A Reference Vector-Based Simplified Covariance Matrix Adaptation Evolution Strategy for Constrained Global Optimization
During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other success...
Saved in:
| Published in: | IEEE transactions on cybernetics Vol. 52; no. 5; pp. 3696 - 3709 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems. |
|---|---|
| AbstractList | During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems. During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems.During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems. |
| Author | Kumar, Abhishek Das, Swagatam Mallipeddi, Rammohan |
| Author_xml | – sequence: 1 givenname: Abhishek orcidid: 0000-0003-1940-0234 surname: Kumar fullname: Kumar, Abhishek email: abhishek.kumar.eee13@iitbhu.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Varanasi, Varanasi, India – sequence: 2 givenname: Swagatam orcidid: 0000-0001-6843-4508 surname: Das fullname: Das, Swagatam email: swagatam.das@isical.ac.in organization: Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India – sequence: 3 givenname: Rammohan orcidid: 0000-0001-9071-1145 surname: Mallipeddi fullname: Mallipeddi, Rammohan email: mallipeddi@knu.ac.kr organization: Department of Artificial Intelligence, College of IT Engineering, Kyungpook National University, Daegu, South Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32936757$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAUhUVJSdI0P6AUiqGbbjzVw9ZjORnStJASaB6QlZDtq6JgW64kp01_feXMJIssKgQ6Et-5iHPeoL3Rj4DQO4JXhGD1-Wpze7KimOIVw4SpGr9Ch5RwWVIq6r1nzcUBOo7xDucl85OS--iAUcW4qMUh-r0ufoCFAGMLxQ20yYfyxEToiks3TL2zLsuNvzfBmQX5blJwf4p1Z6ZkkvNjcXrv-_lRXaZgEvx8KKwP2TPGfHdj9p_1vjF9cTElN7i_j7a36LU1fYTj3XmErr-cXm2-lucXZ9826_OypUKlshJAKi4EqyHvjjXcMFWpuuoYY5Zw6CwHqGRDqLHEAHBeW2gkqynvuqZiR-jTdu4U_K8ZYtKDiy30vRnBz1HTqmJS5vx4Rj--QO_8HMb8O005F5jwmtJMfdhRczNAp6fgBhMe9FOkGRBboA0-xgBWt24b1RJHrwnWS3966U8v_eldf9lJXjifhv_P837rcQDwzCuipGKS_QNwi6XV |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123565 crossref_primary_10_1109_TEVC_2023_3330265 crossref_primary_10_1364_JOCN_544246 crossref_primary_10_1007_s12530_023_09485_1 crossref_primary_10_1109_JLT_2025_3542778 crossref_primary_10_1109_TSMC_2023_3281550 crossref_primary_10_1016_j_asoc_2023_110963 crossref_primary_10_1016_j_swevo_2021_100936 crossref_primary_10_1016_j_asoc_2025_113427 crossref_primary_10_1016_j_neucom_2024_129247 crossref_primary_10_1109_TCSII_2022_3199158 crossref_primary_10_1109_TEVC_2022_3230070 crossref_primary_10_1109_ACCESS_2021_3073509 crossref_primary_10_1109_ACCESS_2023_3240467 crossref_primary_10_3390_math11010201 crossref_primary_10_1016_j_eswa_2024_126351 crossref_primary_10_1109_TSMC_2024_3489600 crossref_primary_10_1016_j_ins_2024_121536 crossref_primary_10_1049_gtd2_12425 crossref_primary_10_1109_TEVC_2022_3153933 crossref_primary_10_1109_ACCESS_2022_3225543 crossref_primary_10_1007_s10489_025_06237_3 crossref_primary_10_1109_TEVC_2022_3177936 |
| Cites_doi | 10.1109/CEC.2018.8477950 10.1109/TEVC.2005.846817 10.1109/TCYB.2013.2250956 10.1016/j.swevo.2020.100693 10.1007/bfb0067700 10.1109/CEC.2010.5585973 10.1080/0305215X.2013.846336 10.1109/TEVC.2009.2033582 10.1016/j.swevo.2020.100665 10.1007/s00500-017-2712-6 10.1016/j.ins.2018.04.083 10.1016/j.eswa.2014.06.032 10.1162/EVCO_a_00168 10.1109/TEVC.2019.2907266 10.1016/j.ijepes.2014.03.028 10.1109/CEC.2013.6557593 10.1109/TEVC.2015.2477402 10.1007/s00500-008-0323-y 10.1109/CEC.2010.5586484 10.1016/j.swevo.2018.10.002 10.1109/TEVC.2017.2765682 10.1109/TPWRS.2004.836189 10.1162/evco.1996.4.1.1 10.1016/j.cor.2005.02.002 10.1162/EVCO_a_00024 10.1109/TSMCA.2009.2013333 10.1109/TEVC.2010.2093582 10.1109/4235.996017 10.1109/CEC.2017.7969446 10.1109/AIEEPAS.1957.4499665 10.1090/S0025-5718-1965-0198670-6 10.1109/TEVC.2003.817236 10.1109/20.497502 10.1109/CEC.2017.7969329 10.1109/TEVC.2015.2428292 10.1007/978-81-322-2184-5_9 10.1109/TCYB.2015.2493239 10.1109/TCYB.2017.2647742 10.1109/CEC.2006.1688386 10.1080/03052150008941301 10.1109/TEVC.2007.902851 10.1109/TCYB.2017.2669334 10.1007/978-3-642-37192-9_46 10.1016/j.swevo.2011.10.001 10.1002/9781118600153.ch12 10.1109/CEC.2017.7969472 10.1109/CEC.2017.7969504 10.1109/CEC.2010.5586330 10.1109/CEC.2017.7969601 10.1109/TPAS.1981.316511 10.1109/TEVC.2018.2871944 10.1109/TEVC.2018.2855049 10.1007/978-3-642-04617-9_22 10.1145/2608628.2608664 10.1109/TCYB.2014.2359985 10.1109/TSMC.2018.2876335 10.1007/s00500-017-2603-x 10.1109/CEC.2018.8477943 10.1109/TCYB.2020.2979821 10.1109/CEC.2012.6252955 10.1109/TEVC.2017.2680320 10.1016/S0045-7825(99)00389-8 10.1145/3194206.3194215 10.1109/TSMC.2018.2807785 10.1109/TCYB.2014.2334692 10.1016/j.amc.2014.07.113 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.3013950 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 3709 |
| ExternalDocumentID | 32936757 10_1109_TCYB_2020_3013950 9198938 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c279t-47e1467735e35ed3b6a394954d333f16edf6ee48b12af1aee665feb83526ddb43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798227800098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Thu Oct 02 11:46:59 EDT 2025 Mon Jun 30 05:17:39 EDT 2025 Tue Sep 30 00:37:04 EDT 2025 Sat Nov 29 02:02:31 EST 2025 Tue Nov 18 21:31:34 EST 2025 Wed Aug 27 02:37:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c279t-47e1467735e35ed3b6a394954d333f16edf6ee48b12af1aee665feb83526ddb43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6843-4508 0000-0003-1940-0234 0000-0001-9071-1145 |
| PMID | 32936757 |
| PQID | 2667016522 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2443881396 proquest_journals_2667016522 ieee_primary_9198938 crossref_primary_10_1109_TCYB_2020_3013950 pubmed_primary_32936757 crossref_citationtrail_10_1109_TCYB_2020_3013950 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 ref71 Hansen (ref39) 2006 ref70 ref72 Hale (ref66) 1956; 75 ref24 ref68 ref23 ref26 ref25 Wu (ref50) 2017 ref69 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 Chao (ref67) 1961 ref60 ref62 Mallipeddi (ref49) 2010; 24 ref61 |
| References_xml | – ident: ref36 doi: 10.1109/CEC.2018.8477950 – ident: ref13 doi: 10.1109/TEVC.2005.846817 – ident: ref53 doi: 10.1109/TCYB.2013.2250956 – ident: ref65 doi: 10.1016/j.swevo.2020.100693 – ident: ref38 doi: 10.1007/bfb0067700 – ident: ref55 doi: 10.1109/CEC.2010.5585973 – ident: ref23 doi: 10.1080/0305215X.2013.846336 – volume: 24 volume-title: Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization year: 2010 ident: ref49 – ident: ref21 doi: 10.1109/TEVC.2009.2033582 – ident: ref56 doi: 10.1016/j.swevo.2020.100665 – ident: ref29 doi: 10.1007/s00500-017-2712-6 – ident: ref52 doi: 10.1016/j.ins.2018.04.083 – ident: ref32 doi: 10.1016/j.eswa.2014.06.032 – ident: ref43 doi: 10.1162/EVCO_a_00168 – ident: ref45 doi: 10.1109/TEVC.2019.2907266 – ident: ref71 doi: 10.1016/j.ijepes.2014.03.028 – ident: ref46 doi: 10.1109/CEC.2013.6557593 – ident: ref24 doi: 10.1109/TEVC.2015.2477402 – ident: ref57 doi: 10.1007/s00500-008-0323-y – volume: 75 start-page: 398 issue: 3 year: 1956 ident: ref66 article-title: Digital computer solution of power flow problems publication-title: Trans. Amer. Inst. Elect. Eng. III, Power App. Syst. – ident: ref7 doi: 10.1109/CEC.2010.5586484 – ident: ref30 doi: 10.1016/j.swevo.2018.10.002 – ident: ref42 doi: 10.1109/TEVC.2017.2765682 – ident: ref72 doi: 10.1109/TPWRS.2004.836189 – ident: ref2 doi: 10.1162/evco.1996.4.1.1 – ident: ref22 doi: 10.1016/j.cor.2005.02.002 – ident: ref18 doi: 10.1162/EVCO_a_00024 – ident: ref9 doi: 10.1109/TSMCA.2009.2013333 – ident: ref10 doi: 10.1109/TEVC.2010.2093582 – ident: ref47 doi: 10.1109/4235.996017 – ident: ref58 doi: 10.1109/CEC.2017.7969446 – ident: ref64 doi: 10.1109/AIEEPAS.1957.4499665 – ident: ref40 doi: 10.1090/S0025-5718-1965-0198670-6 – ident: ref4 doi: 10.1109/TEVC.2003.817236 – ident: ref63 doi: 10.1109/CEC.2017.7969446 – ident: ref68 doi: 10.1109/20.497502 – ident: ref15 doi: 10.1109/CEC.2017.7969329 – ident: ref37 doi: 10.1109/TEVC.2015.2428292 – ident: ref20 doi: 10.1007/978-81-322-2184-5_9 – ident: ref54 doi: 10.1109/TCYB.2015.2493239 – ident: ref11 doi: 10.1109/TCYB.2017.2647742 – ident: ref5 doi: 10.1109/CEC.2006.1688386 – ident: ref6 doi: 10.1080/03052150008941301 – year: 2017 ident: ref50 article-title: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization – ident: ref17 doi: 10.1109/TEVC.2007.902851 – ident: ref12 doi: 10.1109/TCYB.2017.2669334 – ident: ref35 doi: 10.1007/978-3-642-37192-9_46 – ident: ref1 doi: 10.1016/j.swevo.2011.10.001 – ident: ref31 doi: 10.1002/9781118600153.ch12 – ident: ref61 doi: 10.1109/CEC.2017.7969472 – ident: ref62 doi: 10.1109/CEC.2017.7969504 – ident: ref51 doi: 10.1109/CEC.2010.5586330 – ident: ref60 doi: 10.1109/CEC.2017.7969601 – year: 1961 ident: ref67 article-title: On the solution of ill-conditioned, simultaneous, linear, algebraic equations by machine computation – ident: ref69 doi: 10.1109/TPAS.1981.316511 – ident: ref28 doi: 10.1109/TEVC.2018.2871944 – ident: ref44 doi: 10.1109/TEVC.2018.2855049 – ident: ref34 doi: 10.1007/978-3-642-04617-9_22 – ident: ref48 doi: 10.1145/2608628.2608664 – ident: ref8 doi: 10.1109/TCYB.2014.2359985 – ident: ref26 doi: 10.1109/TSMC.2018.2876335 – ident: ref14 doi: 10.1007/s00500-017-2603-x – ident: ref59 doi: 10.1109/CEC.2018.8477943 – ident: ref27 doi: 10.1109/TCYB.2020.2979821 – ident: ref16 doi: 10.1109/CEC.2012.6252955 – ident: ref41 doi: 10.1109/TEVC.2017.2680320 – volume-title: Institute of Computational Science year: 2006 ident: ref39 article-title: Tutorial: Covariance matrix adaptation (CMA) evolution strategy – ident: ref3 doi: 10.1016/S0045-7825(99)00389-8 – ident: ref33 doi: 10.1145/3194206.3194215 – ident: ref25 doi: 10.1109/TSMC.2018.2807785 – ident: ref19 doi: 10.1109/TCYB.2014.2334692 – ident: ref70 doi: 10.1016/j.amc.2014.07.113 |
| SSID | ssj0000816898 |
| Score | 2.4510608 |
| Snippet | During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3696 |
| SubjectTerms | Adaptation Benchmark testing Business competition Constrained optimization Covariance matrices Covariance matrix covariance matrix adaptation evolution strategy (CMA-ES) Cybernetics Decision feedback equalizers Evolutionary algorithms Evolutionary computation Global optimization Maintenance engineering multiobjective optimization (MOO) Multiple objective analysis Optimization Pareto optimization Power flow Ranking reference vector-based ranking (RVRanking) strategy Strategy |
| Title | A Reference Vector-Based Simplified Covariance Matrix Adaptation Evolution Strategy for Constrained Global Optimization |
| URI | https://ieeexplore.ieee.org/document/9198938 https://www.ncbi.nlm.nih.gov/pubmed/32936757 https://www.proquest.com/docview/2667016522 https://www.proquest.com/docview/2443881396 |
| Volume | 52 |
| WOSCitedRecordID | wos000798227800098&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_a4oMvaq0fa2uJ4IOKsbeb7CZ5vB4tvlgFq5xPS3YzC4V6V3of2v_emWxuQbAF4R4WLvsBv0nmN8nM_ABekxtFG1otO2w7qa3X0pGXlSPEqtEqeNP4KDZhzs7sdOq-bMH7oRYGEWPyGX7gy3iWH-btirfKjhwn-Ci7DdvGVH2t1rCfEgUkovRtQReSWIVJh5j5yB2dT34cUzBYUIzKnKdkAThFno7osvnLI0WJldvZZvQ6pw__73sfwYPELsW4N4dd2MLZY9hN83ch3qQm02_34NdYDD1mxfe4dS-PyaMF8fWCk8w7oqZiMl9TKM12IT5xK__fYhz8VX94L07WyWpF6nB7I4gAC1YAjboTdH8vKCA-07L0M9V7PoFvpyfnk48yiTDItjBuKbVBXkyNKpF-QTWVV46iKh2UUl1eYegqRG2bvPBd7gniquywYWJXhUBwP4Wd2XyGz0E0REc6WlxLdI0u89Y13O_L-dZyIqtrMxhtgKjb1KGcP_iyjpHKyNUMY80w1gnGDN4Nt1z17TnuGrzHGA0DEzwZHGzQrtMEXtTEWwxXehVFBq-Gv2nq8XmKn-F8RWO0VtbSo6sMnvVWMjx7Y1wv_v3OfbhfcB1FzJw8gJ3l9Qpfwr12vbxYXB-SfU_tYbTvPw3r9Lk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qFfRFrbW6tmoEH1RMe7vJfuTxerRUbE_BU-rTkk1moaB3pfeh_vedyeYWBBWEe1i47Af8JpnfJDPzA3hJbhQr77Rs0bVSV1ZLQ15WDhCLRitvy8YGsYlyPK7Oz83HDXjb18IgYkg-w32-DGf5fuaWvFV2YDjBR1U34CYrZ8VqrX5HJUhIBPHbjC4k8YoyHmOmA3MwGX09pHAwoyiVWU_OEnCKfB0R5vI3nxREVv7ON4PfOb73f198H-5GfimGnUFswQZOH8BWnMFz8Sq2mX69DT-Gou8yK76EzXt5SD7Ni08XnGbeEjkVo9mKgmm2DHHGzfx_iqG3l93xvThaRbsVscftL0EUWLAGaFCeoPs7SQHxgRam77Hi8yF8Pj6ajE5klGGQLivNQuoSeTktVY7086oprDIUV2mvlGrTAn1bIOqqSTPbppZALvIWG6Z2hfcE-A5sTmdTfAyiIULS0vKao2l0njrTcMcvY13FqazGJTBYA1G72KOcP_hbHWKVgakZxpphrCOMCbzpb7nsGnT8a_A2Y9QPjPAksLdGu45TeF4Tcym51ivLEnjR_02Tj09U7BRnSxqjtaoqenSRwKPOSvpnr43ryZ_f-Rxun0zOTuvTd-P3u3An46qKkEe5B5uLqyU-hVtutbiYXz0LVn4NLhb3Gg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Reference+Vector-Based+Simplified+Covariance+Matrix+Adaptation+Evolution+Strategy+for+Constrained+Global+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Kumar%2C+Abhishek&rft.au=Das%2C+Swagatam&rft.au=Mallipeddi%2C+Rammohan&rft.date=2022-05-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=5&rft.spage=3696&rft.epage=3709&rft_id=info:doi/10.1109%2FTCYB.2020.3013950&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3013950 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |