Deep Learning for Classification of Hyperspectral Data: A Comparative Review

In recent years, deep-learning techniques revolutionized the way remote sensing data are processed. The classification of hyperspectral data is no exception to the rule, but it has intrinsic specificities that make the application of deep learning less straightforward than with other optical data. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing magazine Jg. 7; H. 2; S. 159 - 173
Hauptverfasser: Audebert, Nicolas, Le Saux, Bertrand, Lefevre, Sebastien
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2019
Schlagworte:
ISSN:2473-2397, 2168-6831
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, deep-learning techniques revolutionized the way remote sensing data are processed. The classification of hyperspectral data is no exception to the rule, but it has intrinsic specificities that make the application of deep learning less straightforward than with other optical data. This article presents the state of the art of previous machine-learning approaches, reviews the various deeplearning approaches currently proposed for hyperspectral classification, and identifies the problems and difficulties that arise in the implementation of deep neural networks for this task. In particular, the issues of spatial and spectral resolution, data volume, and transfer of models from multimedia images to hyperspectral data are addressed. Additionally, a comparative study of various families of network architectures is provided, and a software toolbox is publicly released to allow experimenting with these methods (https://github.com/nshaud/DeepHyperX). This article is intended for both data scientists with interest in hyperspectral data and remote sensing experts eager to apply deeplearning techniques to their own data set.
AbstractList In recent years, deep-learning techniques revolutionized the way remote sensing data are processed. The classification of hyperspectral data is no exception to the rule, but it has intrinsic specificities that make the application of deep learning less straightforward than with other optical data. This article presents the state of the art of previous machine-learning approaches, reviews the various deeplearning approaches currently proposed for hyperspectral classification, and identifies the problems and difficulties that arise in the implementation of deep neural networks for this task. In particular, the issues of spatial and spectral resolution, data volume, and transfer of models from multimedia images to hyperspectral data are addressed. Additionally, a comparative study of various families of network architectures is provided, and a software toolbox is publicly released to allow experimenting with these methods (https://github.com/nshaud/DeepHyperX). This article is intended for both data scientists with interest in hyperspectral data and remote sensing experts eager to apply deeplearning techniques to their own data set.
In recent years, deep learning techniques revolutionized the way remote sensing data are processed. Classification of hyperspectral data is no exception to the rule, but has intrinsic specificities which make application of deep learning less straightforward than with other optical data. This article presents a state of the art of previous machine learning approaches, reviews the various deep learning approaches currently proposed for hyperspectral classification, and identifies the problems and difficulties which arise to implement deep neural networks for this task. In particular, the issues of spatial and spectral resolution, data volume, and transfer of models from multimedia images to hyperspectral data are addressed. Additionally, a comparative study of various families of network architectures is provided and a software toolbox is publicly released to allow experimenting with these methods. 1 This article is intended for both data scientists with interest in hyperspectral data and remote sensing experts eager to apply deep learning techniques to their own dataset.
Author Le Saux, Bertrand
Audebert, Nicolas
Lefevre, Sebastien
Author_xml – sequence: 1
  givenname: Nicolas
  orcidid: 0000-0001-6486-3102
  surname: Audebert
  fullname: Audebert, Nicolas
  email: nicolas.audebert@onera.fr
  organization: Information Processing and Systems, University Paris Saclay, Palaiseau, France
– sequence: 2
  givenname: Bertrand
  orcidid: 0000-0001-7162-6746
  surname: Le Saux
  fullname: Le Saux, Bertrand
  email: bertrand.le_saux@onera.fr
  organization: Information Processing and Systems, University Paris Saclay, Palaiseau, France
– sequence: 3
  givenname: Sebastien
  orcidid: 0000-0002-2384-8202
  surname: Lefevre
  fullname: Lefevre, Sebastien
  email: sebastien.lefevre@irisa.fr
  organization: Research in Computer Science and Random Systems, Universite de Bretagne Sud, France
BackLink https://hal.science/hal-02104998$$DView record in HAL
BookMark eNp9kD1PwzAQhi1UJErpD0AsXhlSfHY-bLaqhRYpCKnAbDnOBYzSJHKiov57EloYGLjlTqf3vY_nnIyqukJCLoHNAJi6eVxtnmecgZpxBTyKxQkZc4hlEEsBo74OExFwoZIzMm3bD9aHjECBHJN0idjQFI2vXPVGi9rTRWna1hXOms7VFa0Lut436NsGbedNSZemM7d0Thf1tjG-F-2QbnDn8POCnBambHF6zBPyen_3slgH6dPqYTFPA8sl64JYoQgFqFjY3OaR4aExChRmOYvzMANbmCiRKstEf7dFbjECkeRZjCZDi1ZMyPVh7rspdePd1vi9ro3T63mqhx7jwEKl5A56bXLQWl-3rcdCW9d9f9Y_40oNTA8M9cBQDwz1kWHvhD_On1X_ea4OHoeIv3qZCMnCSHwBikV-2g
CODEN IGRSCZ
CitedBy_id crossref_primary_10_3390_rs14030608
crossref_primary_10_1371_journal_pone_0328888
crossref_primary_10_1039_D3EW00541K
crossref_primary_10_1364_AO_498021
crossref_primary_10_3390_rs16010182
crossref_primary_10_3390_rs15020451
crossref_primary_10_1109_TGRS_2020_3017709
crossref_primary_10_1016_j_jag_2024_104213
crossref_primary_10_1016_j_jrmge_2025_03_018
crossref_primary_10_3390_app10228189
crossref_primary_10_1109_JSTARS_2023_3349175
crossref_primary_10_1016_j_compeleceng_2022_108381
crossref_primary_10_1002_adfm_202423331
crossref_primary_10_1016_j_engappai_2023_106017
crossref_primary_10_1109_MGRS_2022_3161377
crossref_primary_10_1109_TGRS_2022_3217892
crossref_primary_10_1109_TGRS_2022_3185612
crossref_primary_10_1109_JSTARS_2023_3283342
crossref_primary_10_1109_TGRS_2021_3132683
crossref_primary_10_1109_TIP_2023_3287738
crossref_primary_10_1088_1742_6596_1950_1_012087
crossref_primary_10_3390_rs14174288
crossref_primary_10_1007_s11600_024_01473_6
crossref_primary_10_1080_01431161_2023_2171742
crossref_primary_10_3390_rs12182956
crossref_primary_10_1007_s12145_023_01031_6
crossref_primary_10_32604_cmc_2023_033054
crossref_primary_10_1109_LGRS_2021_3119867
crossref_primary_10_1109_MGRS_2020_3043504
crossref_primary_10_1016_j_neucom_2025_130722
crossref_primary_10_1016_j_jfranklin_2025_107532
crossref_primary_10_1109_TGRS_2022_3169018
crossref_primary_10_3390_rs15194796
crossref_primary_10_1109_TCSVT_2025_3526960
crossref_primary_10_1016_j_dsp_2024_104740
crossref_primary_10_1109_TGRS_2020_3005623
crossref_primary_10_1109_TGRS_2023_3336771
crossref_primary_10_1016_j_jfranklin_2024_107464
crossref_primary_10_1016_j_gsf_2023_101562
crossref_primary_10_1016_j_isprsjprs_2019_09_006
crossref_primary_10_1080_07038992_2020_1760714
crossref_primary_10_1109_ACCESS_2024_3455369
crossref_primary_10_1007_s11042_022_12452_8
crossref_primary_10_1016_j_engappai_2023_106234
crossref_primary_10_1016_j_aca_2022_339668
crossref_primary_10_3390_rs14205199
crossref_primary_10_3390_rs13173547
crossref_primary_10_1109_TGRS_2023_3257865
crossref_primary_10_3390_rs15225331
crossref_primary_10_1002_cpe_6945
crossref_primary_10_1109_ACCESS_2020_2997327
crossref_primary_10_1109_TIP_2022_3192712
crossref_primary_10_1007_s11042_023_17546_5
crossref_primary_10_54392_irjmt2365
crossref_primary_10_3390_s20185322
crossref_primary_10_1007_s11042_023_16241_9
crossref_primary_10_1080_22797254_2022_2153747
crossref_primary_10_3390_rs12142335
crossref_primary_10_3390_rs15235483
crossref_primary_10_1109_TIP_2022_3177322
crossref_primary_10_1016_j_jfranklin_2024_107285
crossref_primary_10_1109_TNNLS_2021_3112268
crossref_primary_10_1109_JSTARS_2023_3342983
crossref_primary_10_1109_JSTARS_2022_3212983
crossref_primary_10_3390_electronics13132540
crossref_primary_10_1109_TGRS_2022_3232705
crossref_primary_10_1109_TMM_2023_3290426
crossref_primary_10_1016_j_jag_2024_104308
crossref_primary_10_1109_TCSVT_2022_3215513
crossref_primary_10_1109_JSTARS_2022_3144312
crossref_primary_10_1007_s11760_021_02029_7
crossref_primary_10_1080_01431161_2022_2048319
crossref_primary_10_3390_rs13234921
crossref_primary_10_1109_TGRS_2024_3476116
crossref_primary_10_1080_01431161_2024_2384098
crossref_primary_10_1109_TGRS_2020_2994057
crossref_primary_10_3389_fpls_2021_736334
crossref_primary_10_3390_rs13183637
crossref_primary_10_3390_rs15153900
crossref_primary_10_1016_j_cosrev_2023_100584
crossref_primary_10_1109_ACCESS_2024_3376258
crossref_primary_10_1109_LGRS_2023_3277841
crossref_primary_10_1109_JSTARS_2025_3565894
crossref_primary_10_1088_1742_6596_2562_1_012026
crossref_primary_10_1109_TGRS_2024_3511618
crossref_primary_10_1016_j_displa_2022_102278
crossref_primary_10_1109_JSTARS_2022_3144339
crossref_primary_10_1016_j_jag_2021_102603
crossref_primary_10_1109_ACCESS_2024_3359036
crossref_primary_10_1016_j_isprsjprs_2024_05_003
crossref_primary_10_1109_TGRS_2022_3220748
crossref_primary_10_1016_j_compmedimag_2024_102339
crossref_primary_10_34133_plantphenomics_0197
crossref_primary_10_3390_rs14092265
crossref_primary_10_1109_TGRS_2025_3559137
crossref_primary_10_1109_JSTARS_2020_3019300
crossref_primary_10_1109_LGRS_2022_3181627
crossref_primary_10_1002_srin_202100826
crossref_primary_10_1109_TGRS_2020_3048002
crossref_primary_10_1109_TGRS_2020_3048128
crossref_primary_10_1109_TGRS_2024_3385501
crossref_primary_10_1109_TGRS_2023_3235819
crossref_primary_10_1109_TGRS_2024_3505292
crossref_primary_10_3390_rs17162800
crossref_primary_10_1109_MGRS_2022_3169947
crossref_primary_10_1109_ACCESS_2024_3469228
crossref_primary_10_1109_TGRS_2023_3297216
crossref_primary_10_1109_ACCESS_2024_3420089
crossref_primary_10_1080_07038992_2024_2333424
crossref_primary_10_1109_TGRS_2025_3571606
crossref_primary_10_3390_rs15112720
crossref_primary_10_1007_s12393_022_09327_x
crossref_primary_10_1109_TGRS_2022_3167569
crossref_primary_10_1109_TGRS_2020_3035642
crossref_primary_10_3390_rs14205251
crossref_primary_10_1109_TGRS_2025_3599172
crossref_primary_10_3389_fpls_2020_611622
crossref_primary_10_1109_JSTARS_2023_3337112
crossref_primary_10_3390_rs16214050
crossref_primary_10_2340_actadv_v102_2045
crossref_primary_10_3390_rs14030681
crossref_primary_10_1109_TGRS_2022_3181501
crossref_primary_10_3390_app14167361
crossref_primary_10_3390_rs12081294
crossref_primary_10_1016_j_asr_2024_05_064
crossref_primary_10_3390_rs13030498
crossref_primary_10_3390_su142013485
crossref_primary_10_1109_TIM_2023_3279922
crossref_primary_10_1016_j_jfca_2025_108041
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_3390_s20185262
crossref_primary_10_3390_rs14194982
crossref_primary_10_1109_JSTARS_2025_3581451
crossref_primary_10_1109_TIP_2022_3176537
crossref_primary_10_3390_rs13214342
crossref_primary_10_1109_TGRS_2020_3043267
crossref_primary_10_3788_COL202523_051103
crossref_primary_10_1007_s10489_024_06139_w
crossref_primary_10_1109_TGRS_2024_3463745
crossref_primary_10_1109_TGRS_2023_3346714
crossref_primary_10_1109_TGRS_2021_3110601
crossref_primary_10_1364_AO_432704
crossref_primary_10_3390_s25082346
crossref_primary_10_1109_TGRS_2023_3240481
crossref_primary_10_1088_1674_1056_ac8cd7
crossref_primary_10_1109_JSTARS_2021_3135548
crossref_primary_10_1007_s11042_022_13721_2
crossref_primary_10_1109_TGRS_2020_3047682
crossref_primary_10_1002_agj2_21648
crossref_primary_10_1109_JSTARS_2021_3065987
crossref_primary_10_1016_j_compag_2021_106226
crossref_primary_10_1109_TSP_2023_3304789
crossref_primary_10_1109_JSTARS_2022_3232995
crossref_primary_10_3390_rs16163097
crossref_primary_10_1109_LGRS_2024_3393290
crossref_primary_10_1109_JSTARS_2020_2992310
crossref_primary_10_1109_TNNLS_2023_3264587
crossref_primary_10_1109_TGRS_2025_3566070
crossref_primary_10_1007_s00521_025_11315_1
crossref_primary_10_3390_rs16132336
crossref_primary_10_1109_JSTARS_2025_3595648
crossref_primary_10_3390_rs15112879
crossref_primary_10_1016_j_knosys_2025_114372
crossref_primary_10_1109_TGRS_2022_3207933
crossref_primary_10_1109_JSTARS_2024_3424954
crossref_primary_10_1007_s10103_022_03665_2
crossref_primary_10_1016_j_asoc_2025_113055
crossref_primary_10_1016_j_jag_2021_102456
crossref_primary_10_1109_JSTARS_2024_3429492
crossref_primary_10_1109_TGRS_2022_3177478
crossref_primary_10_1109_TGRS_2021_3067096
crossref_primary_10_1109_TGRS_2022_3199467
crossref_primary_10_1109_ACCESS_2023_3339565
crossref_primary_10_1038_s41467_022_27980_y
crossref_primary_10_1007_s12524_024_02083_x
crossref_primary_10_3390_rs14112653
crossref_primary_10_3390_app14062327
crossref_primary_10_3390_rs15225385
crossref_primary_10_1016_j_rsase_2022_100823
crossref_primary_10_1016_j_inffus_2025_103257
crossref_primary_10_1016_j_infrared_2022_104470
crossref_primary_10_1371_journal_pone_0304202
crossref_primary_10_1109_JSTARS_2025_3571226
crossref_primary_10_1109_JSTARS_2025_3529985
crossref_primary_10_3390_s20226666
crossref_primary_10_1109_TGRS_2023_3242978
crossref_primary_10_3390_land10080867
crossref_primary_10_1109_TGRS_2024_3443953
crossref_primary_10_1080_22797254_2021_2023910
crossref_primary_10_1109_LGRS_2025_3587604
crossref_primary_10_1109_TGRS_2020_3022029
crossref_primary_10_1109_TGRS_2024_3350700
crossref_primary_10_1109_TGRS_2020_2975295
crossref_primary_10_1038_s41598_025_87030_7
crossref_primary_10_3390_rs16224270
crossref_primary_10_1109_TGRS_2022_3203476
crossref_primary_10_1080_01431161_2022_2098078
crossref_primary_10_1109_JSTARS_2025_3596770
crossref_primary_10_1016_j_infrared_2023_104666
crossref_primary_10_1080_01431161_2022_2093621
crossref_primary_10_1080_01431161_2021_1881184
crossref_primary_10_1109_JSTARS_2021_3053567
crossref_primary_10_1109_TGRS_2023_3294227
crossref_primary_10_1080_01431161_2023_2297178
crossref_primary_10_1109_JSTARS_2024_3522318
crossref_primary_10_1016_j_rsase_2024_101390
crossref_primary_10_1109_JSTARS_2021_3078631
crossref_primary_10_3390_rs15245656
crossref_primary_10_3390_rs14184523
crossref_primary_10_1016_j_rse_2021_112652
crossref_primary_10_1016_j_jfca_2024_106404
crossref_primary_10_1109_TGRS_2025_3567632
crossref_primary_10_3390_rs15153795
crossref_primary_10_3390_rs15153793
crossref_primary_10_1016_j_infsof_2023_107281
crossref_primary_10_1109_LGRS_2022_3185407
crossref_primary_10_1109_TCYB_2021_3064571
crossref_primary_10_3390_app14177438
crossref_primary_10_1109_JSTARS_2022_3216590
crossref_primary_10_1016_j_neucom_2025_131016
crossref_primary_10_1109_TGRS_2022_3164341
crossref_primary_10_1109_TGRS_2024_3374081
crossref_primary_10_1109_TGRS_2024_3404929
crossref_primary_10_1109_TGRS_2024_3433025
crossref_primary_10_1016_j_dsp_2021_103016
crossref_primary_10_1145_3543848
crossref_primary_10_1109_TGRS_2022_3232498
crossref_primary_10_1016_j_jhydrol_2019_124482
crossref_primary_10_1016_j_tifs_2021_04_042
crossref_primary_10_1109_JSTARS_2021_3121556
crossref_primary_10_1080_01431161_2023_2232552
crossref_primary_10_1016_j_isprsjprs_2024_09_020
crossref_primary_10_3390_rs16091615
crossref_primary_10_1080_07038992_2023_2248270
crossref_primary_10_1109_JSTARS_2024_3440254
crossref_primary_10_1109_TNNLS_2024_3511575
crossref_primary_10_1080_01431161_2021_1949069
crossref_primary_10_3390_rs15082014
crossref_primary_10_1109_TGRS_2023_3282247
crossref_primary_10_1016_j_neucom_2019_11_092
crossref_primary_10_3390_app13148451
crossref_primary_10_1186_s43074_022_00065_1
crossref_primary_10_3390_rs15174328
crossref_primary_10_3390_rs17081373
crossref_primary_10_1038_s41598_024_69732_6
crossref_primary_10_1109_TGRS_2023_3271424
crossref_primary_10_1109_TGRS_2023_3330568
crossref_primary_10_1109_TNNLS_2022_3158280
crossref_primary_10_1038_s41598_024_58125_4
crossref_primary_10_1016_j_isprsjprs_2021_04_020
crossref_primary_10_1016_j_isprsjprs_2020_10_015
crossref_primary_10_1109_JSTARS_2022_3162423
crossref_primary_10_1016_j_jag_2024_104092
crossref_primary_10_3390_rs16183531
crossref_primary_10_1109_TGRS_2020_3042274
crossref_primary_10_3390_rs13214405
crossref_primary_10_3390_drones7040240
crossref_primary_10_3390_rs12233879
crossref_primary_10_1016_j_eswa_2023_122172
crossref_primary_10_3390_rs13071253
crossref_primary_10_1109_TIM_2023_3271713
crossref_primary_10_1007_s11042_022_12494_y
crossref_primary_10_1109_LGRS_2022_3185449
crossref_primary_10_1109_MGRS_2021_3051859
crossref_primary_10_1109_TGRS_2024_3474736
crossref_primary_10_1109_TGRS_2024_3386256
crossref_primary_10_1109_TGRS_2023_3345923
crossref_primary_10_1364_AO_523199
crossref_primary_10_1109_JSTARS_2025_3586779
crossref_primary_10_1080_2150704X_2024_2379513
crossref_primary_10_3390_rs13071248
crossref_primary_10_1016_j_rse_2021_112322
crossref_primary_10_1117_1_JRS_18_016509
crossref_primary_10_3389_ffgc_2023_1179910
crossref_primary_10_1109_ACCESS_2025_3542038
crossref_primary_10_1109_JSTARS_2024_3438123
crossref_primary_10_1109_TGRS_2022_3140353
crossref_primary_10_1109_TGRS_2023_3281490
crossref_primary_10_1016_j_isprsjprs_2021_04_001
crossref_primary_10_1080_01431161_2024_2307943
crossref_primary_10_1109_TGRS_2023_3346923
crossref_primary_10_1109_TGRS_2021_3073924
crossref_primary_10_1007_s40998_025_00871_w
crossref_primary_10_1016_j_neucom_2024_128885
crossref_primary_10_1109_ACCESS_2025_3543122
crossref_primary_10_1155_2021_9923491
crossref_primary_10_1109_JSTARS_2020_2984568
crossref_primary_10_3390_rs15184391
crossref_primary_10_1016_j_gsf_2021_101203
crossref_primary_10_3390_rs17121964
crossref_primary_10_1109_TGRS_2023_3349076
crossref_primary_10_1007_s10994_025_06829_7
crossref_primary_10_3390_rs14102355
crossref_primary_10_3390_rs12223839
crossref_primary_10_3390_s25144322
crossref_primary_10_3390_rs12223836
crossref_primary_10_1109_TIP_2021_3055613
crossref_primary_10_3390_s24103153
crossref_primary_10_3390_rs14091968
crossref_primary_10_1109_TGRS_2022_3153673
crossref_primary_10_3390_rs17173015
crossref_primary_10_1109_TGRS_2025_3586287
crossref_primary_10_1109_LGRS_2022_3225151
crossref_primary_10_1080_01431161_2022_2055986
crossref_primary_10_1016_j_asr_2025_04_081
crossref_primary_10_1109_MGRS_2023_3269979
crossref_primary_10_1007_s11432_020_3084_1
crossref_primary_10_1016_j_jag_2023_103482
crossref_primary_10_1109_TGRS_2025_3541879
crossref_primary_10_1016_j_gsf_2022_101425
crossref_primary_10_1109_TGRS_2024_3439094
crossref_primary_10_1007_s00500_021_06105_5
crossref_primary_10_1007_s11042_024_19773_w
crossref_primary_10_1109_JSTARS_2022_3221098
crossref_primary_10_1016_j_ecolind_2024_111608
crossref_primary_10_1109_TGRS_2022_3174305
crossref_primary_10_1109_JSTARS_2023_3345411
crossref_primary_10_1109_TGRS_2022_3177935
crossref_primary_10_1109_TGRS_2025_3603650
crossref_primary_10_3390_agronomy11030575
crossref_primary_10_1109_JSTARS_2022_3216624
crossref_primary_10_3390_geosciences12060248
crossref_primary_10_1109_JSTARS_2021_3066378
crossref_primary_10_1016_j_jag_2022_103095
crossref_primary_10_1109_TGRS_2020_3014286
crossref_primary_10_1109_TNNLS_2024_3457781
crossref_primary_10_1109_JSEN_2025_3572485
crossref_primary_10_1109_JSTARS_2023_3283862
crossref_primary_10_1016_j_bspc_2024_106982
crossref_primary_10_1007_s11760_025_04359_2
crossref_primary_10_1109_TGRS_2020_3008844
crossref_primary_10_3390_rs16112029
crossref_primary_10_3390_aerospace11110933
crossref_primary_10_3103_S8756699021020102
crossref_primary_10_1080_22797254_2023_2262738
crossref_primary_10_1109_TGRS_2020_3018879
crossref_primary_10_14358_PERS_22_00111R2
crossref_primary_10_3390_rs13224704
crossref_primary_10_1109_JSTARS_2021_3132856
crossref_primary_10_3390_land14010172
crossref_primary_10_3390_app14125061
crossref_primary_10_1109_MGRS_2024_3382510
crossref_primary_10_3390_app13127143
crossref_primary_10_1016_j_aca_2021_339308
crossref_primary_10_1016_j_rse_2024_114291
crossref_primary_10_3390_rs13163232
crossref_primary_10_1109_MGRS_2024_3509139
crossref_primary_10_3390_rs13234875
crossref_primary_10_1109_TGRS_2020_2964777
crossref_primary_10_1109_TGRS_2024_3436821
crossref_primary_10_3390_rs14071542
crossref_primary_10_3390_rs15071758
crossref_primary_10_1109_TGRS_2019_2961141
crossref_primary_10_3390_s23125366
crossref_primary_10_1109_ACCESS_2023_3297630
crossref_primary_10_1016_j_jfca_2025_107857
crossref_primary_10_1109_JSTARS_2025_3604753
crossref_primary_10_1111_jmi_13372
crossref_primary_10_1007_s11042_025_20825_y
crossref_primary_10_1007_s10333_025_01024_9
crossref_primary_10_1109_TGRS_2025_3572128
crossref_primary_10_3390_rs13071306
crossref_primary_10_1109_LGRS_2023_3321343
crossref_primary_10_1016_j_jag_2023_103326
crossref_primary_10_3390_rs16010140
crossref_primary_10_3390_rs13020198
crossref_primary_10_1109_LGRS_2022_3200145
crossref_primary_10_1007_s10489_021_02805_5
crossref_primary_10_3390_app10248833
crossref_primary_10_1109_TGRS_2022_3230378
crossref_primary_10_1109_LGRS_2021_3103180
crossref_primary_10_1016_j_knosys_2025_113973
crossref_primary_10_1016_j_neucom_2023_01_054
crossref_primary_10_1109_TGRS_2024_3403648
crossref_primary_10_5194_gi_11_195_2022
crossref_primary_10_3390_diagnostics11101810
crossref_primary_10_3390_rs16244695
crossref_primary_10_3390_rs12213501
crossref_primary_10_1109_JSTARS_2023_3342461
crossref_primary_10_1002_eap_2300
crossref_primary_10_1109_JSTARS_2022_3151149
crossref_primary_10_3390_rs12183053
crossref_primary_10_1109_TGRS_2025_3603835
crossref_primary_10_1016_j_icarus_2021_114849
crossref_primary_10_1080_01431161_2024_2431174
crossref_primary_10_1109_TGRS_2025_3576670
crossref_primary_10_1109_TGRS_2023_3265388
crossref_primary_10_1016_j_compag_2024_109726
crossref_primary_10_3390_s24227131
crossref_primary_10_1016_j_eswa_2024_123155
crossref_primary_10_3390_agriculture12111838
crossref_primary_10_3390_rs14153751
crossref_primary_10_3390_electronics14010102
crossref_primary_10_3390_sym12020277
crossref_primary_10_1016_j_jag_2022_103022
crossref_primary_10_3390_rs15153721
crossref_primary_10_1109_TGRS_2025_3542422
crossref_primary_10_3390_jimaging6120132
crossref_primary_10_1109_TNNLS_2024_3445136
crossref_primary_10_1080_01431161_2020_1857877
crossref_primary_10_1016_j_jag_2024_103754
crossref_primary_10_1109_LGRS_2024_3418856
crossref_primary_10_1016_j_jag_2024_103876
crossref_primary_10_3390_rs15010261
crossref_primary_10_1016_j_future_2023_05_003
crossref_primary_10_3390_rs15184439
crossref_primary_10_1109_JSTARS_2025_3566214
crossref_primary_10_3390_rs15184560
crossref_primary_10_1109_TGRS_2022_3223508
crossref_primary_10_1016_j_jenvman_2024_123410
crossref_primary_10_1109_LGRS_2022_3192912
crossref_primary_10_1109_JSTARS_2023_3328389
crossref_primary_10_1109_LGRS_2023_3341497
crossref_primary_10_3390_rs16020288
Cites_doi 10.1109/ICICS.2013.6782778
10.1016/S0168-1699(03)00020-6
10.1109/LGRS.2006.878240
10.1109/TGRS.2017.2748160
10.1080/2150704X.2015.1047045
10.1109/TIP.2017.2725580
10.1109/TGRS.2015.2478379
10.1080/2150704X.2015.1062157
10.1109/TGRS.2009.2016214
10.1109/TGRS.2018.2818945
10.1145/2733373.2806306
10.1007/BF00121320
10.1016/j.isprsjprs.2015.01.006
10.1109/TGRS.2016.2642479
10.3390/rs9101042
10.1109/TGRS.2016.2616585
10.1109/LGRS.2015.2482520
10.1109/TGRS.2002.802494
10.1155/2015/258619
10.1109/MGRS.2017.2762307
10.1109/TIP.2017.2772836
10.1080/2150704X.2017.1331053
10.1109/CVPR.2015.7298594
10.1109/TGRS.2004.831865
10.1109/TGRS.2016.2584107
10.1109/IGARSS.2015.7326945
10.3390/rs9030298
10.3390/rs9010067
10.1109/TGRS.2014.2350771
10.5194/isprsarchives-XL-3-W3-459-2015
10.1080/01431161.2010.512425
10.1109/MGRS.2017.2762087
10.1109/TGRS.2016.2636241
10.1109/TGRS.2018.2833808
10.1109/MGRS.2018.2798161
10.1109/IGARSS.2018.8518321
10.1109/ICCV.2015.123
10.1109/JPROC.2012.2197589
10.1109/TGRS.2018.2805286
10.1007/s00500-016-2246-3
10.1145/2660859.2660946
10.1109/LGRS.2018.2817361
10.1109/MGRS.2013.2244672
10.1016/j.patcog.2010.01.016
10.1117/12.2245011
10.1109/ICIP.2017.8297014
10.1109/TGRS.2004.842481
10.1109/TGRS.2016.2543748
10.1109/JSTARS.2014.2304304
10.1109/JSTARS.2016.2517204
10.1109/LGRS.2005.846011
10.1109/CVPR.2016.90
10.1109/ICALIP.2018.8455251
10.1109/LGRS.2005.857031
10.1109/LGRS.2004.837009
10.5194/isprsannals-III-3-473-2016
10.1155/2016/3632943
10.1016/j.rse.2007.12.015
10.1162/neco.1989.1.4.541
10.3390/rs9030196
10.1007/978-3-319-54181-5_12
10.1109/TGRS.2009.2037898
10.1109/IGARSS.2016.7729675
10.1109/JSTARS.2014.2329330
10.1016/j.patcog.2011.03.035
10.1109/WHISPERS.2015.8075378
10.1109/JSTARS.2015.2388577
10.1080/01431169408954055
10.1109/TGRS.2015.2513424
10.1109/ICIP.2014.7026039
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
1XC
VOOES
DOI 10.1109/MGRS.2019.2912563
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Computer Science
EISSN 2168-6831
EndPage 173
ExternalDocumentID oai:HAL:hal-02104998v1
10_1109_MGRS_2019_2912563
8738045
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c280t-69e3431963cdcd5a24aa919ebd06d4b1cfa5789bb3473ce2ce5137db6eabecec3
IEDL.DBID RIE
ISSN 2473-2397
IngestDate Sat Nov 29 15:07:35 EST 2025
Tue Nov 18 22:33:07 EST 2025
Sat Nov 29 05:56:56 EST 2025
Wed Aug 27 05:51:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c280t-69e3431963cdcd5a24aa919ebd06d4b1cfa5789bb3473ce2ce5137db6eabecec3
ORCID 0000-0002-2384-8202
0000-0001-6486-3102
0000-0001-7162-6746
OpenAccessLink https://hal.science/hal-02104998
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_02104998v1
ieee_primary_8738045
crossref_primary_10_1109_MGRS_2019_2912563
crossref_citationtrail_10_1109_MGRS_2019_2912563
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE geoscience and remote sensing magazine
PublicationTitleAbbrev GRSM
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
rodarmel (ref20) 2002; 62
ref56
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ioffe (ref76) 0
ref54
ref19
ref51
ref50
ref46
ref45
kingma (ref73) 2015
ref48
ref47
ref42
ref41
ref44
ref43
tao (ref61) 2015; 12
ref49
parra (ref18) 0
gualtieri (ref24) 0; 3584
ref8
ref7
ref9
ref4
ref6
ref5
ref82
nair (ref78) 0
ref81
ref40
ozkan (ref39) 2017
ref80
ref79
ref35
ref34
ref37
ref36
ref31
ref74
ref30
ref77
ref33
ref32
ref2
ref1
ref38
ref71
ref70
ref72
ref68
ref67
ref23
ref26
ref69
ref25
ref64
ref63
du (ref16) 0
ref66
ref22
ref65
ref21
marmanis (ref3) 2016; 3
ref28
ref27
ref29
(ref12) 2018
ref60
ref62
srivastava (ref75) 2014; 15
yuhas (ref17) 1992
chavez (ref10) 1996; 62
References_xml – ident: ref57
  doi: 10.1109/ICICS.2013.6782778
– ident: ref40
  doi: 10.1016/S0168-1699(03)00020-6
– ident: ref15
  doi: 10.1109/LGRS.2006.878240
– ident: ref65
  doi: 10.1109/TGRS.2017.2748160
– ident: ref52
  doi: 10.1080/2150704X.2015.1047045
– ident: ref49
  doi: 10.1109/TIP.2017.2725580
– ident: ref54
  doi: 10.1109/TGRS.2015.2478379
– ident: ref53
  doi: 10.1080/2150704X.2015.1062157
– ident: ref34
  doi: 10.1109/TGRS.2009.2016214
– ident: ref63
  doi: 10.1109/TGRS.2018.2818945
– year: 2015
  ident: ref73
  publication-title: Adam A method for stochastic optimization
– ident: ref50
  doi: 10.1145/2733373.2806306
– ident: ref8
  doi: 10.1007/BF00121320
– ident: ref37
  doi: 10.1016/j.isprsjprs.2015.01.006
– ident: ref21
  doi: 10.1109/TGRS.2016.2642479
– ident: ref80
  doi: 10.3390/rs9101042
– ident: ref2
  doi: 10.1109/TGRS.2016.2616585
– volume: 12
  start-page: 2438
  year: 2015
  ident: ref61
  article-title: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2015.2482520
– ident: ref31
  doi: 10.1109/TGRS.2002.802494
– ident: ref42
  doi: 10.1155/2015/258619
– start-page: 942
  year: 0
  ident: ref18
  article-title: Unmixing hyperspectral data
  publication-title: Proc 12th Int Conf Neural Information Processing Systems
– ident: ref6
  doi: 10.1109/MGRS.2017.2762307
– start-page: 374
  year: 0
  ident: ref16
  article-title: Band selection and its impact on target detection and classification in hyperspectral image analysis
  publication-title: Proc IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data
– ident: ref44
  doi: 10.1109/TIP.2017.2772836
– ident: ref70
  doi: 10.1080/2150704X.2017.1331053
– year: 2017
  ident: ref39
  publication-title: Endnet Sparse autoencoder network for endmember extraction and hyperspectral unmixing
– ident: ref67
  doi: 10.1109/CVPR.2015.7298594
– ident: ref23
  doi: 10.1109/TGRS.2004.831865
– ident: ref71
  doi: 10.1109/TGRS.2016.2584107
– ident: ref48
  doi: 10.1109/IGARSS.2015.7326945
– ident: ref45
  doi: 10.3390/rs9030298
– ident: ref68
  doi: 10.3390/rs9010067
– ident: ref5
  doi: 10.1109/TGRS.2014.2350771
– year: 2018
  ident: ref12
  publication-title: 2018 IEEE GRSS Data Fusion Contest
– ident: ref19
  doi: 10.5194/isprsarchives-XL-3-W3-459-2015
– ident: ref30
  doi: 10.1080/01431161.2010.512425
– ident: ref7
  doi: 10.1109/MGRS.2017.2762087
– ident: ref43
  doi: 10.1109/TGRS.2016.2636241
– ident: ref77
  doi: 10.1109/TGRS.2018.2833808
– ident: ref13
  doi: 10.1109/MGRS.2018.2798161
– ident: ref81
  doi: 10.1109/IGARSS.2018.8518321
– ident: ref74
  doi: 10.1109/ICCV.2015.123
– start-page: 807
  year: 0
  ident: ref78
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn (ICML-10)
– ident: ref28
  doi: 10.1109/JPROC.2012.2197589
– ident: ref82
  doi: 10.1109/TGRS.2018.2805286
– ident: ref62
  doi: 10.1007/s00500-016-2246-3
– ident: ref58
  doi: 10.1145/2660859.2660946
– ident: ref79
  doi: 10.1109/LGRS.2018.2817361
– ident: ref4
  doi: 10.1109/MGRS.2013.2244672
– ident: ref27
  doi: 10.1016/j.patcog.2010.01.016
– ident: ref47
  doi: 10.1117/12.2245011
– ident: ref69
  doi: 10.1109/ICIP.2017.8297014
– ident: ref22
  doi: 10.1109/TGRS.2004.842481
– ident: ref51
  doi: 10.1109/TGRS.2016.2543748
– ident: ref25
  doi: 10.1109/JSTARS.2014.2304304
– ident: ref60
  doi: 10.1109/JSTARS.2016.2517204
– ident: ref14
  doi: 10.1109/LGRS.2005.846011
– ident: ref66
  doi: 10.1109/CVPR.2016.90
– start-page: 147
  year: 1992
  ident: ref17
  article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
  publication-title: Proc Summaries 3rd Annu JPL Airborne Geoscience Workshop
– volume: 62
  start-page: 115
  year: 2002
  ident: ref20
  article-title: Principal component analysis for hyperspectral image classification
  publication-title: Surveying and Land Information Science
– ident: ref64
  doi: 10.1109/ICALIP.2018.8455251
– ident: ref33
  doi: 10.1109/LGRS.2005.857031
– ident: ref32
  doi: 10.1109/LGRS.2004.837009
– volume: 3
  start-page: 473
  year: 2016
  ident: ref3
  article-title: Semantic segmentation of aerial images with an ensemble of CNNs
  publication-title: ISPRS Ann Photogramm Remote Sens Spatial Inf Sci
  doi: 10.5194/isprsannals-III-3-473-2016
– ident: ref46
  doi: 10.1155/2016/3632943
– ident: ref11
  doi: 10.1016/j.rse.2007.12.015
– start-page: 448
  year: 0
  ident: ref76
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– ident: ref72
  doi: 10.1162/neco.1989.1.4.541
– ident: ref36
  doi: 10.3390/rs9030196
– ident: ref1
  doi: 10.1007/978-3-319-54181-5_12
– ident: ref41
  doi: 10.1109/TGRS.2009.2037898
– ident: ref26
  doi: 10.1109/IGARSS.2016.7729675
– ident: ref59
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref35
  doi: 10.1016/j.patcog.2011.03.035
– ident: ref38
  doi: 10.1109/WHISPERS.2015.8075378
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref75
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learning Res
– ident: ref56
  doi: 10.1109/JSTARS.2015.2388577
– volume: 62
  start-page: 1025
  year: 1996
  ident: ref10
  article-title: Image-based atmospheric corrections: Revisited and improved
  publication-title: Photogrammetric Eng Remote Sens
– ident: ref9
  doi: 10.1080/01431169408954055
– ident: ref29
  doi: 10.1109/TGRS.2015.2513424
– volume: 3584
  start-page: 1
  year: 0
  ident: ref24
  article-title: Support vector machines hyperspectral remote sensing classification
  publication-title: Proc SPIE
– ident: ref55
  doi: 10.1109/ICIP.2014.7026039
SSID ssj0000851918
Score 2.6090791
Snippet In recent years, deep-learning techniques revolutionized the way remote sensing data are processed. The classification of hyperspectral data is no exception to...
In recent years, deep learning techniques revolutionized the way remote sensing data are processed. Classification of hyperspectral data is no exception to the...
SourceID hal
crossref
ieee
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms Computer Science
Computer Vision and Pattern Recognition
Deep learning
Hyperspectral imaging
Machine learning
Neural and Evolutionary Computing
Sensors
Spatial resolution
Title Deep Learning for Classification of Hyperspectral Data: A Comparative Review
URI https://ieeexplore.ieee.org/document/8738045
https://hal.science/hal-02104998
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-6831
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000851918
  issn: 2473-2397
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5sQ9EXL5vivBHEJ7Eubbqm8W1sbntQES_gW2mSMyfINuY22L83SWtVEMG3EtIL-Rq-c3IuH8ApautXxaEXGfr3DAWgJyVSTxrblgkdMdTUiU3w29v4-VncleC8qIVBRJd8hhf20sXy9VjN7VFZI-YsNiZIGcqcR1mtVnGeYk0H4Y7zgpAzLzA8mwcxfSoaN737B5vHJS4CYSg9Yj9oqDy0SZDf1FUcuXQ3__dZW7CRG5GklaG-DSUcVWEt1zMfLquw2nOCvcsaXHcQJyTvovpCjIlKnA6mzRByoJDxgPSNM5rVXE7NYzvpLL0kLdL-agxOshDCDjx1rx7bfS9XUPBUENOZFwlkodtkSivdTIMwTYUvUGoa6VD6apCaHSukZGbNFAYKmz7jWkaYGmxRsV2ojMYj3APCBVfNiAufaREaZjWWWzygVKUYSoxR1YF-Lmii8vbiVuXiLXFuBhWJxSCxGCQ5BnU4K26ZZL01_pp8YlAq5tmu2P3WdWLHrNtqHLd44dehZuEpZuXI7P8-fADr9g1Z4tchVGbTOR7BilrMXt-nx-73-gDn48uJ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH7YqtSLu1jXIJ7EqZlJZom34laxFnGB3oZJ8qqCtKW2gv_eJDOOCiJ4G0JmId-E77285QPYR239qoR7kaF_z1AAelIi9aSxbZnQEUNNndhE3Okk3a64mYLDshYGEV3yGTbspYvl64Ga2KOyoyRmiTFBKjAdch7QvFqrPFGxxoNwB3oBj5kXGKYtwpg-FUfXF7d3NpNLNAJhSD1iP4io8mTTIL_pqzh6OV_434ctwnxhRpJmjvsSTGF_GWqFovnT-zLMXjjJ3vcVaJ8iDknRR_WRGCOVOCVMmyPkYCGDHmkZdzSvuhyZx55m4-yYNMnJV2twkgcRVuHh_Oz-pOUVGgqeChI69iKBjLttprTSYRbwLBO-QKlppLn0VS8ze1ZIycyaKQwUhj6LtYwwM-iiYmtQ7Q_6uA4kFrEKo1j4TAtuuNXYbkmPUpUhl5igqgP9XNBUFQ3Grc7FS-ocDSpSi0FqMUgLDOpwUN4yzLtr_DV5z6BUzrN9sVvNdmrHrONqXLfkza_DioWnnFUgs_H78C7UWvfX7bR92bnahDn7tjwNbAuq49EEt2FGvY2fX0c77lf7AKjdztA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Classification+of+Hyperspectral+Data%3A+A+Comparative+Review&rft.jtitle=IEEE+geoscience+and+remote+sensing+magazine&rft.au=Audebert%2C+Nicolas&rft.au=Le+Saux%2C+Bertrand&rft.au=Lefevre%2C+Sebastien&rft.date=2019-06-01&rft.issn=2473-2397&rft.eissn=2168-6831&rft.volume=7&rft.issue=2&rft.spage=159&rft.epage=173&rft_id=info:doi/10.1109%2FMGRS.2019.2912563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MGRS_2019_2912563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2397&client=summon