A Dynamic Event-Triggered Transmission Scheme for Distributed Set-Membership Estimation Over Wireless Sensor Networks

This paper is concerned with the distributed set-membership estimation for a discrete-time linear time-varying system over a resource-constrained wireless sensor network under the influence of unknown-but-bounded (UBB) process and measurement noise. Sensors collaborate among themselves by exchanging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 49; H. 1; S. 171 - 183
Hauptverfasser: Ge, Xiaohua, Han, Qing-Long, Wang, Zidong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper is concerned with the distributed set-membership estimation for a discrete-time linear time-varying system over a resource-constrained wireless sensor network under the influence of unknown-but-bounded (UBB) process and measurement noise. Sensors collaborate among themselves by exchanging local measurements with only neighboring sensors in their sensing ranges. First, a new dynamic event-triggered transmission scheme (ETS) is developed to schedule the transmission of each sensor's local measurement. In contrast with the majority of existing static ETSs, the newly proposed dynamic ETS can result in larger average interevent times and thus less totally released data packets. Second, a criterion for designing desired event-triggered set-membership estimators is derived such that the system's true state always resides in each sensor's bounding ellipsoidal estimation set regardless of the simultaneous presence of UBB process and measurement noise. Third, a recursive convex optimization algorithm is presented to determine optimal ellipsoids as well as the estimator gain parameters and the event triggering weighting matrix parameter. Furthermore, the proposed dynamic ETS is applied to address the distributed set-membership estimation problem for a discrete-time linear time-varying system with a nonlinearity satisfying a sector constraint. Finally, an illustrative example is given to show the effectiveness and advantage of the developed approach.
AbstractList This paper is concerned with the distributed set-membership estimation for a discrete-time linear time-varying system over a resource-constrained wireless sensor network under the influence of unknown-but-bounded (UBB) process and measurement noise. Sensors collaborate among themselves by exchanging local measurements with only neighboring sensors in their sensing ranges. First, a new dynamic event-triggered transmission scheme (ETS) is developed to schedule the transmission of each sensor’s local measurement. In contrast with the majority of existing static ETSs, the newly proposed dynamic ETS can result in larger average interevent times and thus less totally released data packets. Second, a criterion for designing desired event-triggered set-membership estimators is derived such that the syste’s true state always resides in each sensor’s bounding ellipsoidal estimation set regardless of the simultaneous presence of UBB process and measurement noise. Third, a recursive convex optimization algorithm is presented to determine optimal ellipsoids as well as the estimator gain parameters and the event triggering weighting matrix parameter. Furthermore, the proposed dynamic ETS is applied to address the distributed set-membership estimation problem for a discrete-time linear time-varying system with a nonlinearity satisfying a sector constraint. Finally, an illustrative example is given to show the effectiveness and advantage of the developed approach.
This paper is concerned with the distributed set-membership estimation for a discrete-time linear time-varying system over a resource-constrained wireless sensor network under the influence of unknown-but-bounded (UBB) process and measurement noise. Sensors collaborate among themselves by exchanging local measurements with only neighboring sensors in their sensing ranges. First, a new dynamic event-triggered transmission scheme (ETS) is developed to schedule the transmission of each sensor's local measurement. In contrast with the majority of existing static ETSs, the newly proposed dynamic ETS can result in larger average interevent times and thus less totally released data packets. Second, a criterion for designing desired event-triggered set-membership estimators is derived such that the system's true state always resides in each sensor's bounding ellipsoidal estimation set regardless of the simultaneous presence of UBB process and measurement noise. Third, a recursive convex optimization algorithm is presented to determine optimal ellipsoids as well as the estimator gain parameters and the event triggering weighting matrix parameter. Furthermore, the proposed dynamic ETS is applied to address the distributed set-membership estimation problem for a discrete-time linear time-varying system with a nonlinearity satisfying a sector constraint. Finally, an illustrative example is given to show the effectiveness and advantage of the developed approach.
This paper is concerned with the distributed set-membership estimation for a discrete-time linear time-varying system over a resource-constrained wireless sensor network under the influence of unknown-but-bounded (UBB) process and measurement noise. Sensors collaborate among themselves by exchanging local measurements with only neighboring sensors in their sensing ranges. First, a new dynamic event-triggered transmission scheme (ETS) is developed to schedule the transmission of each sensor's local measurement. In contrast with the majority of existing static ETSs, the newly proposed dynamic ETS can result in larger average interevent times and thus less totally released data packets. Second, a criterion for designing desired event-triggered set-membership estimators is derived such that the system's true state always resides in each sensor's bounding ellipsoidal estimation set regardless of the simultaneous presence of UBB process and measurement noise. Third, a recursive convex optimization algorithm is presented to determine optimal ellipsoids as well as the estimator gain parameters and the event triggering weighting matrix parameter. Furthermore, the proposed dynamic ETS is applied to address the distributed set-membership estimation problem for a discrete-time linear time-varying system with a nonlinearity satisfying a sector constraint. Finally, an illustrative example is given to show the effectiveness and advantage of the developed approach.This paper is concerned with the distributed set-membership estimation for a discrete-time linear time-varying system over a resource-constrained wireless sensor network under the influence of unknown-but-bounded (UBB) process and measurement noise. Sensors collaborate among themselves by exchanging local measurements with only neighboring sensors in their sensing ranges. First, a new dynamic event-triggered transmission scheme (ETS) is developed to schedule the transmission of each sensor's local measurement. In contrast with the majority of existing static ETSs, the newly proposed dynamic ETS can result in larger average interevent times and thus less totally released data packets. Second, a criterion for designing desired event-triggered set-membership estimators is derived such that the system's true state always resides in each sensor's bounding ellipsoidal estimation set regardless of the simultaneous presence of UBB process and measurement noise. Third, a recursive convex optimization algorithm is presented to determine optimal ellipsoids as well as the estimator gain parameters and the event triggering weighting matrix parameter. Furthermore, the proposed dynamic ETS is applied to address the distributed set-membership estimation problem for a discrete-time linear time-varying system with a nonlinearity satisfying a sector constraint. Finally, an illustrative example is given to show the effectiveness and advantage of the developed approach.
Author Han, Qing-Long
Wang, Zidong
Ge, Xiaohua
Author_xml – sequence: 1
  givenname: Xiaohua
  orcidid: 0000-0003-0180-0897
  surname: Ge
  fullname: Ge, Xiaohua
  organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia
– sequence: 2
  givenname: Qing-Long
  orcidid: 0000-0002-7207-0716
  surname: Han
  fullname: Han, Qing-Long
  email: qhan@swin.edu.au
  organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia
– sequence: 3
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29990117$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAURq2KqlDgB6BKVSQ23WTwI_FjCcO0VOKxYKqKleV4bsCQOIPtUPHv62EGFizwxpZ1ztW99_uKtvzgAaEDgieEYHU0n96cTCgmYkIFV4LST2iHEi5LSkW99fbmYhvtx3iP85H5S8kvaJsqpTAhYgeNx8Xpsze9s8XsCXwq58Hd3kKARTEPxsfexegGX1zbO-ihaIdQnLqYgmvGlJlrSOUF9A2EeOeWxSwm15u0Eq6eIBR_XYAOYsycj1m9hPRvCA9xD31uTRdhf3Pvoj8_Z_PpWXl-9ev39Pi8tFSoVFpcgTUcbFNjs5DYtqxhqgHVsFpyUhticFXxtsasaamqFTBStRWjBNNKtortoh_russwPI4Qk87zWOg642EYo6aYS1ZxzEVGD9-h98MYfO5OU1JLhSlRPFPfN9TY9LDQy5DnDc_6daEZEGvAhiHGAK22Lr1sJAXjOk2wXqWnV-npVXp6k142yTvztfhHzre14wDgjZeEVIxh9h_HM6St
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_JSYST_2024_3359427
crossref_primary_10_1002_rnc_4963
crossref_primary_10_1007_s11432_019_2680_1
crossref_primary_10_1080_00207721_2021_1897707
crossref_primary_10_1002_rnc_5139
crossref_primary_10_1088_1402_4896_ad0330
crossref_primary_10_1109_TII_2022_3187747
crossref_primary_10_1109_TSIPN_2022_3174966
crossref_primary_10_1016_j_neucom_2021_08_081
crossref_primary_10_1109_TIM_2022_3205655
crossref_primary_10_1109_TCYB_2021_3066639
crossref_primary_10_1016_j_ins_2019_05_073
crossref_primary_10_1109_TCYB_2019_2912622
crossref_primary_10_1155_2019_1648576
crossref_primary_10_1016_j_ejcon_2023_100802
crossref_primary_10_1016_j_neucom_2019_03_088
crossref_primary_10_1109_ACCESS_2020_3032717
crossref_primary_10_1016_j_neucom_2019_03_089
crossref_primary_10_1109_TFUZZ_2020_2965877
crossref_primary_10_1016_j_jfranklin_2022_12_021
crossref_primary_10_1109_TSMC_2022_3214732
crossref_primary_10_1177_01423312221126233
crossref_primary_10_3390_math13081248
crossref_primary_10_1109_TNNLS_2023_3302190
crossref_primary_10_1007_s10586_024_04693_z
crossref_primary_10_1002_rnc_6352
crossref_primary_10_1109_TCSI_2022_3197846
crossref_primary_10_1109_TNSE_2023_3235008
crossref_primary_10_1007_s11432_019_2691_4
crossref_primary_10_1016_j_nahs_2021_101022
crossref_primary_10_1109_TAC_2022_3232988
crossref_primary_10_1109_JSYST_2022_3142183
crossref_primary_10_1109_TCSII_2022_3229412
crossref_primary_10_1109_TCYB_2021_3079149
crossref_primary_10_1007_s00521_023_08419_x
crossref_primary_10_1109_JSEN_2023_3279399
crossref_primary_10_1080_00207179_2021_1974095
crossref_primary_10_1109_TCYB_2022_3215015
crossref_primary_10_1109_TSMC_2019_2963411
crossref_primary_10_1109_TNSE_2024_3355226
crossref_primary_10_1109_TCYB_2019_2963087
crossref_primary_10_1007_s12555_022_0598_2
crossref_primary_10_1016_j_ins_2019_08_052
crossref_primary_10_1016_j_neucom_2022_06_074
crossref_primary_10_1109_TAC_2023_3311709
crossref_primary_10_1109_TNSE_2022_3216572
crossref_primary_10_1007_s11071_025_11718_8
crossref_primary_10_1109_TNNLS_2022_3183447
crossref_primary_10_1016_j_neucom_2019_03_090
crossref_primary_10_1016_j_neucom_2019_03_096
crossref_primary_10_1109_TCYB_2018_2868778
crossref_primary_10_1177_01423312211051202
crossref_primary_10_1002_rnc_6462
crossref_primary_10_1049_cth2_12194
crossref_primary_10_1080_00207721_2022_2055192
crossref_primary_10_1109_TNSE_2020_3017493
crossref_primary_10_1038_s41598_024_54761_y
crossref_primary_10_1371_journal_pone_0299535
crossref_primary_10_1016_j_ins_2023_119869
crossref_primary_10_1016_j_isatra_2022_04_040
crossref_primary_10_1109_TCYB_2019_2912403
crossref_primary_10_1109_TCYB_2021_3070356
crossref_primary_10_1109_TSMC_2020_3035037
crossref_primary_10_1016_j_ins_2019_08_063
crossref_primary_10_1109_TIE_2024_3357884
crossref_primary_10_1109_TCYB_2020_3016093
crossref_primary_10_3389_fenrg_2022_888585
crossref_primary_10_1007_s11432_019_2654_y
crossref_primary_10_1080_00207721_2022_2031338
crossref_primary_10_1109_TASE_2023_3284448
crossref_primary_10_1109_LSP_2022_3183494
crossref_primary_10_1109_TCYB_2017_2789212
crossref_primary_10_1109_TCYB_2019_2901631
crossref_primary_10_1109_TSMC_2019_2958529
crossref_primary_10_1007_s11071_021_06200_0
crossref_primary_10_1109_TNSE_2025_3571001
crossref_primary_10_1016_j_automatica_2025_112347
crossref_primary_10_1016_j_isatra_2024_10_008
crossref_primary_10_3389_frai_2021_573731
crossref_primary_10_1049_iet_cta_2019_1478
crossref_primary_10_1109_TNNLS_2021_3053652
crossref_primary_10_1109_TNSE_2023_3327591
crossref_primary_10_1080_21642583_2020_1737846
crossref_primary_10_32604_cmes_2022_020127
crossref_primary_10_1109_TCSII_2023_3236148
crossref_primary_10_1016_j_ins_2021_10_062
crossref_primary_10_1109_ACCESS_2023_3338446
crossref_primary_10_1109_ACCESS_2023_3342015
crossref_primary_10_1109_TCYB_2021_3051963
crossref_primary_10_1109_TNNLS_2022_3160645
crossref_primary_10_1016_j_ins_2022_01_069
crossref_primary_10_1109_TCSII_2022_3203824
crossref_primary_10_1109_TIE_2025_3536560
crossref_primary_10_1109_TAC_2023_3234453
crossref_primary_10_1016_j_chaos_2023_113535
crossref_primary_10_1109_TCYB_2019_2922740
crossref_primary_10_1002_acs_3209
crossref_primary_10_1016_j_automatica_2019_108557
crossref_primary_10_1109_TSIPN_2022_3182273
crossref_primary_10_1109_TNSE_2024_3383280
crossref_primary_10_1007_s12555_022_0942_6
crossref_primary_10_1007_s11432_019_2637_9
crossref_primary_10_1016_j_sysconle_2019_104533
crossref_primary_10_1080_00207721_2021_2005178
crossref_primary_10_1080_00207179_2021_2005828
crossref_primary_10_1016_j_neucom_2020_04_156
crossref_primary_10_1109_LCSYS_2022_3172791
crossref_primary_10_1016_j_ins_2019_08_080
crossref_primary_10_1016_j_automatica_2025_112278
crossref_primary_10_1109_TSMC_2023_3348290
crossref_primary_10_1002_rnc_6798
crossref_primary_10_1109_TCYB_2020_3001187
crossref_primary_10_1007_s13042_024_02204_5
crossref_primary_10_1109_TCYB_2018_2885567
crossref_primary_10_1016_j_neucom_2024_128067
crossref_primary_10_1080_00207721_2022_2056772
crossref_primary_10_1080_21642583_2021_1919935
crossref_primary_10_1109_TCSI_2023_3242974
crossref_primary_10_1080_00207721_2020_1868615
crossref_primary_10_1109_TCYB_2018_2869418
crossref_primary_10_1016_j_eswa_2023_121085
crossref_primary_10_1016_j_jfranklin_2023_09_045
crossref_primary_10_1109_TCYB_2021_3088636
crossref_primary_10_3390_en16135146
crossref_primary_10_1109_TNNLS_2021_3085001
crossref_primary_10_1109_TSMC_2020_3041121
crossref_primary_10_1016_j_neucom_2019_04_080
crossref_primary_10_1007_s00034_024_02689_z
crossref_primary_10_1016_j_neucom_2019_04_081
crossref_primary_10_1109_TSMC_2022_3146182
crossref_primary_10_1016_j_neucom_2019_04_082
crossref_primary_10_1016_j_neucom_2019_04_083
crossref_primary_10_1109_TIM_2022_3150889
crossref_primary_10_3390_app14104030
crossref_primary_10_1016_j_neucom_2019_04_084
crossref_primary_10_1109_ACCESS_2021_3107324
crossref_primary_10_1109_TII_2022_3179409
crossref_primary_10_1109_JAS_2021_1004015
crossref_primary_10_1109_TSIPN_2020_3039395
crossref_primary_10_1002_rnc_7632
crossref_primary_10_1109_TCYB_2023_3293010
crossref_primary_10_1002_rnc_7994
crossref_primary_10_1109_TCYB_2021_3125851
crossref_primary_10_1109_JAS_2021_1003967
crossref_primary_10_1109_JAS_2024_124338
crossref_primary_10_1080_00207721_2020_1801883
crossref_primary_10_1109_TSIPN_2023_3277278
crossref_primary_10_1109_TSP_2023_3326966
crossref_primary_10_1007_s11432_024_4259_x
crossref_primary_10_1109_TFUZZ_2020_3002393
crossref_primary_10_3390_e23111452
crossref_primary_10_20965_jaciii_2020_p0917
crossref_primary_10_1109_TCYB_2019_2917179
crossref_primary_10_1002_acs_3342
crossref_primary_10_1109_TCYB_2021_3067822
crossref_primary_10_1109_TAC_2020_3018437
crossref_primary_10_1109_TCYB_2019_2956736
crossref_primary_10_1016_j_ins_2020_07_041
crossref_primary_10_1016_j_jfranklin_2021_06_024
crossref_primary_10_1109_TCYB_2020_2983544
crossref_primary_10_1177_01423312211043666
crossref_primary_10_1109_TCYB_2021_3049838
crossref_primary_10_1109_TSMC_2019_2907620
crossref_primary_10_1007_s12555_018_0780_8
crossref_primary_10_1049_cth2_12718
crossref_primary_10_1016_j_neucom_2020_07_023
crossref_primary_10_1109_TVT_2024_3458994
crossref_primary_10_1080_00207721_2025_2456001
crossref_primary_10_1109_TNSE_2022_3201395
crossref_primary_10_1002_rnc_6699
crossref_primary_10_1109_TCNS_2020_2980362
crossref_primary_10_1109_TSMC_2025_3560404
crossref_primary_10_1016_j_jfranklin_2025_107782
crossref_primary_10_1007_s11432_020_3178_3
crossref_primary_10_1016_j_isatra_2019_04_018
crossref_primary_10_1109_ACCESS_2023_3303203
crossref_primary_10_1016_j_ifacol_2023_10_641
crossref_primary_10_1016_j_neunet_2020_06_023
crossref_primary_10_1109_TCYB_2019_2924258
crossref_primary_10_1109_TCYB_2020_2987576
crossref_primary_10_1002_rnc_5900
crossref_primary_10_1109_TVT_2022_3184305
crossref_primary_10_1109_JIOT_2022_3222188
crossref_primary_10_1080_21642583_2022_2074169
crossref_primary_10_1109_TNSE_2022_3223040
crossref_primary_10_1007_s40314_023_02415_6
crossref_primary_10_1109_TCYB_2020_3010917
crossref_primary_10_1002_acs_3591
crossref_primary_10_1016_j_neunet_2019_09_006
crossref_primary_10_1109_TCYB_2017_2776976
crossref_primary_10_1109_TFUZZ_2020_3029292
crossref_primary_10_1109_TCYB_2021_3054633
crossref_primary_10_1002_acs_3906
crossref_primary_10_1080_00207721_2021_1998722
crossref_primary_10_1080_00207721_2021_1998843
crossref_primary_10_1109_JAS_2021_1003826
crossref_primary_10_1080_00207721_2024_2315219
crossref_primary_10_1016_j_jfranklin_2019_06_028
crossref_primary_10_1109_ACCESS_2019_2925009
crossref_primary_10_1007_s11071_024_10016_z
crossref_primary_10_1016_j_isatra_2023_03_017
crossref_primary_10_1016_j_neucom_2021_12_100
crossref_primary_10_1109_TCNS_2022_3185145
crossref_primary_10_1109_TSMC_2020_3010825
crossref_primary_10_1016_j_ins_2021_01_072
crossref_primary_10_1016_j_jfranklin_2022_06_049
crossref_primary_10_1109_TIM_2022_3174307
crossref_primary_10_1016_j_isatra_2022_01_010
crossref_primary_10_1016_j_jfranklin_2024_106672
crossref_primary_10_1109_TCYB_2021_3049461
crossref_primary_10_1016_j_jfranklin_2022_09_017
crossref_primary_10_1109_TFUZZ_2020_2983904
crossref_primary_10_1109_TCYB_2019_2948427
crossref_primary_10_1109_TSMC_2018_2876203
crossref_primary_10_1016_j_neucom_2022_03_013
crossref_primary_10_1080_00207721_2020_1871528
crossref_primary_10_1016_j_jfranklin_2022_05_009
crossref_primary_10_1016_j_isatra_2022_02_046
crossref_primary_10_1080_00207721_2021_1872118
crossref_primary_10_1016_j_cnsns_2022_106634
crossref_primary_10_1016_j_cnsns_2025_108663
crossref_primary_10_1177_01423312241228893
crossref_primary_10_1109_TCYB_2020_2996296
crossref_primary_10_1016_j_ins_2020_05_023
crossref_primary_10_1109_TCYB_2019_2900478
crossref_primary_10_3390_s21217256
crossref_primary_10_1109_TCST_2022_3180942
crossref_primary_10_1016_j_ins_2021_01_057
crossref_primary_10_1016_j_neucom_2022_05_096
crossref_primary_10_1109_JSYST_2024_3379572
crossref_primary_10_1109_TCYB_2021_3057545
crossref_primary_10_1109_TII_2018_2817248
crossref_primary_10_1109_TCYB_2019_2923011
crossref_primary_10_1109_TSMC_2022_3222175
crossref_primary_10_1016_j_automatica_2021_109684
crossref_primary_10_1007_s11432_020_3243_7
crossref_primary_10_1109_TCYB_2018_2877413
crossref_primary_10_1109_TCYB_2019_2917929
crossref_primary_10_1109_TCYB_2017_2789296
crossref_primary_10_1109_TCYB_2019_2936413
crossref_primary_10_1109_TII_2019_2905295
crossref_primary_10_1109_TSIPN_2020_3046220
crossref_primary_10_1109_TASE_2025_3577977
crossref_primary_10_1109_TCST_2018_2842208
crossref_primary_10_1016_j_neucom_2022_07_021
crossref_primary_10_1109_TSIPN_2023_3239681
crossref_primary_10_1016_j_neucom_2018_07_087
crossref_primary_10_1109_TSMC_2019_2905253
crossref_primary_10_1016_j_jfranklin_2021_07_036
crossref_primary_10_1080_00207721_2022_2049918
crossref_primary_10_1002_rnc_5668
crossref_primary_10_1016_j_cnsns_2023_107408
crossref_primary_10_1109_JSYST_2021_3063357
crossref_primary_10_1109_TCYB_2019_2924450
crossref_primary_10_1007_s12555_022_0763_7
crossref_primary_10_1109_TSMC_2018_2882540
crossref_primary_10_1109_ACCESS_2019_2914922
crossref_primary_10_1080_21642583_2022_2158959
crossref_primary_10_1177_10775463211036827
crossref_primary_10_1109_TBDATA_2020_2988778
crossref_primary_10_1109_TSIPN_2024_3497773
crossref_primary_10_1016_j_ins_2019_03_058
crossref_primary_10_1109_TCYB_2019_2903522
crossref_primary_10_1109_TAC_2019_2934389
crossref_primary_10_1109_TCYB_2019_2956491
crossref_primary_10_1109_TITS_2020_2970472
crossref_primary_10_1002_rnc_5674
crossref_primary_10_1016_j_eswa_2023_123048
crossref_primary_10_1109_TCYB_2019_2921733
crossref_primary_10_3390_machines11020128
crossref_primary_10_1080_00207179_2019_1622790
crossref_primary_10_1007_s11071_024_09778_3
crossref_primary_10_1016_j_nahs_2023_101338
crossref_primary_10_1016_j_epsr_2023_109417
crossref_primary_10_1109_TCYB_2018_2883793
crossref_primary_10_1109_TASE_2024_3360718
crossref_primary_10_1016_j_neucom_2022_08_041
crossref_primary_10_1109_TAC_2024_3496577
crossref_primary_10_1109_TCYB_2019_2891112
crossref_primary_10_1109_TSG_2025_3525558
crossref_primary_10_1016_j_rser_2024_114922
crossref_primary_10_1016_j_automatica_2021_109784
crossref_primary_10_1016_j_neucom_2022_10_020
crossref_primary_10_1016_j_jfranklin_2021_08_006
crossref_primary_10_1109_TCYB_2018_2890645
crossref_primary_10_1109_TSMC_2020_3035768
crossref_primary_10_1109_TCSII_2021_3109884
crossref_primary_10_1109_TNNLS_2020_3026646
crossref_primary_10_1109_TITS_2019_2934481
crossref_primary_10_1109_TSMC_2019_2946212
crossref_primary_10_1109_ACCESS_2022_3213938
crossref_primary_10_1002_asjc_3017
crossref_primary_10_1016_j_ins_2019_10_057
crossref_primary_10_1109_TFUZZ_2020_3009729
crossref_primary_10_1109_TSMC_2019_2895060
crossref_primary_10_1016_j_automatica_2023_111066
crossref_primary_10_1002_rnc_6276
crossref_primary_10_1177_01423312211037965
crossref_primary_10_1016_j_ins_2020_01_047
crossref_primary_10_1016_j_isatra_2022_02_001
crossref_primary_10_1080_00207721_2020_1862354
crossref_primary_10_1109_TCYB_2019_2917543
crossref_primary_10_1016_j_ins_2020_08_018
crossref_primary_10_1109_JIOT_2021_3138784
crossref_primary_10_1007_s11432_019_2694_y
crossref_primary_10_1109_TCYB_2021_3071462
crossref_primary_10_1109_JSEN_2024_3369245
crossref_primary_10_1109_TCYB_2021_3131695
crossref_primary_10_1007_s11633_021_1306_z
crossref_primary_10_1016_j_eswa_2022_119427
crossref_primary_10_1109_TCYB_2022_3151653
crossref_primary_10_1109_TCYB_2022_3208363
crossref_primary_10_1016_j_isatra_2022_12_012
crossref_primary_10_1109_LSP_2025_3565369
crossref_primary_10_1631_FITEE_2300625
crossref_primary_10_1002_rnc_4640
crossref_primary_10_1109_TCYB_2022_3142035
crossref_primary_10_1109_JAS_2021_1004060
crossref_primary_10_1016_j_neucom_2021_06_017
crossref_primary_10_1109_JAS_2022_105416
crossref_primary_10_1016_j_isatra_2022_02_037
crossref_primary_10_3390_s23020698
crossref_primary_10_1002_rnc_5997
crossref_primary_10_1109_TSP_2020_3042947
crossref_primary_10_3390_s20030627
crossref_primary_10_1016_j_ins_2020_08_007
crossref_primary_10_1007_s11071_024_09401_5
crossref_primary_10_1109_TCYB_2019_2954955
crossref_primary_10_1109_TCYB_2017_2771560
crossref_primary_10_1016_j_neucom_2018_08_087
crossref_primary_10_1016_j_fss_2019_11_005
crossref_primary_10_1109_ACCESS_2021_3097159
crossref_primary_10_1109_TASE_2025_3598062
crossref_primary_10_1109_TCYB_2022_3208012
crossref_primary_10_1109_TCNS_2022_3203365
crossref_primary_10_1016_j_automatica_2020_109128
crossref_primary_10_1109_TCYB_2019_2894294
crossref_primary_10_1088_1674_1056_acb91b
crossref_primary_10_1016_j_jfranklin_2022_01_033
crossref_primary_10_1002_rnc_4672
crossref_primary_10_1016_j_automatica_2025_112530
crossref_primary_10_1016_j_ifacol_2022_07_253
crossref_primary_10_1016_j_inffus_2020_01_009
crossref_primary_10_1109_TSMC_2019_2956945
crossref_primary_10_1109_TSMC_2021_3102406
crossref_primary_10_1109_TSMC_2019_2896292
crossref_primary_10_1109_TSIPN_2022_3211172
crossref_primary_10_1109_TII_2020_2972033
crossref_primary_10_1007_s40435_021_00767_7
crossref_primary_10_1109_TCYB_2019_2921821
crossref_primary_10_1016_j_isatra_2022_07_023
crossref_primary_10_1109_TCYB_2018_2865499
crossref_primary_10_3390_e24050733
crossref_primary_10_1002_rnc_5867
crossref_primary_10_1016_j_ins_2018_02_039
crossref_primary_10_1016_j_jfranklin_2021_10_038
crossref_primary_10_1007_s11432_019_2693_x
crossref_primary_10_1016_j_jfranklin_2020_02_037
crossref_primary_10_1080_00207721_2020_1814898
crossref_primary_10_1109_ACCESS_2019_2935534
crossref_primary_10_1109_ACCESS_2023_3234226
crossref_primary_10_1109_TSMC_2025_3558286
crossref_primary_10_1109_JSEN_2018_2859378
crossref_primary_10_1109_TSIPN_2021_3130435
crossref_primary_10_1080_00207721_2020_1797227
crossref_primary_10_1080_00207721_2023_2216274
crossref_primary_10_1016_j_jfranklin_2019_09_002
crossref_primary_10_1109_TASE_2024_3401740
crossref_primary_10_1109_TNSE_2023_3326611
crossref_primary_10_1016_j_isatra_2021_09_002
crossref_primary_10_1016_j_jfranklin_2025_108007
crossref_primary_10_1080_21642583_2022_2063203
crossref_primary_10_1002_asjc_2810
Cites_doi 10.1109/TII.2016.2607150
10.1016/j.ins.2015.07.047
10.1109/TIE.2017.2701778
10.1007/978-1-4612-0039-0
10.1016/j.automatica.2010.06.025
10.1109/TAC.2014.2366855
10.1016/j.sysconle.2014.05.001
10.1109/TCYB.2016.2570860
10.1049/iet-cta.2016.0781
10.1109/TIE.2015.2499169
10.1109/TSMCB.2009.2020436
10.1109/TSMC.2015.2435700
10.1109/TIE.2017.2652346
10.1109/TAC.2012.2206694
10.1016/j.ins.2014.08.047
10.1109/TAC.2011.2174666
10.1016/j.sigpro.2011.11.002
10.1016/S0098-1354(97)00261-5
10.1137/1038003
10.1049/iet-cta.2012.0732
10.1016/j.sigpro.2016.02.023
10.1109/TSMCA.2005.843383
10.1002/rnc.3598
10.1109/TMECH.2016.2632304
10.1109/TCSI.2011.2169912
10.1109/TSMCB.2012.2236647
10.1016/j.automatica.2009.04.011
10.1016/j.jfranklin.2013.02.024
10.1109/TNNLS.2015.2411734
10.1109/TSP.2007.908943
10.1109/MCOM.2002.1024422
10.1109/TCSI.2011.2112594
10.1109/TII.2015.2506545
10.1016/j.fss.2014.12.015
10.1016/j.automatica.2012.09.010
10.1109/TII.2012.2231085
10.1080/03081079.2014.883715
10.1109/9.935060
10.1080/03081079.2015.1106738
10.1109/TIE.2015.2504044
10.1109/TIE.2016.2613929
10.1109/TAC.2012.2190184
10.1109/TAC.2015.2390554
10.1016/j.epsr.2013.02.002
10.1109/TAC.2010.2057951
10.1016/j.automatica.2014.10.092
10.1109/TAC.2013.2256015
10.1080/00207721.2011.565135
10.1109/TCYB.2016.2582081
10.1109/TAC.2010.2042987
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2017.2769722
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 183
ExternalDocumentID 29990117
10_1109_TCYB_2017_2769722
8114330
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP160103567
  funderid: 10.13039/501100000923
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c279t-c04eca6ecb50ad80cf3b39be9b358615a1a0446f503bf2959e314f43210248f93
IEDL.DBID RIE
ISICitedReferencesCount 425
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454242300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Wed Oct 01 13:41:59 EDT 2025
Sun Nov 09 06:47:39 EST 2025
Thu Jan 02 23:04:36 EST 2025
Tue Nov 18 22:28:57 EST 2025
Sat Nov 29 06:48:35 EST 2025
Wed Aug 27 03:03:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-c04eca6ecb50ad80cf3b39be9b358615a1a0446f503bf2959e314f43210248f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7207-0716
0000-0002-9576-7401
0000-0003-0180-0897
PMID 29990117
PQID 2158902196
PQPubID 85422
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2017_2769722
pubmed_primary_29990117
proquest_journals_2158902196
proquest_miscellaneous_2068346067
crossref_primary_10_1109_TCYB_2017_2769722
ieee_primary_8114330
PublicationCentury 2000
PublicationDate 2019-Jan.
2019-1-00
2019-Jan
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
zhang (ref29) 2015; 51
ref15
ref14
ref52
ref11
ge (ref28) 2017
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
zhang (ref30) 2017; 47
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
References_xml – ident: ref26
  doi: 10.1109/TII.2016.2607150
– ident: ref45
  doi: 10.1016/j.ins.2015.07.047
– ident: ref35
  doi: 10.1109/TIE.2017.2701778
– ident: ref48
  doi: 10.1007/978-1-4612-0039-0
– ident: ref11
  doi: 10.1016/j.automatica.2010.06.025
– ident: ref47
  doi: 10.1109/TAC.2014.2366855
– ident: ref9
  doi: 10.1016/j.sysconle.2014.05.001
– ident: ref46
  doi: 10.1109/TCYB.2016.2570860
– ident: ref44
  doi: 10.1049/iet-cta.2016.0781
– ident: ref14
  doi: 10.1109/TIE.2015.2499169
– ident: ref24
  doi: 10.1109/TSMCB.2009.2020436
– ident: ref13
  doi: 10.1109/TSMC.2015.2435700
– ident: ref21
  doi: 10.1109/TIE.2017.2652346
– ident: ref31
  doi: 10.1109/TAC.2012.2206694
– ident: ref40
  doi: 10.1016/j.ins.2014.08.047
– ident: ref34
  doi: 10.1109/TAC.2011.2174666
– ident: ref52
  doi: 10.1016/j.sigpro.2011.11.002
– ident: ref50
  doi: 10.1016/S0098-1354(97)00261-5
– ident: ref49
  doi: 10.1137/1038003
– ident: ref8
  doi: 10.1049/iet-cta.2012.0732
– ident: ref15
  doi: 10.1016/j.sigpro.2016.02.023
– ident: ref18
  doi: 10.1109/TSMCA.2005.843383
– ident: ref39
  doi: 10.1002/rnc.3598
– ident: ref20
  doi: 10.1109/TMECH.2016.2632304
– ident: ref2
  doi: 10.1109/TCSI.2011.2169912
– ident: ref7
  doi: 10.1109/TSMCB.2012.2236647
– ident: ref19
  doi: 10.1016/j.automatica.2009.04.011
– ident: ref25
  doi: 10.1016/j.jfranklin.2013.02.024
– ident: ref33
  doi: 10.1109/TNNLS.2015.2411734
– ident: ref5
  doi: 10.1109/TSP.2007.908943
– ident: ref1
  doi: 10.1109/MCOM.2002.1024422
– ident: ref10
  doi: 10.1109/TCSI.2011.2112594
– ident: ref38
  doi: 10.1109/TII.2015.2506545
– volume: 47
  start-page: 1618
  year: 2017
  ident: ref30
  article-title: Energy-efficient distributed filtering in sensor networks: A unified switched system approach
  publication-title: IEEE Trans Cybern
– ident: ref37
  doi: 10.1016/j.fss.2014.12.015
– ident: ref16
  doi: 10.1016/j.automatica.2012.09.010
– ident: ref12
  doi: 10.1109/TII.2012.2231085
– ident: ref51
  doi: 10.1080/03081079.2014.883715
– ident: ref17
  doi: 10.1109/9.935060
– ident: ref42
  doi: 10.1080/03081079.2015.1106738
– ident: ref27
  doi: 10.1109/TIE.2015.2504044
– ident: ref22
  doi: 10.1109/TIE.2016.2613929
– year: 2017
  ident: ref28
  article-title: A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems
  publication-title: Neurocomputing
– ident: ref3
  doi: 10.1109/TAC.2012.2190184
– ident: ref41
  doi: 10.1109/TAC.2015.2390554
– ident: ref23
  doi: 10.1016/j.epsr.2013.02.002
– ident: ref36
  doi: 10.1109/TAC.2010.2057951
– volume: 51
  start-page: 55
  year: 2015
  ident: ref29
  article-title: Event-based $H_{\infty }$ filtering for sampled-data systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.10.092
– ident: ref32
  doi: 10.1109/TAC.2013.2256015
– ident: ref6
  doi: 10.1080/00207721.2011.565135
– ident: ref43
  doi: 10.1109/TCYB.2016.2582081
– ident: ref4
  doi: 10.1109/TAC.2010.2042987
SSID ssj0000816898
Score 2.6359272
Snippet This paper is concerned with the distributed set-membership estimation for a discrete-time linear time-varying system over a resource-constrained wireless...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 171
SubjectTerms Computational geometry
Convexity
Discrete time systems
Distributed set-membership estimation
dynamic event-triggered transmission scheme (ETS)
Ellipsoids
Estimation
Kalman filters
Noise measurement
Optimization
Packets (communication)
Parameter estimation
Pollution measurement
recursive convex optimization
Remote sensors
Sensors
Time-varying systems
unknown-but-bounded (UBB) noise
Wireless sensor networks
wireless sensor networks (WSNs)
Title A Dynamic Event-Triggered Transmission Scheme for Distributed Set-Membership Estimation Over Wireless Sensor Networks
URI https://ieeexplore.ieee.org/document/8114330
https://www.ncbi.nlm.nih.gov/pubmed/29990117
https://www.proquest.com/docview/2158902196
https://www.proquest.com/docview/2068346067
Volume 49
WOSCitedRecordID wos000454242300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQcuQCkfKaUyEgdAuM3Gzjo-lnYrLixIXaTlFDnOuEIq2arZ5fcz43gjIQESN0sZJ1be2J7xzPgBvFZoTdChkV5XStIO3UrrtJVTq9FNnPVlGyLZhJnPq-XSftmB92MtDCLG5DM84WaM5bcrv-GjstOKjHfyv3dh1xgz1GqN5ymRQCJS3xbUkGRVmBTEnOT2dHH-7QPncZmTwkytKZjEhhZirrs0v-1IkWLl79Zm3HUuH_7feB_Bg2RdirNBHfZhB7vHsJ_mby_epEum3x7A5kxcDGT0YsYpj3JBbvo1E3eKuH0R_HyOJq4I1B8oyLQVF3zHLtNjkcwVruUnZDIRzvYSM1oohhpI8ZnmhuCc2htaQ0mu66nrfEg275_A18vZ4vyjTBQM0hfGrqXPNXo3Rd-UuWur3AfVKNugbVRZkTFEcHJEOJS5akJhS4tqooPmwqBCV8Gqp7DXrTp8DoJcl9wWzk3aUGjVGqdMi2ROFqHyGpuQQb6FofbpfnKmybipo5-S25pBrBnEOoGYwbuxy-1wOce_hA8YoVEwgZPB0RbrOk3fviY7iOOvtDpl8Gp8TH-eoymuw9WGZPJppTT5fyaDZ4OOjO_eqtbhn7_5Au7TyOxwknMEe-u7Db6Ee_7n-nt_d0zavayOo3b_Ahzn88c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9QwDLbGQIIXYIwfhQFB4gEQ2dokvTSPY7tpiO1A2iGNp6pNHTRp66H1jr8fO-1VQgIk3iLVaaN-TmLHdj6A1xqdDSbU0ptCS9qhG-kq4-TEGayyyvm8CZFsws5mxfm5-7IB78daGESMyWe4y80Yy28WfsVHZXsFGe_kf9-Am7kxKuurtcYTlUghEclvFTUk2RV2CGNmqdubH3z7wJlcdlfZibOKaWxoKebKS_vbnhRJVv5ub8Z95-je_434Ptwd7Eux3yvEFmxg-wC2hhnciTfDNdNvt2G1Lw57Onox5aRHOSdH_TtTd4q4gZEC8EmaOCNYr1CQcSsO-ZZdJsgimTNcylNkOhHO9xJTWir6KkjxmWaH4KzaS1pFSa7tqOusTzfvHsLXo-n84FgOJAzSK-uW0qcGfTVBX-dp1RSpD7rWrkZX67wgc4gA5ZhwyFNdB-VyhzozwXBpkDJFcPoRbLaLFp-AIOcldaqqsiYooxtbadsgGZQqFN5gHRJI1zCUfrihnIkyLsvoqaSuZBBLBrEcQEzg3djlR389x7-EtxmhUXAAJ4GdNdblMIG7kiwhjsDS-pTAq_Ex_XmOp1QtLlYkk04KbcgDtAk87nVkfPdatZ7--Zsv4fbx_PSkPPk4-_QM7tAoXX-uswOby-sVPodb_ufyort-EXX8Fy_99iY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Event-Triggered+Transmission+Scheme+for+Distributed+Set-Membership+Estimation+Over+Wireless+Sensor+Networks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ge%2C+Xiaohua&rft.au=Han%2C+Qing-Long&rft.au=Wang%2C+Zidong&rft.date=2019-01-01&rft.eissn=2168-2275&rft.volume=49&rft.issue=1&rft.spage=171&rft_id=info:doi/10.1109%2FTCYB.2017.2769722&rft_id=info%3Apmid%2F29990117&rft.externalDocID=29990117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon