A Reference Vector-Based Simplified Covariance Matrix Adaptation Evolution Strategy for Constrained Global Optimization

During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other success...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 52; no. 5; pp. 3696 - 3709
Main Authors: Kumar, Abhishek, Das, Swagatam, Mallipeddi, Rammohan
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems.
AbstractList During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems.
During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems.During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems.
Author Kumar, Abhishek
Das, Swagatam
Mallipeddi, Rammohan
Author_xml – sequence: 1
  givenname: Abhishek
  orcidid: 0000-0003-1940-0234
  surname: Kumar
  fullname: Kumar, Abhishek
  email: abhishek.kumar.eee13@iitbhu.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Varanasi, Varanasi, India
– sequence: 2
  givenname: Swagatam
  orcidid: 0000-0001-6843-4508
  surname: Das
  fullname: Das, Swagatam
  email: swagatam.das@isical.ac.in
  organization: Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India
– sequence: 3
  givenname: Rammohan
  orcidid: 0000-0001-9071-1145
  surname: Mallipeddi
  fullname: Mallipeddi, Rammohan
  email: mallipeddi@knu.ac.kr
  organization: Department of Artificial Intelligence, College of IT Engineering, Kyungpook National University, Daegu, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32936757$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJSdI0P6AUiqGbbjzVw9ZjORnStJASaB6QlZDtq6JgW64kp01_feXMJIssKgQ6Et-5iHPeoL3Rj4DQO4JXhGD1-Wpze7KimOIVw4SpGr9Ch5RwWVIq6r1nzcUBOo7xDucl85OS--iAUcW4qMUh-r0ufoCFAGMLxQ20yYfyxEToiks3TL2zLsuNvzfBmQX5blJwf4p1Z6ZkkvNjcXrv-_lRXaZgEvx8KKwP2TPGfHdj9p_1vjF9cTElN7i_j7a36LU1fYTj3XmErr-cXm2-lucXZ9826_OypUKlshJAKi4EqyHvjjXcMFWpuuoYY5Zw6CwHqGRDqLHEAHBeW2gkqynvuqZiR-jTdu4U_K8ZYtKDiy30vRnBz1HTqmJS5vx4Rj--QO_8HMb8O005F5jwmtJMfdhRczNAp6fgBhMe9FOkGRBboA0-xgBWt24b1RJHrwnWS3966U8v_eldf9lJXjifhv_P837rcQDwzCuipGKS_QNwi6XV
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123565
crossref_primary_10_1109_TEVC_2023_3330265
crossref_primary_10_1364_JOCN_544246
crossref_primary_10_1007_s12530_023_09485_1
crossref_primary_10_1109_JLT_2025_3542778
crossref_primary_10_1109_TSMC_2023_3281550
crossref_primary_10_1016_j_asoc_2023_110963
crossref_primary_10_1016_j_swevo_2021_100936
crossref_primary_10_1016_j_asoc_2025_113427
crossref_primary_10_1016_j_neucom_2024_129247
crossref_primary_10_1109_TCSII_2022_3199158
crossref_primary_10_1109_TEVC_2022_3230070
crossref_primary_10_1109_ACCESS_2021_3073509
crossref_primary_10_1109_ACCESS_2023_3240467
crossref_primary_10_3390_math11010201
crossref_primary_10_1016_j_eswa_2024_126351
crossref_primary_10_1109_TSMC_2024_3489600
crossref_primary_10_1016_j_ins_2024_121536
crossref_primary_10_1049_gtd2_12425
crossref_primary_10_1109_TEVC_2022_3153933
crossref_primary_10_1109_ACCESS_2022_3225543
crossref_primary_10_1007_s10489_025_06237_3
crossref_primary_10_1109_TEVC_2022_3177936
Cites_doi 10.1109/CEC.2018.8477950
10.1109/TEVC.2005.846817
10.1109/TCYB.2013.2250956
10.1016/j.swevo.2020.100693
10.1007/bfb0067700
10.1109/CEC.2010.5585973
10.1080/0305215X.2013.846336
10.1109/TEVC.2009.2033582
10.1016/j.swevo.2020.100665
10.1007/s00500-017-2712-6
10.1016/j.ins.2018.04.083
10.1016/j.eswa.2014.06.032
10.1162/EVCO_a_00168
10.1109/TEVC.2019.2907266
10.1016/j.ijepes.2014.03.028
10.1109/CEC.2013.6557593
10.1109/TEVC.2015.2477402
10.1007/s00500-008-0323-y
10.1109/CEC.2010.5586484
10.1016/j.swevo.2018.10.002
10.1109/TEVC.2017.2765682
10.1109/TPWRS.2004.836189
10.1162/evco.1996.4.1.1
10.1016/j.cor.2005.02.002
10.1162/EVCO_a_00024
10.1109/TSMCA.2009.2013333
10.1109/TEVC.2010.2093582
10.1109/4235.996017
10.1109/CEC.2017.7969446
10.1109/AIEEPAS.1957.4499665
10.1090/S0025-5718-1965-0198670-6
10.1109/TEVC.2003.817236
10.1109/20.497502
10.1109/CEC.2017.7969329
10.1109/TEVC.2015.2428292
10.1007/978-81-322-2184-5_9
10.1109/TCYB.2015.2493239
10.1109/TCYB.2017.2647742
10.1109/CEC.2006.1688386
10.1080/03052150008941301
10.1109/TEVC.2007.902851
10.1109/TCYB.2017.2669334
10.1007/978-3-642-37192-9_46
10.1016/j.swevo.2011.10.001
10.1002/9781118600153.ch12
10.1109/CEC.2017.7969472
10.1109/CEC.2017.7969504
10.1109/CEC.2010.5586330
10.1109/CEC.2017.7969601
10.1109/TPAS.1981.316511
10.1109/TEVC.2018.2871944
10.1109/TEVC.2018.2855049
10.1007/978-3-642-04617-9_22
10.1145/2608628.2608664
10.1109/TCYB.2014.2359985
10.1109/TSMC.2018.2876335
10.1007/s00500-017-2603-x
10.1109/CEC.2018.8477943
10.1109/TCYB.2020.2979821
10.1109/CEC.2012.6252955
10.1109/TEVC.2017.2680320
10.1016/S0045-7825(99)00389-8
10.1145/3194206.3194215
10.1109/TSMC.2018.2807785
10.1109/TCYB.2014.2334692
10.1016/j.amc.2014.07.113
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3013950
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3709
ExternalDocumentID 32936757
10_1109_TCYB_2020_3013950
9198938
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c279t-47e1467735e35ed3b6a394954d333f16edf6ee48b12af1aee665feb83526ddb43
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798227800098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 11:46:59 EDT 2025
Mon Jun 30 05:17:39 EDT 2025
Tue Sep 30 00:37:04 EDT 2025
Sat Nov 29 02:02:31 EST 2025
Tue Nov 18 21:31:34 EST 2025
Wed Aug 27 02:37:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-47e1467735e35ed3b6a394954d333f16edf6ee48b12af1aee665feb83526ddb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6843-4508
0000-0003-1940-0234
0000-0001-9071-1145
PMID 32936757
PQID 2667016522
PQPubID 85422
PageCount 14
ParticipantIDs proquest_miscellaneous_2443881396
proquest_journals_2667016522
ieee_primary_9198938
crossref_primary_10_1109_TCYB_2020_3013950
pubmed_primary_32936757
crossref_citationtrail_10_1109_TCYB_2020_3013950
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
ref71
Hansen (ref39) 2006
ref70
ref72
Hale (ref66) 1956; 75
ref24
ref68
ref23
ref26
ref25
Wu (ref50) 2017
ref69
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
Chao (ref67) 1961
ref60
ref62
Mallipeddi (ref49) 2010; 24
ref61
References_xml – ident: ref36
  doi: 10.1109/CEC.2018.8477950
– ident: ref13
  doi: 10.1109/TEVC.2005.846817
– ident: ref53
  doi: 10.1109/TCYB.2013.2250956
– ident: ref65
  doi: 10.1016/j.swevo.2020.100693
– ident: ref38
  doi: 10.1007/bfb0067700
– ident: ref55
  doi: 10.1109/CEC.2010.5585973
– ident: ref23
  doi: 10.1080/0305215X.2013.846336
– volume: 24
  volume-title: Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization
  year: 2010
  ident: ref49
– ident: ref21
  doi: 10.1109/TEVC.2009.2033582
– ident: ref56
  doi: 10.1016/j.swevo.2020.100665
– ident: ref29
  doi: 10.1007/s00500-017-2712-6
– ident: ref52
  doi: 10.1016/j.ins.2018.04.083
– ident: ref32
  doi: 10.1016/j.eswa.2014.06.032
– ident: ref43
  doi: 10.1162/EVCO_a_00168
– ident: ref45
  doi: 10.1109/TEVC.2019.2907266
– ident: ref71
  doi: 10.1016/j.ijepes.2014.03.028
– ident: ref46
  doi: 10.1109/CEC.2013.6557593
– ident: ref24
  doi: 10.1109/TEVC.2015.2477402
– ident: ref57
  doi: 10.1007/s00500-008-0323-y
– volume: 75
  start-page: 398
  issue: 3
  year: 1956
  ident: ref66
  article-title: Digital computer solution of power flow problems
  publication-title: Trans. Amer. Inst. Elect. Eng. III, Power App. Syst.
– ident: ref7
  doi: 10.1109/CEC.2010.5586484
– ident: ref30
  doi: 10.1016/j.swevo.2018.10.002
– ident: ref42
  doi: 10.1109/TEVC.2017.2765682
– ident: ref72
  doi: 10.1109/TPWRS.2004.836189
– ident: ref2
  doi: 10.1162/evco.1996.4.1.1
– ident: ref22
  doi: 10.1016/j.cor.2005.02.002
– ident: ref18
  doi: 10.1162/EVCO_a_00024
– ident: ref9
  doi: 10.1109/TSMCA.2009.2013333
– ident: ref10
  doi: 10.1109/TEVC.2010.2093582
– ident: ref47
  doi: 10.1109/4235.996017
– ident: ref58
  doi: 10.1109/CEC.2017.7969446
– ident: ref64
  doi: 10.1109/AIEEPAS.1957.4499665
– ident: ref40
  doi: 10.1090/S0025-5718-1965-0198670-6
– ident: ref4
  doi: 10.1109/TEVC.2003.817236
– ident: ref63
  doi: 10.1109/CEC.2017.7969446
– ident: ref68
  doi: 10.1109/20.497502
– ident: ref15
  doi: 10.1109/CEC.2017.7969329
– ident: ref37
  doi: 10.1109/TEVC.2015.2428292
– ident: ref20
  doi: 10.1007/978-81-322-2184-5_9
– ident: ref54
  doi: 10.1109/TCYB.2015.2493239
– ident: ref11
  doi: 10.1109/TCYB.2017.2647742
– ident: ref5
  doi: 10.1109/CEC.2006.1688386
– ident: ref6
  doi: 10.1080/03052150008941301
– year: 2017
  ident: ref50
  article-title: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization
– ident: ref17
  doi: 10.1109/TEVC.2007.902851
– ident: ref12
  doi: 10.1109/TCYB.2017.2669334
– ident: ref35
  doi: 10.1007/978-3-642-37192-9_46
– ident: ref1
  doi: 10.1016/j.swevo.2011.10.001
– ident: ref31
  doi: 10.1002/9781118600153.ch12
– ident: ref61
  doi: 10.1109/CEC.2017.7969472
– ident: ref62
  doi: 10.1109/CEC.2017.7969504
– ident: ref51
  doi: 10.1109/CEC.2010.5586330
– ident: ref60
  doi: 10.1109/CEC.2017.7969601
– year: 1961
  ident: ref67
  article-title: On the solution of ill-conditioned, simultaneous, linear, algebraic equations by machine computation
– ident: ref69
  doi: 10.1109/TPAS.1981.316511
– ident: ref28
  doi: 10.1109/TEVC.2018.2871944
– ident: ref44
  doi: 10.1109/TEVC.2018.2855049
– ident: ref34
  doi: 10.1007/978-3-642-04617-9_22
– ident: ref48
  doi: 10.1145/2608628.2608664
– ident: ref8
  doi: 10.1109/TCYB.2014.2359985
– ident: ref26
  doi: 10.1109/TSMC.2018.2876335
– ident: ref14
  doi: 10.1007/s00500-017-2603-x
– ident: ref59
  doi: 10.1109/CEC.2018.8477943
– ident: ref27
  doi: 10.1109/TCYB.2020.2979821
– ident: ref16
  doi: 10.1109/CEC.2012.6252955
– ident: ref41
  doi: 10.1109/TEVC.2017.2680320
– volume-title: Institute of Computational Science
  year: 2006
  ident: ref39
  article-title: Tutorial: Covariance matrix adaptation (CMA) evolution strategy
– ident: ref3
  doi: 10.1016/S0045-7825(99)00389-8
– ident: ref33
  doi: 10.1145/3194206.3194215
– ident: ref25
  doi: 10.1109/TSMC.2018.2807785
– ident: ref19
  doi: 10.1109/TCYB.2014.2334692
– ident: ref70
  doi: 10.1016/j.amc.2014.07.113
SSID ssj0000816898
Score 2.4510608
Snippet During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3696
SubjectTerms Adaptation
Benchmark testing
Business competition
Constrained optimization
Covariance matrices
Covariance matrix
covariance matrix adaptation evolution strategy (CMA-ES)
Cybernetics
Decision feedback equalizers
Evolutionary algorithms
Evolutionary computation
Global optimization
Maintenance engineering
multiobjective optimization (MOO)
Multiple objective analysis
Optimization
Pareto optimization
Power flow
Ranking
reference vector-based ranking (RVRanking) strategy
Strategy
Title A Reference Vector-Based Simplified Covariance Matrix Adaptation Evolution Strategy for Constrained Global Optimization
URI https://ieeexplore.ieee.org/document/9198938
https://www.ncbi.nlm.nih.gov/pubmed/32936757
https://www.proquest.com/docview/2667016522
https://www.proquest.com/docview/2443881396
Volume 52
WOSCitedRecordID wos000798227800098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_a4oMvaq0fa2uJ4IOKsbeb7CZ5vB4tvlgFq5xPS3YzC4V6V3of2v_emWxuQbAF4R4WLvsBv0nmN8nM_ABekxtFG1otO2w7qa3X0pGXlSPEqtEqeNP4KDZhzs7sdOq-bMH7oRYGEWPyGX7gy3iWH-btirfKjhwn-Ci7DdvGVH2t1rCfEgUkovRtQReSWIVJh5j5yB2dT34cUzBYUIzKnKdkAThFno7osvnLI0WJldvZZvQ6pw__73sfwYPELsW4N4dd2MLZY9hN83ch3qQm02_34NdYDD1mxfe4dS-PyaMF8fWCk8w7oqZiMl9TKM12IT5xK__fYhz8VX94L07WyWpF6nB7I4gAC1YAjboTdH8vKCA-07L0M9V7PoFvpyfnk48yiTDItjBuKbVBXkyNKpF-QTWVV46iKh2UUl1eYegqRG2bvPBd7gniquywYWJXhUBwP4Wd2XyGz0E0REc6WlxLdI0u89Y13O_L-dZyIqtrMxhtgKjb1KGcP_iyjpHKyNUMY80w1gnGDN4Nt1z17TnuGrzHGA0DEzwZHGzQrtMEXtTEWwxXehVFBq-Gv2nq8XmKn-F8RWO0VtbSo6sMnvVWMjx7Y1wv_v3OfbhfcB1FzJw8gJ3l9Qpfwr12vbxYXB-SfU_tYbTvPw3r9Lk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFfRFrbW6tmoEH1RMe7vJfuTxerRUbE_BU-rTkk1moaB3pfeh_vedyeYWBBWEe1i47Af8JpnfJDPzA3hJbhQr77Rs0bVSV1ZLQ15WDhCLRitvy8YGsYlyPK7Oz83HDXjb18IgYkg-w32-DGf5fuaWvFV2YDjBR1U34CYrZ8VqrX5HJUhIBPHbjC4k8YoyHmOmA3MwGX09pHAwoyiVWU_OEnCKfB0R5vI3nxREVv7ON4PfOb73f198H-5GfimGnUFswQZOH8BWnMFz8Sq2mX69DT-Gou8yK76EzXt5SD7Ni08XnGbeEjkVo9mKgmm2DHHGzfx_iqG3l93xvThaRbsVscftL0EUWLAGaFCeoPs7SQHxgRam77Hi8yF8Pj6ajE5klGGQLivNQuoSeTktVY7086oprDIUV2mvlGrTAn1bIOqqSTPbppZALvIWG6Z2hfcE-A5sTmdTfAyiIULS0vKao2l0njrTcMcvY13FqazGJTBYA1G72KOcP_hbHWKVgakZxpphrCOMCbzpb7nsGnT8a_A2Y9QPjPAksLdGu45TeF4Tcym51ivLEnjR_02Tj09U7BRnSxqjtaoqenSRwKPOSvpnr43ryZ_f-Rxun0zOTuvTd-P3u3An46qKkEe5B5uLqyU-hVtutbiYXz0LVn4NLhb3Gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reference+Vector-Based+Simplified+Covariance+Matrix+Adaptation+Evolution+Strategy+for+Constrained+Global+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Kumar%2C+Abhishek&rft.au=Das%2C+Swagatam&rft.au=Mallipeddi%2C+Rammohan&rft.date=2022-05-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=5&rft.spage=3696&rft.epage=3709&rft_id=info:doi/10.1109%2FTCYB.2020.3013950&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3013950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon