Adaptive Asynchronous Control Using Meta-Learned Neural Ordinary Differential Equations
Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on robotics Jg. 40; S. 403 - 420 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1552-3098, 1941-0468 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note two problems that jointly happen in many industrial systems: first, irregular/asynchronous observations and actions and, second, dramatic changes in environment dynamics from an episode to another (e.g .<inline-formula><tex-math notation="LaTeX">,</tex-math></inline-formula> varying payload inertial properties). We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control. The proposed approach is task-agnostic and can be adapted to new tasks in a straight-forward manner. We present evaluations in two different robot simulations and on a real industrial robot. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1552-3098 1941-0468 |
| DOI: | 10.1109/TRO.2023.3326350 |