RESEARCH ON AGRICULTURAL VEHICLE SAFETY WARNING SYSTEM BASED ON LIDAR

Intelligent agricultural vehicles have been widely used in the process of farming and harvesting in the field, which has brought great convenience to agricultural production. However, there are also safety issues such as accidental collision of agricultural vehicles or other agricultural machinery d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:INMATEH - Agricultural Engineering s. 230 - 242
Hlavní autoři: KONG, Weiyu, HU, Guangrui, ZHANG, Shuo, ZHOU, Jianguo, GAO, Zening, CHEN, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: 31.12.2022
ISSN:2068-4215, 2068-2239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Intelligent agricultural vehicles have been widely used in the process of farming and harvesting in the field, which has brought great convenience to agricultural production. However, there are also safety issues such as accidental collision of agricultural vehicles or other agricultural machinery during operation. The use of sensing technology for the timely and accurate detection and pre-warning of obstacles during the operation of agricultural machinery is critically important for ensuring safety. In this paper, a two-dimensional lidar is used to detect obstacles in front of tractors with the Density-Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm and the Minimum Cost Maximum Flow algorithm(MCMF). A method to judge whether the obstacle is static or dynamic and a classification model of different security warning levels for obstacles in different states is proposed. Actual vehicle tests were conducted, with static obstacles tested repeatedly, and dynamic obstacles tested at different directions and speeds. The results showed that the overall average warning accuracy rate is 89.95%. Prediction results were robust for obstacles in different states, indicating that this system is able to ensure the safety of agricultural vehicles during their operation and promoted the development of agricultural mechanization.
AbstractList Intelligent agricultural vehicles have been widely used in the process of farming and harvesting in the field, which has brought great convenience to agricultural production. However, there are also safety issues such as accidental collision of agricultural vehicles or other agricultural machinery during operation. The use of sensing technology for the timely and accurate detection and pre-warning of obstacles during the operation of agricultural machinery is critically important for ensuring safety. In this paper, a two-dimensional lidar is used to detect obstacles in front of tractors with the Density-Based Spatial Clustering of Applications with Noise(DBSCAN) algorithm and the Minimum Cost Maximum Flow algorithm(MCMF). A method to judge whether the obstacle is static or dynamic and a classification model of different security warning levels for obstacles in different states is proposed. Actual vehicle tests were conducted, with static obstacles tested repeatedly, and dynamic obstacles tested at different directions and speeds. The results showed that the overall average warning accuracy rate is 89.95%. Prediction results were robust for obstacles in different states, indicating that this system is able to ensure the safety of agricultural vehicles during their operation and promoted the development of agricultural mechanization.
Author CHEN, Jun
KONG, Weiyu
ZHANG, Shuo
GAO, Zening
ZHOU, Jianguo
HU, Guangrui
Author_xml – sequence: 1
  givenname: Weiyu
  surname: KONG
  fullname: KONG, Weiyu
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China, AVIC Zhonghang Electronic Measuring Instruments Co.,ltd., Xi 'an 710119,China
– sequence: 2
  givenname: Guangrui
  surname: HU
  fullname: HU, Guangrui
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
– sequence: 3
  givenname: Shuo
  surname: ZHANG
  fullname: ZHANG, Shuo
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
– sequence: 4
  givenname: Jianguo
  surname: ZHOU
  fullname: ZHOU, Jianguo
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
– sequence: 5
  givenname: Zening
  surname: GAO
  fullname: GAO, Zening
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
– sequence: 6
  givenname: Jun
  surname: CHEN
  fullname: CHEN, Jun
  organization: College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
BookMark eNp10M1PgzAYBvDGzMQ5d_Xcf4DZDyjlWFkFEmQJH5qdSNuViNmYAS7772XKycTT-1x-75M892DRnTsLwCNGG-oxSp_a7qRG--Ew7hB6A5YEXROhwWLOLsHeHVgPwydCiPiBixFaApnLQoo8jOEugyLKk7BKyyoXKXyTcRKmEhbiRZZ7-C7yLMkiWOyLUr7CZ1HI7dWkyVbkD-C2UcfBrue7AtWEwthJd1ESitQxU-Ho-FOnssRwTxP_4FtGbIMbrKnvsoYxjZSvMdIcc0wbazD3uFWGHzDVgTYkoCuw-f1r-vMw9Lapv_r2pPpLjVH9s0M971AzXhM6AfcPMO2oxvbcjb1qj_-xbzYUX64
CitedBy_id crossref_primary_10_3390_s24165409
Cites_doi 10.1007/s11760-019-01418-3
10.1155/2020/1528028
10.3390/agriculture10070277
10.1007/s11067-018-9439-5
10.3390/machines9040082
10.1016/j.robot.2016.06.007
10.3390/agronomy11020287
10.35633/inmateh-59-07
10.3901/jme.2011.10.088
10.1109/icip48927.2020.9367334
10.12677/orf.2019.91005
10.1016/j.asoc.2016.03.016
10.12677/csa.2017.79092
10.3788/aos201838.1110001
10.1115/1.4045361
10.1016/j.optlastec.2015.09.017
10.37155/2811-0633-0102-55
10.1016/j.trd.2015.09.018
10.1109/icip.2017.8296962
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.35633/inmateh-68-23
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2068-2239
EndPage 242
ExternalDocumentID 10_35633_inmateh_68_23
GroupedDBID AAYXX
ABDBF
ACUHS
ALMA_UNASSIGNED_HOLDINGS
CITATION
EAP
ECGQY
EOJEC
ESX
OBODZ
OK1
ID FETCH-LOGICAL-c279t-7410ae2c85b27d7e62ef1f1b3746f66b0a7b10b81813fec1858eac8d13b9bc293
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000913227800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2068-4215
IngestDate Sat Nov 29 02:44:49 EST 2025
Tue Nov 18 19:51:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c279t-7410ae2c85b27d7e62ef1f1b3746f66b0a7b10b81813fec1858eac8d13b9bc293
OpenAccessLink https://api.inmateh.eu/public/uploads/68-23-N462-Weiyu-KONG91da425c-b4a4-46fb-911c-4ccaef1cdf76.pdf
PageCount 13
ParticipantIDs crossref_primary_10_35633_inmateh_68_23
crossref_citationtrail_10_35633_inmateh_68_23
PublicationCentury 2000
PublicationDate 2022-12-31
PublicationDateYYYYMMDD 2022-12-31
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-31
  day: 31
PublicationDecade 2020
PublicationTitle INMATEH - Agricultural Engineering
PublicationYear 2022
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref0
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1007/s11760-019-01418-3
– ident: ref16
  doi: 10.1155/2020/1528028
– ident: ref7
  doi: 10.3390/agriculture10070277
– ident: ref1
  doi: 10.1007/s11067-018-9439-5
– ident: ref14
  doi: 10.3390/machines9040082
– ident: ref0
  doi: 10.1016/j.robot.2016.06.007
– ident: ref6
  doi: 10.3390/agronomy11020287
– ident: ref20
  doi: 10.35633/inmateh-59-07
– ident: ref21
  doi: 10.3901/jme.2011.10.088
– ident: ref9
  doi: 10.1109/icip48927.2020.9367334
– ident: ref4
  doi: 10.12677/orf.2019.91005
– ident: ref2
  doi: 10.1016/j.asoc.2016.03.016
– ident: ref13
  doi: 10.12677/csa.2017.79092
– ident: ref19
  doi: 10.3788/aos201838.1110001
– ident: ref3
  doi: 10.1115/1.4045361
– ident: ref8
– ident: ref18
  doi: 10.1016/j.optlastec.2015.09.017
– ident: ref12
  doi: 10.37155/2811-0633-0102-55
– ident: ref5
  doi: 10.1016/j.trd.2015.09.018
– ident: ref11
– ident: ref15
– ident: ref17
  doi: 10.1109/icip.2017.8296962
SSID ssj0002794100
ssib044739808
Score 2.2200563
Snippet Intelligent agricultural vehicles have been widely used in the process of farming and harvesting in the field, which has brought great convenience to...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 230
Title RESEARCH ON AGRICULTURAL VEHICLE SAFETY WARNING SYSTEM BASED ON LIDAR
WOSCitedRecordID wos000913227800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2068-2239
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044739808
  issn: 2068-4215
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagcIAD4inaAsoBiUMUSJyH7WO0TdlF2SzaZGl7iuKs3QahbLXdoHLhtzNxnlQglQOXKLLGVpz5MjOeiT8j9HZtm1wIZhkuFa7hiNw1GIbvMaO2TRwOTl4qEteQRBE9PWWf24rplTpOgJQlvb5ml_9V1dAGyq63zv6DuvtBoQHuQelwBbXD9VaK70pA-iLS_Y_L2WQVJqulH-pfgulsEgZ67B8HyZl-4i-jOlUVn8VJMIcFexwc1X3C2ZG_HMess2juJ8FUN3T_fDtQdYyYDHurvWh2QJ2I4kfVA2alcu9VVp5vq6JPVE_9Rja-qDZD40IJfyrqLOpmnJHAuOM97AwXNj1qOLjZpvleDG0QirCxsWwrMo3fxQ3L1k2TbrtenXM-LkqI4MWFUQ9jD86rK9jf8Gn9n4awxlEjpG3_1KMptu-ie5i4rP4FcP4z6OyP4xCb0Zbr6KsqyjLHUruY-ik1vJ9qyA-_PdIorhkFKMlj9KhdWWh-g4gn6I4on6KHg8rEMxR02NAWkTbGhtZiQ2uwobXY0BpsaAobdR-FjedoBUKTqdGeo2HkMIOdAUGjmQmcU5djsibCw0Ja0uLwMXrS87iZEW6ZHEI3y5YihwiOgjuma8vmjOcQD75Ae-WmFC-RZksJLo5lkqy5UzPzWzJ3hWlKYVFBON1HRvcW0rwlma_POvmW_lkR--hdL3_Z0Kv8RfLg1pKH6MGAyldob7etxGt0P_--K662b5TGfwHLb2O5
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RESEARCH+ON+AGRICULTURAL+VEHICLE+SAFETY+WARNING+SYSTEM+BASED+ON+LIDAR&rft.jtitle=INMATEH+-+Agricultural+Engineering&rft.au=KONG%2C+Weiyu&rft.au=HU%2C+Guangrui&rft.au=ZHANG%2C+Shuo&rft.au=ZHOU%2C+Jianguo&rft.date=2022-12-31&rft.issn=2068-4215&rft.eissn=2068-2239&rft.spage=230&rft.epage=242&rft_id=info:doi/10.35633%2Finmateh-68-23&rft.externalDBID=n%2Fa&rft.externalDocID=10_35633_inmateh_68_23
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2068-4215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2068-4215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2068-4215&client=summon