Adaptive Asynchronous Control Using Meta-Learned Neural Ordinary Differential Equations

Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics Jg. 40; S. 403 - 420
Hauptverfasser: Salehi, Achkan, Ruhl, Steffen, Doncieux, Stephane
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1552-3098, 1941-0468
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note two problems that jointly happen in many industrial systems: first, irregular/asynchronous observations and actions and, second, dramatic changes in environment dynamics from an episode to another (e.g .<inline-formula><tex-math notation="LaTeX">,</tex-math></inline-formula> varying payload inertial properties). We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control. The proposed approach is task-agnostic and can be adapted to new tasks in a straight-forward manner. We present evaluations in two different robot simulations and on a real industrial robot.
AbstractList Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note two problems that jointly happen in many industrial systems: first, irregular/asynchronous observations and actions and, second, dramatic changes in environment dynamics from an episode to another (e.g .<inline-formula><tex-math notation="LaTeX">,</tex-math></inline-formula> varying payload inertial properties). We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control. The proposed approach is task-agnostic and can be adapted to new tasks in a straight-forward manner. We present evaluations in two different robot simulations and on a real industrial robot.
Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note two problems that jointly happen in many industrial systems: first, irregular/asynchronous observations and actions and, second, dramatic changes in environment dynamics from an episode to another (e.g .[Formula Omitted] varying payload inertial properties). We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control. The proposed approach is task-agnostic and can be adapted to new tasks in a straight-forward manner. We present evaluations in two different robot simulations and on a real industrial robot.
Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note two problems that jointly happen in many industrial systems: first, irregular/asynchronous observations and actions and, second, dramatic changes in environment dynamics from an episode to another (e.g ., varying payload inertial properties). We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control. The proposed approach is task-agnostic and can be adapted to new tasks in a straight-forward manner. We present evaluations in two different robot simulations and on a real industrial robot.
Author Salehi, Achkan
Doncieux, Stephane
Ruhl, Steffen
Author_xml – sequence: 1
  givenname: Achkan
  orcidid: 0000-0002-7180-0123
  surname: Salehi
  fullname: Salehi, Achkan
  email: achkan.salehi@sorbonne-universite.fr
  organization: Sorbonne Université, CNRS, ISIR, Paris, France
– sequence: 2
  givenname: Steffen
  orcidid: 0009-0002-6913-6822
  surname: Ruhl
  fullname: Ruhl, Steffen
  email: ruehl@magazino.eu
  organization: Perception Team, Magazino GmbH, München, Germany
– sequence: 3
  givenname: Stephane
  orcidid: 0000-0003-1541-054X
  surname: Doncieux
  fullname: Doncieux, Stephane
  email: stephane.doncieux@sorbonne-universite.fr
  organization: Sorbonne Université, CNRS, ISIR, Paris, France
BackLink https://hal.science/hal-04723191$$DView record in HAL
BookMark eNpNkM9LMzEQhoMo-PPuwcOCJw_bb5JsdjfHUqt-0M-CKB7DdHeikZrUZFfwvzelIt9phpdnhpfnmO374Imxcw4TzkH_eXxYTgQIOZFS1FLBHjviuuIlVHW7n3elRClBt4fsOKU3AFFpkEfsedrjZnCfVEzTl-9eY_BhTMUs-CGGdfGUnH8p_tGA5YIweuqLexojrotl7J3H-FVcO2spkh9cTucfIw4u-HTKDiyuE539zBP2dDN_nN2Vi-Xt39l0UXai0UNZN43UKwTeEOoOGuyoQqtWK4sKFFLXcW2VbVH2q74GbBVVsgYOVve20yRP2NXu7yuuzSa691zJBHTmbrow2wyqRkiu-SfP7OWO3cTwMVIazFsYo8_1jNDZE4DkMlOwo7oYUopkf99yMFvVJqs2W9XmR3U-udidOCL6Dxdtq4SS32-yfJg
CODEN ITREAE
Cites_doi 10.15607/RSS.2021.XVII.011
10.1016/j.automatica.2004.11.034
10.5220/0009821603140323
10.1109/LRA.2022.3148438
10.1109/ICRA48506.2021.9560914
10.1016/j.automatica.2020.109421
10.1109/TCST.2021.3130225
10.4249/scholarpedia.4650
10.1109/LRA.2021.3057046
10.1109/tpami.2021.3079209
10.1016/j.robot.2020.103710
10.1109/LRA.2022.3144787
10.15607/RSS.2021.XVII.056
10.1109/LRA.2022.3192609
10.1177/0278364917710318
10.1201/9781439803905
10.1007/springerreference_179268
10.1109/IROS.2004.1389727
10.1109/SSCI47803.2020.9308468
10.1109/tnnls.2022.3175757
10.1177/02783649231165085
10.1561/2200000086
10.1016/0771-050X(80)90013-3
10.1109/ICRA46639.2022.9811559
10.1109/ICRA.2018.8463189
10.1023/A:1010091220143
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: Copyright
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TRO.2023.3326350
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0468
EndPage 420
ExternalDocumentID oai:HAL:hal-04723191v1
10_1109_TRO_2023_3326350
10288525
Genre orig-research
GrantInformation_xml – fundername: VeriDream
  grantid: 951992
– fundername: European Union's H2020-EU.1.2.2 Research and Innovation
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c279t-67739ba017ea9c07ace4af5bbfa505aecc19f5f8a3dbd60a85e436010f9dfc9e3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001141871000033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Tue Oct 14 20:14:23 EDT 2025
Mon Jun 30 06:17:32 EDT 2025
Sat Nov 29 01:47:32 EST 2025
Wed Aug 27 01:53:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Industrial robots
Model Learning for Control
learning and adaptive systems
Robust/Adaptive Control of Robotic Systems
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-67739ba017ea9c07ace4af5bbfa505aecc19f5f8a3dbd60a85e436010f9dfc9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7180-0123
0009-0002-6913-6822
0000-0003-1541-054X
OpenAccessLink https://hal.science/hal-04723191
PQID 2904600313
PQPubID 27625
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_04723191v1
ieee_primary_10288525
crossref_primary_10_1109_TRO_2023_3326350
proquest_journals_2904600313
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Wang (ref32) 2020; 21
ref12
ref15
Xu (ref39) 2018
ref11
Coumans (ref19) 2021
ref17
(ref10) 2023
(ref2) 2019
Vinyals (ref40) 2016
ref51
Duan (ref37) 2016
Salimans (ref42) 2017
ref46
ref45
ref48
ref47
Jiahao (ref16) 2023
ref44
ref49
Finn (ref8) 2017
ref7
Poli (ref50) 2020
Nagabandi (ref9) 2019
ref3
ref6
Rubinstein (ref28) 1999; 1
Deisenroth (ref4) 2011
ref35
Ghavamzadeh (ref34) 2001; 18
ref31
ref30
McGuire (ref43) 2009
ref1
Kelly (ref52) 2020
Chen (ref18) 2018
Schaul (ref36) 2010; 5
ref24
ref23
ref26
ref20
ref22
ref21
Tallec (ref33) 2019
Pinneri (ref5) 2021
Hafner (ref29) 2019
Song (ref41) 2020
ref27
Yildiz (ref13) 2021
Chua (ref25) 2018
Oh (ref38) 2020
Du (ref14) 2020
References_xml – ident: ref3
  doi: 10.15607/RSS.2021.XVII.011
– ident: ref31
  doi: 10.1016/j.automatica.2004.11.034
– start-page: 1049
  volume-title: Proc. Conf. Robot Learn.
  year: 2021
  ident: ref5
  article-title: Sample-efficient cross-entropy method for real-time planning
– ident: ref46
  doi: 10.5220/0009821603140323
– year: 2016
  ident: ref37
  article-title: RL $^{2}$: Fast reinforcement learning via slow reinforcement learning
– ident: ref11
  doi: 10.1109/LRA.2022.3148438
– ident: ref20
  article-title: Gazebo turtlebot3 simulation
– ident: ref47
  doi: 10.1109/ICRA48506.2021.9560914
– volume: 18
  start-page: 186
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2001
  ident: ref34
  article-title: Continuous-time hierarchical reinforcement learning
– ident: ref30
  doi: 10.1016/j.automatica.2020.109421
– ident: ref27
  doi: 10.1109/TCST.2021.3130225
– start-page: 19805
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref14
  article-title: Model-based reinforcement learning for semi-Markov decision processes with neural ODEs
– year: 2023
  ident: ref10
  article-title: Human-timescale adaptation in an open-ended task space
– volume: 5
  issue: 6
  year: 2010
  ident: ref36
  article-title: Metalearning
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.4650
– ident: ref12
  doi: 10.1109/LRA.2021.3057046
– volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2018
  ident: ref18
  article-title: Neural ordinary differential equations
– start-page: 3630
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2016
  ident: ref40
  article-title: Matching networks for one shot learning
– start-page: 2555
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref29
  article-title: Learning latent dynamics for planning from pixels
– year: 2019
  ident: ref2
  article-title: Solving Rubiks cube with a robot hand
– start-page: 465
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  year: 2011
  ident: ref4
  article-title: PILCO: A model-based and data-efficient approach to policy search
– start-page: 6096
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref33
  article-title: Making deep Q-learning methods robust to time discretization
– volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2018
  ident: ref39
  article-title: Meta-gradient reinforcement learning
– start-page: 21105
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref50
  article-title: Hypersolvers: Toward fast continuous-depth models
– year: 2021
  ident: ref19
  article-title: Pybullet, a python module for physics simulation for games, robotics and machine learning
– ident: ref35
  doi: 10.1109/tpami.2021.3079209
– ident: ref21
  article-title: Robotic operating system
– ident: ref7
  doi: 10.1016/j.robot.2020.103710
– start-page: 12009
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2021
  ident: ref13
  article-title: Continuous-time model-based reinforcement learning
– ident: ref15
  doi: 10.1109/LRA.2022.3144787
– start-page: 1060
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref38
  article-title: Discovering reinforcement learning algorithms
– ident: ref49
  doi: 10.15607/RSS.2021.XVII.056
– year: 2017
  ident: ref42
  article-title: Evolution strategies as a scalable alternative to reinforcement learning
– ident: ref26
  doi: 10.1109/LRA.2022.3192609
– ident: ref1
  doi: 10.1177/0278364917710318
– volume-title: Conveyors: Application, Selection, and Integration
  year: 2009
  ident: ref43
  doi: 10.1201/9781439803905
– ident: ref23
  doi: 10.1007/springerreference_179268
– ident: ref45
  doi: 10.1109/IROS.2004.1389727
– volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2018
  ident: ref25
  article-title: Deep reinforcement learning in a handful of trials using probabilistic dynamics models
– volume: 21
  start-page: 1
  issue: 198
  year: 2020
  ident: ref32
  article-title: Reinforcement learning in continuous time and space: A stochastic control approach
  publication-title: J. Mach. Learn. Res.
– ident: ref48
  doi: 10.1109/SSCI47803.2020.9308468
– ident: ref51
  doi: 10.1109/tnnls.2022.3175757
– ident: ref17
  doi: 10.1177/02783649231165085
– ident: ref22
  doi: 10.1561/2200000086
– start-page: 4370
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  year: 2020
  ident: ref52
  article-title: Learning differential equations that are easy to solve
– year: 2020
  ident: ref41
  article-title: ES-MAML: Simple Hessian-free meta learning
  publication-title: Proc. Int. Conf. Learn. Representations
– year: 2019
  ident: ref9
  article-title: Learning to adapt in dynamic, real-world environments through meta-reinforcement learning
  publication-title: Proc. Int. Conf. Learn. Representations
– ident: ref44
  doi: 10.1016/0771-050X(80)90013-3
– start-page: 1126
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2017
  ident: ref8
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref6
  doi: 10.1109/ICRA46639.2022.9811559
– ident: ref24
  doi: 10.1109/ICRA.2018.8463189
– start-page: 2251
  volume-title: Proc. Conf. Robot Learn.
  year: 2023
  ident: ref16
  article-title: Online dynamics learning for predictive control with an application to aerial robots
– volume: 1
  start-page: 127
  issue: 2
  year: 1999
  ident: ref28
  article-title: The cross-entropy method for combinatorial and continuous optimization
  publication-title: Methodol. Comput. Appl. Probability
  doi: 10.1023/A:1010091220143
SSID ssj0024903
Score 2.4360971
Snippet Model-based reinforcement learning and control have demonstrated great potential in various sequential decision making problem domains, including in robotics...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 403
SubjectTerms Adaptive control
Adaptive systems
Computer Science
Differential equations
Industrial robots
learning and adaptive systems
Machine Learning
Metalearning
model learning for control
Reinforcement learning
Robot control
Robot learning
Robotics
robust/adaptive control of robotic systems
Service robots
Title Adaptive Asynchronous Control Using Meta-Learned Neural Ordinary Differential Equations
URI https://ieeexplore.ieee.org/document/10288525
https://www.proquest.com/docview/2904600313
https://hal.science/hal-04723191
Volume 40
WOSCitedRecordID wos001141871000033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEIAHWzzowWfFapUgXjykTfeVzbHUlh60FanY25LNJihIW_sC_72Z7FYr4sHbsuyGkElmMsnMNwDXgbFGNlCSelIrGnAlaBqlHo1EGiomm1oUxSZ4vx-PRuKhSFZ3uTBaaxd8puv46O7ys4la4lFZA41hHHphCUqc8zxZ6xusJ1wZZESKUZ-JeH0nyURj-DioY5nwuu8je4X9sEGlF4yAdKVVfuljZ2S6-__s3gHsFbtJ0srFfwhbenwEuxuMwWN4bmVyijqNtOYfY4UsXOvsk3Yeok5cyAC51wtJHWpVZwR5HbbRgZ06mKtLbosaKlYXvJHOe84Gn1fgqdsZtnu0qKZAlcfFgkac-yKVdgVqKRTjUulAmjBNjbS7ICsp1RQmNLH0szSLmIxDHfjorhmRGSW0fwLl8WSsT4FEylg3T0YmQ9iLx-JUs9gYaRBWH_uqCjfr8U2mOTQjcc4GE4mVRYKySApZVOHKCuDrM6Rd91p3Cb5DkKXVEM1VswoVHO6NxvKRrkJtLbCkWHvzxBN42YtMyrM_fjuHHduFID9JqUF5MVvqC9hWq8XrfHbpptUnlCLLeA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEIAHq4J68C3WZxAvHlKz782xaKViHyIVewvZbIKC1NpWwX9vJrvVinjwtiy7IWSSmUwy8w3AaWiskQ2VpL7UioaJ4jSLM5_GPIsUk57mZbGJpNNJ-31-Wyaru1wYrbULPtM1fHR3-fmLesOjsnM0hmnkRxVYiMLQ94p0rW-0HneFkBEqRgPG0-mtJOPnvbtuDQuF14IA6SvshxWqPGIMpCuu8ksjOzNztfbPDq7DarmfJPViAmzAnB5swsoMZXALHuq5HKJWI_Xxx0AhDde6--SiCFInLmiAtPVEUgdb1TlBYodttGsnD2brksuyiorVBs-k8VrQwcfbcH_V6F00aVlPgSo_4RMaJ0nAM2nXoJZcsUQqHUoTZZmRdh9kZaU8biKTyiDP8pjJNNJhgA6b4blRXAc7MD94GehdILEy1tGTsckR9-KzNNMsNUYaxNWngarC2XR8xbDAZgjnbjAurCwEykKUsqjCiRXA12fIu27WWwLfIcrS6gjv3avCNg73TGPFSFfhYCowUa6-sfA5XvcilXLvj9-OYanZa7dE67pzsw_Ltjthca5yAPOT0Zs-hEX1Pnkaj47cFPsEUxbOvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Asynchronous+Control+Using+Meta-Learned+Neural+Ordinary+Differential+Equations&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Salehi%2C+Achkan&rft.au=Ruhl%2C+Steffen&rft.au=Doncieux%2C+Stephane&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=40&rft.spage=403&rft.epage=420&rft_id=info:doi/10.1109%2FTRO.2023.3326350&rft.externalDocID=10288525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon