Bilevel optimization in flow networks: A message-passing approach

Optimizing embedded systems, where the optimization of one depends on the state of another, is a formidable computational and algorithmic challenge, that is ubiquitous in real world systems. We study flow networks, where bilevel optimization is relevant to traffic planning, network control, and desi...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E Vol. 106; no. 4; p. L042301
Main Authors: Li, Bo, Saad, David, Yeung, Chi Ho
Format: Journal Article
Language:English
Published: 01.10.2022
ISSN:2470-0053, 2470-0053
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optimizing embedded systems, where the optimization of one depends on the state of another, is a formidable computational and algorithmic challenge, that is ubiquitous in real world systems. We study flow networks, where bilevel optimization is relevant to traffic planning, network control, and design, and where flows are governed by an optimization requirement subject to the network parameters. We employ message passing algorithms in flow networks with sparsely coupled structures to adapt network parameters that govern the network flows, in order to optimize a global objective. We demonstrate the effectiveness and efficiency of the approach on randomly generated graphs.Optimizing embedded systems, where the optimization of one depends on the state of another, is a formidable computational and algorithmic challenge, that is ubiquitous in real world systems. We study flow networks, where bilevel optimization is relevant to traffic planning, network control, and design, and where flows are governed by an optimization requirement subject to the network parameters. We employ message passing algorithms in flow networks with sparsely coupled structures to adapt network parameters that govern the network flows, in order to optimize a global objective. We demonstrate the effectiveness and efficiency of the approach on randomly generated graphs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-0053
2470-0053
DOI:10.1103/PhysRevE.106.L042301