d50f8d2caa9e6129ec0959654d3
IEDL.DBID 3MX
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312365400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-0121
IngestDate Thu Jul 10 20:07:04 EDT 2025
Sat Nov 29 06:08:17 EST 2025
Tue Nov 18 20:05:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License http://link.aps.org/licenses/aps-default-license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-73a03f1beb567621cc267680f63809cb997191d50f8d2caa9e6129ec0959654d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1701017597
PQPubID 23500
ParticipantIDs proquest_miscellaneous_1701017597
crossref_citationtrail_10_1103_PhysRevB_86_245312
crossref_primary_10_1103_PhysRevB_86_245312
PublicationCentury 2000
PublicationDate 2012-12-14
PublicationDateYYYYMMDD 2012-12-14
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-14
  day: 14
PublicationDecade 2010
PublicationTitle Physical review. B, Condensed matter and materials physics
PublicationYear 2012
References H. Akinaga (PhysRevB.86.245312Cc27R1) 2000; 76
PhysRevB.86.245312Cc3R1
PhysRevB.86.245312Cc17R1
PhysRevB.86.245312Cc4R1
PhysRevB.86.245312Cc1R1
PhysRevB.86.245312Cc19R1
PhysRevB.86.245312Cc2R1
PhysRevB.86.245312Cc18R1
PhysRevB.86.245312Cc13R1
PhysRevB.86.245312Cc12R1
PhysRevB.86.245312Cc15R1
PhysRevB.86.245312Cc14R1
PhysRevB.86.245312Cc11R1
PhysRevB.86.245312Cc10R1
PhysRevB.86.245312Cc28R1
PhysRevB.86.245312Cc24R1
PhysRevB.86.245312Cc23R1
G. R. Fowles (PhysRevB.86.245312Cc16R1) 1975
PhysRevB.86.245312Cc25R1
PhysRevB.86.245312Cc20R1
PhysRevB.86.245312Cc22R1
PhysRevB.86.245312Cc21R1
A. H. Sihvola (PhysRevB.86.245312Cc29R1) 1999
M. Coey (PhysRevB.86.245312Cc26R1) 2010
PhysRevB.86.245312Cc7R1
PhysRevB.86.245312Cc8R1
PhysRevB.86.245312Cc5R1
PhysRevB.86.245312Cc6R1
PhysRevB.86.245312Cc9R1
References_xml – ident: PhysRevB.86.245312Cc9R1
  doi: 10.1063/1.3367982
– ident: PhysRevB.86.245312Cc15R1
  doi: 10.1088/0034-4885/33/3/307
– ident: PhysRevB.86.245312Cc11R1
  doi: 10.1063/1.2992558
– ident: PhysRevB.86.245312Cc13R1
  doi: 10.1063/1.3580270
– ident: PhysRevB.86.245312Cc24R1
  doi: 10.1063/1.2837600
– volume: 76
  start-page: 143302
  year: 2000
  ident: PhysRevB.86.245312Cc27R1
  publication-title: Appl. Phys. Lett.
– volume-title: Electromagnetic mixing formulas and applications
  year: 1999
  ident: PhysRevB.86.245312Cc29R1
  doi: 10.1049/PBEW047E
– ident: PhysRevB.86.245312Cc21R1
  doi: 10.1063/1.357445
– ident: PhysRevB.86.245312Cc10R1
  doi: 10.1016/j.jmmm.2010.03.022
– ident: PhysRevB.86.245312Cc2R1
  doi: 10.1016/j.nano.2011.09.004
– ident: PhysRevB.86.245312Cc18R1
  doi: 10.1016/S0304-8853(01)01067-8
– ident: PhysRevB.86.245312Cc6R1
  doi: 10.1103/PhysRevB.64.235422
– ident: PhysRevB.86.245312Cc14R1
  doi: 10.1103/PhysRev.135.A1033
– volume-title: Magnetism and Magnetic Materials
  year: 2010
  ident: PhysRevB.86.245312Cc26R1
  doi: 10.1017/CBO9780511845000
– ident: PhysRevB.86.245312Cc1R1
  doi: 10.1016/j.physb.2011.06.045
– ident: PhysRevB.86.245312Cc25R1
  doi: 10.1103/PhysRevLett.102.247202
– ident: PhysRevB.86.245312Cc8R1
  doi: 10.1063/1.2822192
– ident: PhysRevB.86.245312Cc5R1
  doi: 10.1103/PhysRevLett.73.3584
– ident: PhysRevB.86.245312Cc28R1
  doi: 10.1109/36.3045
– ident: PhysRevB.86.245312Cc17R1
  doi: 10.1016/j.jmmm.2006.01.195
– volume-title: Introduction to Modern Optics
  year: 1975
  ident: PhysRevB.86.245312Cc16R1
– ident: PhysRevB.86.245312Cc22R1
  doi: 10.1063/1.365401
– ident: PhysRevB.86.245312Cc4R1
  doi: 10.1021/nl1042243
– ident: PhysRevB.86.245312Cc12R1
  doi: 10.1063/1.3070646
– ident: PhysRevB.86.245312Cc19R1
  doi: 10.1103/PhysRevB.25.923
– ident: PhysRevB.86.245312Cc23R1
  doi: 10.1364/AO.30.001176
– ident: PhysRevB.86.245312Cc7R1
  doi: 10.1364/OL.36.000514
– ident: PhysRevB.86.245312Cc3R1
  doi: 10.1088/0022-3727/44/30/305003
– ident: PhysRevB.86.245312Cc20R1
  doi: 10.1103/PhysRevB.33.879
SSID ssj0014942
Score 2.1163263
Snippet We report on the magneto-optical activity of MnP nanoclusters embedded in GaP epilayers and MnP thin film as a function of temperature, magnetic field, and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Condensed matter
Hysteresis
Magnetic fields
Magnetic resonance
Magnetization
Mathematical models
Nanostructure
Spectra
Title Plasmonic enhancement of the magneto-optical response of MnP nanoclusters embedded in GaP epilayers
URI https://www.proquest.com/docview/1701017597
Volume 86
WOSCitedRecordID wos000312365400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1550-235X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014942
  issn: 1098-0121
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9DFHzxW5xfRPBNq2mTdsmjitOXjSEKeyvp9aqDLR37-vu9tNtAEMGnFtqGcpdcfveR3zF2natYWCFVkJkCAgUh3YFPFyaYAAqC6KCrZhOtblf3-6bXYLe_Z_BDIe99JeQbLh7vdHIXKZoylcHVyhPly05_nTJQRtWpTX9mLIzC1QmZX4f4uQv9NMLVztLe_d8_7bGdJYLkD7XK91kD3QHbqio5YXrIoEd4eOQJbzm6L69TH__jZcEJ6vGR_XQ4K4NyXMWw-aQukUX_vON63FlXwnDu2ROmHEcZkl3K-cDxF9vjOB4MrYfoR-yj_fz-9BosOykEEGkxC1qS9FGEGWZxQtYvBIjoqkVBq08YyIxpkd-Wx6LQeQTWGiTgYxB8kDCJVS6P2YYrHZ4wbqCQWRTbSKJW5MVmBsnlsIW0mIHEosnClWRTWNKM-24Xw7RyN4RMV8JLdZLWwmuym_U345pk48-3r1YKS2kt-ASHdVjOp6nnlicLQz7S6b9GPGPbhIOqJi-hOmcbs8kcL9gmLGaD6eSymmbfg3jPLQ
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmonic+enhancement+of+the+magneto-optical+response+of+MnP+nanoclusters+embedded+in+GaP+epilayers&rft.jtitle=Physical+review.+B%2C+Condensed+matter+and+materials+physics&rft.au=Monette%2C+Gabriel&rft.au=Nateghi%2C+Nima&rft.au=Masut%2C+Remo+A.&rft.au=Francoeur%2C+S%C3%A9bastien&rft.date=2012-12-14&rft.issn=1098-0121&rft.eissn=1550-235X&rft.volume=86&rft.issue=24&rft_id=info:doi/10.1103%2FPhysRevB.86.245312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevB_86_245312
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-0121&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-0121&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-0121&client=summon