Predicting smart cities’ electricity demands using k-means clustering algorithm in smart grid
This work aims to perform the unified management of various departments engaged in smart city construction by big data, establish a synthetic data collection and sharing system, and provide fast and convenient big data services for smart applications in various fields. A new electricity demand predi...
Saved in:
| Published in: | Computer Science and Information Systems Vol. 20; no. 2; pp. 657 - 678 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.04.2023
|
| ISSN: | 1820-0214, 2406-1018 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This work aims to perform the unified management of various departments engaged in smart city construction by big data, establish a synthetic data collection and sharing system, and provide fast and convenient big data services for smart applications in various fields. A new electricity demand prediction model based on back propagation neural network (BPNN) is proposed for China?s electricity industry according to the smart city?s big data characteristics. This model integrates meteorological, geographic, demographic, corporate, and economic information to form a big intelligent database. Moreover, the K-means clustering algorithm mines and analyzes the data to optimize the power consumers? information. The BPNN model is used to extract features for prediction. Users with weak daily correlation obtained by the K-means clustering algorithm only input the historical load of adjacent moments into the BPNN model for prediction. Finally, the electricity market is evaluated by exploring the data correlation in-depth to verify the proposed model?s effectiveness. The results indicate that the K-mean algorithm can significantly improve the segmentation accuracy of power consumers, with a maximum accuracy of 85.25% and average accuracy of 83.72%. The electricity consumption of different regions is separated, and the electricity consumption is classified. The electricity demand prediction model can enhance prediction accuracy, with an average error rate of 3.27%. The model?s training significantly speeds up by adding the momentum factor, and the average error rate is 2.13%. Therefore, the electricity demand prediction model achieves high accuracy and training efficiency. The findings can provide a theoretical and practical foundation for electricity demand prediction, personalized marketing, and the development planning of the power industry. |
|---|---|
| AbstractList | This work aims to perform the unified management of various departments engaged in smart city construction by big data, establish a synthetic data collection and sharing system, and provide fast and convenient big data services for smart applications in various fields. A new electricity demand prediction model based on back propagation neural network (BPNN) is proposed for China?s electricity industry according to the smart city?s big data characteristics. This model integrates meteorological, geographic, demographic, corporate, and economic information to form a big intelligent database. Moreover, the K-means clustering algorithm mines and analyzes the data to optimize the power consumers? information. The BPNN model is used to extract features for prediction. Users with weak daily correlation obtained by the K-means clustering algorithm only input the historical load of adjacent moments into the BPNN model for prediction. Finally, the electricity market is evaluated by exploring the data correlation in-depth to verify the proposed model?s effectiveness. The results indicate that the K-mean algorithm can significantly improve the segmentation accuracy of power consumers, with a maximum accuracy of 85.25% and average accuracy of 83.72%. The electricity consumption of different regions is separated, and the electricity consumption is classified. The electricity demand prediction model can enhance prediction accuracy, with an average error rate of 3.27%. The model?s training significantly speeds up by adding the momentum factor, and the average error rate is 2.13%. Therefore, the electricity demand prediction model achieves high accuracy and training efficiency. The findings can provide a theoretical and practical foundation for electricity demand prediction, personalized marketing, and the development planning of the power industry. |
| Author | Qian, Yufeng Wang, Shurui Song, Aifeng |
| Author_xml | – sequence: 1 givenname: Shurui surname: Wang fullname: Wang, Shurui organization: School of Electric and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Aifeng surname: Song fullname: Song, Aifeng organization: School of Management and Economics, North China University of Water Resources and Electric Power, Zhengzhou, China – sequence: 3 givenname: Yufeng surname: Qian fullname: Qian, Yufeng organization: School of Science, Hubei University of Technology, Wuhan, China |
| BookMark | eNp1kMtKxDAYhYOMYB1n6zov0DFJ0zRZSvEyMKAwisuS5lKDbSpJZjE7X8PX80lscTYKrn44_N_hnHMOFn70BoBLjNaECH5V7zY7QhBHFcLFywnICEUsxwjzBcgwJyhHBNMzsIrRtYjSqigoZRloHoPRTiXnOxgHGRJULjkTvz4-oemNSsFNwgFqM0ivI9zH-fMtH4z0Eap-H5MJsyT7bgwuvQ7Q-aNTF5y-AKdW9tGsjncJnm9vnur7fPtwt6mvt7kilUi5tFMaSgyRmjMmRFFqXhIqGDZCSES1xm1phWBc8VZojXRLqbWSS2Wr0pbFEqx_fFUYYwzGNu_BTSkODUbNvFDze6EJoH-AqadMbvQpSNf_h30Dq51uww |
| CitedBy_id | crossref_primary_10_3390_electronics14102074 crossref_primary_10_1109_TETCI_2024_3449881 crossref_primary_10_3390_en18123083 |
| Cites_doi | 10.1080/10438599.2017.1322234 10.1016/j.rser.2020.109725 10.1186/s13673-018-0136-7 10.1016/j.apenergy.2016.12.134 10.1016/j.egypro.2017.05.068 10.3390/s19112485 10.1016/j.energy.2020.117948 10.1016/j.egypro.2017.12.624 10.3390/en12050931 10.1016/j.energy.2018.10.012 10.3389/fncom.2017.00024 10.1109/MCOM.2017.1600267CM 10.1080/0951192X.2017.1314015 10.1007/s00450-017-0360-9 10.1016/j.knosys.2018.01.031 10.1039/C6JA00322B 10.1007/s12667-016-0203-y 10.22214/ijraset.2017.4132 10.30534/ijeter/2020/71892020 10.1016/j.patcog.2017.06.023 10.1038/nrneurol.2016.187 10.1016/j.enpol.2018.11.047 10.1007/s00521-016-2645-5 10.1016/j.energy.2018.07.084 10.3389/fnins.2017.00324 10.1109/TCSII.2019.2891704 10.1186/s13673-018-0125-x 10.1016/j.cities.2016.10.005 10.1016/j.tics.2018.12.005 10.1016/j.enbuild.2017.09.082 10.1016/j.epsr.2016.08.031 10.1109/ACCESS.2019.2939595 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.2298/CSIS220807013W |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2406-1018 |
| EndPage | 678 |
| ExternalDocumentID | 10_2298_CSIS220807013W |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c279t-af44642e2ad8669935d8524961e99a04dd1b5f9968c8b9dd0db44ffa8acf75f53 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000975016500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1820-0214 |
| IngestDate | Tue Nov 18 22:36:55 EST 2025 Sat Nov 29 03:58:36 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c279t-af44642e2ad8669935d8524961e99a04dd1b5f9968c8b9dd0db44ffa8acf75f53 |
| OpenAccessLink | http://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300013W |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_2298_CSIS220807013W crossref_citationtrail_10_2298_CSIS220807013W |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer Science and Information Systems |
| PublicationYear | 2023 |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref23 doi: 10.1080/10438599.2017.1322234 – ident: ref11 doi: 10.1016/j.rser.2020.109725 – ident: ref21 doi: 10.1186/s13673-018-0136-7 – ident: ref29 doi: 10.1016/j.apenergy.2016.12.134 – ident: ref32 doi: 10.1016/j.egypro.2017.05.068 – ident: ref30 doi: 10.3390/s19112485 – ident: ref34 doi: 10.1016/j.energy.2020.117948 – ident: ref15 doi: 10.1016/j.egypro.2017.12.624 – ident: ref12 doi: 10.3390/en12050931 – ident: ref8 doi: 10.1016/j.energy.2018.10.012 – ident: ref20 doi: 10.3389/fncom.2017.00024 – ident: ref3 doi: 10.1109/MCOM.2017.1600267CM – ident: ref22 doi: 10.1080/0951192X.2017.1314015 – ident: ref6 doi: 10.1007/s00450-017-0360-9 – ident: ref17 doi: 10.1016/j.knosys.2018.01.031 – ident: ref27 doi: 10.1039/C6JA00322B – ident: ref13 doi: 10.1007/s12667-016-0203-y – ident: ref25 doi: 10.22214/ijraset.2017.4132 – ident: ref1 doi: 10.30534/ijeter/2020/71892020 – ident: ref2 – ident: ref16 doi: 10.1016/j.patcog.2017.06.023 – ident: ref24 doi: 10.1038/nrneurol.2016.187 – ident: ref9 doi: 10.1016/j.enpol.2018.11.047 – ident: ref28 doi: 10.1007/s00521-016-2645-5 – ident: ref7 doi: 10.1016/j.energy.2018.07.084 – ident: ref19 doi: 10.3389/fnins.2017.00324 – ident: ref31 doi: 10.1109/TCSII.2019.2891704 – ident: ref5 doi: 10.1186/s13673-018-0125-x – ident: ref4 doi: 10.1016/j.cities.2016.10.005 – ident: ref18 doi: 10.1016/j.tics.2018.12.005 – ident: ref26 doi: 10.1016/j.enbuild.2017.09.082 – ident: ref10 – ident: ref14 doi: 10.1016/j.epsr.2016.08.031 – ident: ref33 doi: 10.1109/ACCESS.2019.2939595 |
| SSID | ssib044733446 |
| Score | 2.3080058 |
| Snippet | This work aims to perform the unified management of various departments engaged in smart city construction by big data, establish a synthetic data collection... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 657 |
| Title | Predicting smart cities’ electricity demands using k-means clustering algorithm in smart grid |
| Volume | 20 |
| WOSCitedRecordID | wos000975016500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2406-1018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044733446 issn: 1820-0214 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6ltIdeqqK2KrRUe0DqIVo12ay9u0eEqMoBhARV6SnyvsBqYpCJEaeqf4O_11_C7MOOg4oEh16caLMeyZlPM9-O54HQttWCFoJbYiVXhPHMEjlSGbHAxg1XupDShWET_PBQnJ7Ko8Hgtq2FuZ7xqhI3N_Lyv6oa1kDZvnT2CeruhMICfAelwxXUDtdHKf6o9u9eQjbz1Rx-H-rQNLXNapDDOPmm1J5_Gzv3tb7DJoQMfpG5Bdc11LPG908I9Yuzs4u6XJzPfWAkyjury5Xpnu1giM5OxBTjrixypSt6iN2nEPV5UzdlF-JJucE7pbPJm_p4bBkDtD-bbjWFKOikl9kSrSrQDOKbs0WnE9Y8kyC-XVjfFNNRD3K0Z1fz2MU6ueg8Tv25b_0plb6iYfd4_5hSYMIc6O2PpZ9r3-3fc39dUiIch7yE6er9z9BzyjPpswUPfu-1pooxPpmwWLvWPlxsCepFfFkV0aM8Pe5y8hq9SocOvBPBso4GtnqDpkug4KBYHIHy988t7kEEJ4jgABGcIIKXEMEdRHBZJUkeIm_R9697J7vfSBq3QTTlckEKBw_EqKWFEXkOvDUzIoPTeT62UhYjZsxYZQ7Ox0ILJY0ZGcWYc4UotOOZyybv0Fp1Udn3CCvOilzJHByEZmM1FhJYPHwauJc6wzcQaf-RqU696P1IlNn030rYQJ-7_ZexC8sDOzcfvfMDernE6ke0tqgbu4Ve6OtFeVV_Ctq-A6GLf_k |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+smart+cities%E2%80%99+electricity+demands+using+k-means+clustering+algorithm+in+smart+grid&rft.jtitle=Computer+Science+and+Information+Systems&rft.au=Wang%2C+Shurui&rft.au=Song%2C+Aifeng&rft.au=Qian%2C+Yufeng&rft.date=2023-04-01&rft.issn=1820-0214&rft.eissn=2406-1018&rft.volume=20&rft.issue=2&rft.spage=657&rft.epage=678&rft_id=info:doi/10.2298%2FCSIS220807013W&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_CSIS220807013W |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1820-0214&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1820-0214&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1820-0214&client=summon |