A General Matrix Function Dimensionality Reduction Framework and Extension for Manifold Learning

Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combinin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 52; číslo 4; s. 2137 - 2148
Hlavní autoři: Ran, Ruisheng, Feng, Ji, Zhang, Shougui, Fang, Bin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combining the unified criterion with the matrix function, we propose a general matrix function dimensionality reduction framework. This framework is configurable, that is, one can select suitable functions to construct such a matrix transformation framework, and then a series of new dimensionality reduction methods can be derived from this framework. In this article, we discuss how to choose suitable functions from two aspects: 1) solving the SSS problem and 2) improving pattern classification ability. As an extension, with the inverse hyperbolic tangent function and linear function, we propose a new matrix function dimensionality reduction framework. Compared with the existing methods to solve the SSS problem, these new methods can obtain better pattern classification ability and have less computational complexity. The experimental results on handwritten digit, letters databases, and two face databases show the superiority of the new methods.
AbstractList Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combining the unified criterion with the matrix function, we propose a general matrix function dimensionality reduction framework. This framework is configurable, that is, one can select suitable functions to construct such a matrix transformation framework, and then a series of new dimensionality reduction methods can be derived from this framework. In this article, we discuss how to choose suitable functions from two aspects: 1) solving the SSS problem and 2) improving pattern classification ability. As an extension, with the inverse hyperbolic tangent function and linear function, we propose a new matrix function dimensionality reduction framework. Compared with the existing methods to solve the SSS problem, these new methods can obtain better pattern classification ability and have less computational complexity. The experimental results on handwritten digit, letters databases, and two face databases show the superiority of the new methods.
Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combining the unified criterion with the matrix function, we propose a general matrix function dimensionality reduction framework. This framework is configurable, that is, one can select suitable functions to construct such a matrix transformation framework, and then a series of new dimensionality reduction methods can be derived from this framework. In this article, we discuss how to choose suitable functions from two aspects: 1) solving the SSS problem and 2) improving pattern classification ability. As an extension, with the inverse hyperbolic tangent function and linear function, we propose a new matrix function dimensionality reduction framework. Compared with the existing methods to solve the SSS problem, these new methods can obtain better pattern classification ability and have less computational complexity. The experimental results on handwritten digit, letters databases, and two face databases show the superiority of the new methods.Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combining the unified criterion with the matrix function, we propose a general matrix function dimensionality reduction framework. This framework is configurable, that is, one can select suitable functions to construct such a matrix transformation framework, and then a series of new dimensionality reduction methods can be derived from this framework. In this article, we discuss how to choose suitable functions from two aspects: 1) solving the SSS problem and 2) improving pattern classification ability. As an extension, with the inverse hyperbolic tangent function and linear function, we propose a new matrix function dimensionality reduction framework. Compared with the existing methods to solve the SSS problem, these new methods can obtain better pattern classification ability and have less computational complexity. The experimental results on handwritten digit, letters databases, and two face databases show the superiority of the new methods.
Author Ran, Ruisheng
Fang, Bin
Zhang, Shougui
Feng, Ji
Author_xml – sequence: 1
  givenname: Ruisheng
  orcidid: 0000-0002-0785-2703
  surname: Ran
  fullname: Ran, Ruisheng
  email: rshran@cqnu.edu.cn
  organization: College of Computer and Information Science, College of Intelligent Science, Chongqing Normal University, Chongqing, China
– sequence: 2
  givenname: Ji
  surname: Feng
  fullname: Feng, Ji
  email: fengji@cqnu.edu.cn
  organization: College of Computer and Information Science, Chongqing Normal University, Chongqing, China
– sequence: 3
  givenname: Shougui
  surname: Zhang
  fullname: Zhang, Shougui
  email: shgzhang@cqnu.edu.cn
  organization: School of Mathematical Science, Chongqing Normal University, Chongqing, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0003-1955-6626
  surname: Fang
  fullname: Fang, Bin
  email: fb@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32697725$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1UREvpB0BIyBIXLrv4v-NjWboFaRESKgdOxnEmyCWxWzsR7bfHq2x76AFfPPL83pNn3kt0FFMEhF5TsqaUmA9Xm58f14wwsuaEcMXIM3TCqGpWjGl59FgrfYzOSrkm9TT1yTQv0DFnymjN5An6dY4vIUJ2A_7qphzu8HaOfgop4k9hhFhq5YYw3ePv0M1LY5vdCH9T_oNd7PDF3bRguE-5msTQp6HDO3A5hvj7FXreu6HA2eE-RT-2F1ebz6vdt8svm_PdyjNtppWQUjopDWkNbRhtO09M17vG61Zw0nPW1P_S3hMtuG5BOCO4Y32jnYfOi5afoveL701OtzOUyY6heBgGFyHNxTLBlOTSKFbRd0_Q6zTnOmallNCCcalMpd4eqLkdobM3OYwu39uH3VVAL4DPqZQMvfVhcvsNTdmFwVJi90HZfVB2H5Q9BFWV9Inywfx_mjeLJgDAI2-oUJwT_g_Lr5yp
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_neucom_2022_11_043
crossref_primary_10_1016_j_engappai_2024_107958
crossref_primary_10_1109_TCYB_2023_3291049
crossref_primary_10_1016_j_knosys_2022_110028
crossref_primary_10_1007_s00371_025_03928_3
crossref_primary_10_1007_s41870_023_01245_3
crossref_primary_10_1016_j_infrared_2025_106014
crossref_primary_10_1007_s11042_021_10571_2
crossref_primary_10_1016_j_knosys_2024_112296
crossref_primary_10_1016_j_neunet_2022_09_029
crossref_primary_10_1109_ACCESS_2022_3208901
crossref_primary_10_1016_j_eswa_2023_122750
crossref_primary_10_3233_HIS_230016
Cites_doi 10.1007/3-540-36592-3_45
10.1109/TSMCB.2012.2218234
10.1111/j.2517-6161.1948.tb00008.x
10.1109/TPAMI.2019.2932058
10.1016/j.chemolab.2007.10.002
10.1137/S00361445024180
10.1109/TCYB.2014.2336697
10.1016/j.neunet.2017.09.014
10.1109/TIP.2007.906769
10.1016/0024-3795(94)00206-1
10.1109/TCYB.2016.2591583
10.1016/j.patcog.2006.02.023
10.1109/ICDM.2007.89
10.1016/j.imavis.2005.11.006
10.1016/j.neucom.2016.02.063
10.1109/TNNLS.2019.2908982
10.1109/34.879790
10.1109/TIP.2013.2297020
10.1137/04061101X
10.1109/TSMCB.2009.2032926
10.1109/TCYB.2016.2578642
10.1162/jocn.1991.3.1.71
10.1016/j.neucom.2011.07.007
10.1016/j.jvcir.2009.08.003
10.1109/TIP.2019.2907054
10.1111/j.1469-1809.1936.tb02137.x
10.1609/aaai.v31i1.10714
10.1126/science.290.5500–2323
10.1109/ICCSPA.2013.6487298
10.56021/9781421407944
10.1016/j.patcog.2014.12.016
10.1016/j.patcog.2010.06.016
10.1109/TIP.2013.2255300
10.1587/transinf.2017EDP7259
10.1109/TNNLS.2014.2337335
10.1126/science.290.5500.2319
10.1016/j.ins.2019.02.008
10.1109/ICCV.2007.4408855
10.1137/S1064827502419154
10.7551/mitpress/1120.003.0080
10.1145/1291233.1291329
10.1109/TPAMI.2007.250598
10.1049/iet-cvi.2009.0138
10.1016/j.future.2010.11.002
10.1007/11582267_74
10.1016/j.patcog.2010.04.007
10.1162/089976603321780317
10.1109/TPAMI.2007.1131
10.1109/34.598228
10.1109/ICME.2011.6012027
10.1109/TIP.2011.2114354
10.1016/j.neucom.2006.11.007
10.1016/j.patcog.2016.07.029
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3003620
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2148
ExternalDocumentID 32697725
10_1109_TCYB_2020_3003620
9146330
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61876026
  funderid: 10.13039/501100001809
– fundername: Humanities and Social Sciences Project of the Ministry of Education of China
  grantid: 20YJAZH084; 18XJC880002
– fundername: School Fund Project of CQNU
  grantid: 16XLB006; 16XZH07
  funderid: 10.13039/100010338
– fundername: Project of Natural Science Foundation Project of CQ CSTC of China
  grantid: cstc2016jcyjA0419; cstc2017jcyjAX0316
  funderid: 10.13039/501100001809
– fundername: Chongqing Technology Innovation and Application Development Key Project
  grantid: cstc2019jscx-mbdxX0061
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c279t-4555a5590b91821bdc09dfa8c7b430f3287721fc07437be4a943a2f87acedc4b3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778931500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 00:52:41 EDT 2025
Sun Nov 30 04:16:13 EST 2025
Thu Jan 02 22:55:22 EST 2025
Tue Nov 18 22:31:17 EST 2025
Sat Nov 29 02:02:30 EST 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c279t-4555a5590b91821bdc09dfa8c7b430f3287721fc07437be4a943a2f87acedc4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1955-6626
0000-0002-0785-2703
PMID 32697725
PQID 2647423569
PQPubID 85422
PageCount 12
ParticipantIDs pubmed_primary_32697725
crossref_citationtrail_10_1109_TCYB_2020_3003620
crossref_primary_10_1109_TCYB_2020_3003620
proquest_miscellaneous_2426535962
proquest_journals_2647423569
ieee_primary_9146330
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref54
Chen (ref28)
ref17
ref16
ref19
ref18
Levada (ref10)
ref51
ref50
Ran (ref47) 2019; 30
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
He (ref22); 16
ref24
ref26
ref25
ref20
ref21
Cai (ref23)
ref27
ref29
References_xml – ident: ref34
  doi: 10.1007/3-540-36592-3_45
– ident: ref45
  doi: 10.1109/TSMCB.2012.2218234
– ident: ref3
  doi: 10.1111/j.2517-6161.1948.tb00008.x
– ident: ref12
  doi: 10.1109/TPAMI.2019.2932058
– ident: ref24
  doi: 10.1016/j.chemolab.2007.10.002
– ident: ref53
  doi: 10.1137/S00361445024180
– ident: ref17
  doi: 10.1109/TCYB.2014.2336697
– ident: ref44
  doi: 10.1016/j.neunet.2017.09.014
– ident: ref33
  doi: 10.1109/TIP.2007.906769
– ident: ref55
  doi: 10.1016/0024-3795(94)00206-1
– ident: ref16
  doi: 10.1109/TCYB.2016.2591583
– ident: ref30
  doi: 10.1016/j.patcog.2006.02.023
– ident: ref49
  doi: 10.1109/ICDM.2007.89
– ident: ref29
  doi: 10.1016/j.imavis.2005.11.006
– ident: ref43
  doi: 10.1016/j.neucom.2016.02.063
– ident: ref18
  doi: 10.1109/TNNLS.2019.2908982
– ident: ref56
  doi: 10.1109/34.879790
– ident: ref48
  doi: 10.1109/TIP.2013.2297020
– ident: ref54
  doi: 10.1137/04061101X
– start-page: 846
  volume-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref28
  article-title: Local discriminant embedding and its variants
– ident: ref58
  doi: 10.1109/TSMCB.2009.2032926
– ident: ref51
  doi: 10.1109/TCYB.2016.2578642
– ident: ref1
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref42
  doi: 10.1016/j.neucom.2011.07.007
– volume: 16
  start-page: 153
  volume-title: Proc. Adv. NIPS
  ident: ref22
  article-title: Locality preserving projections
– ident: ref31
  doi: 10.1016/j.jvcir.2009.08.003
– ident: ref9
  doi: 10.1109/TIP.2019.2907054
– ident: ref2
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– ident: ref14
  doi: 10.1609/aaai.v31i1.10714
– ident: ref7
  doi: 10.1126/science.290.5500–2323
– ident: ref35
  doi: 10.1109/ICCSPA.2013.6487298
– ident: ref52
  doi: 10.56021/9781421407944
– ident: ref10
  article-title: A review on unsupervised learning for dimensionality reduction: From linear methods to manifold learning
  publication-title: unpublished
– ident: ref15
  doi: 10.1016/j.patcog.2014.12.016
– ident: ref36
  doi: 10.1016/j.patcog.2010.06.016
– ident: ref21
  doi: 10.1109/TIP.2013.2255300
– ident: ref41
  doi: 10.1587/transinf.2017EDP7259
– ident: ref8
  doi: 10.1109/TNNLS.2014.2337335
– ident: ref6
  doi: 10.1126/science.290.5500.2319
– ident: ref13
  doi: 10.1016/j.ins.2019.02.008
– ident: ref37
  doi: 10.1109/ICCV.2007.4408855
– ident: ref11
  doi: 10.1137/S1064827502419154
– ident: ref4
  doi: 10.7551/mitpress/1120.003.0080
– ident: ref50
  doi: 10.1145/1291233.1291329
– start-page: 528
  volume-title: Proc. AAAI
  ident: ref23
  article-title: Isometric projection
– ident: ref32
  doi: 10.1109/TPAMI.2007.250598
– ident: ref38
  doi: 10.1049/iet-cvi.2009.0138
– ident: ref39
  doi: 10.1016/j.future.2010.11.002
– ident: ref26
  doi: 10.1007/11582267_74
– ident: ref40
  doi: 10.1016/j.patcog.2010.04.007
– ident: ref5
  doi: 10.1162/089976603321780317
– ident: ref25
  doi: 10.1109/TPAMI.2007.1131
– ident: ref57
  doi: 10.1109/34.598228
– ident: ref19
  doi: 10.1109/ICME.2011.6012027
– ident: ref20
  doi: 10.1109/TIP.2011.2114354
– ident: ref27
  doi: 10.1016/j.neucom.2006.11.007
– ident: ref46
  doi: 10.1016/j.patcog.2016.07.029
– volume: 30
  start-page: 1
  issue: 6
  year: 2019
  ident: ref47
  article-title: Face recognition based on exponential neighborhood preserving discriminant embedding
  publication-title: J. Comput.
SSID ssj0000816898
Score 2.3675663
Snippet Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2137
SubjectTerms Criteria
Cybernetics
Dimensionality reduction
Handwriting
Hyperbolic functions
Laplace equations
Learning systems
Linear functions
Machine learning
manifold learning
Manifolds
Manifolds (mathematics)
Mathematical analysis
matrix function
Pattern classification
Principal component analysis
Reduction
small-sample-size (SSS) problem
Title A General Matrix Function Dimensionality Reduction Framework and Extension for Manifold Learning
URI https://ieeexplore.ieee.org/document/9146330
https://www.ncbi.nlm.nih.gov/pubmed/32697725
https://www.proquest.com/docview/2647423569
https://www.proquest.com/docview/2426535962
Volume 52
WOSCitedRecordID wos000778931500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPHhR18_qKhE8qFi32zamOfq1eFARUVhPNUlTEaQr7q74851Js8WDCt5SkqalM2neSzJvAHa5kUjRtA2zAn-BadfoUMWyDJXRlhdci9g6yfwrcXOT9fvydgoOm1gYa607fGaPqOj28ouBGdNSWUfisEb-PQ3TQog6VqtZT3EJJFzq2xgLIaIK4Tcxu5Hs3J89niIZjJGjOgUWSgCHwAXBD-XI_jYjuRQrv6NNN-v0Fv73vosw79ElO6ndoQVTtlqClh-_Q7bnRab3l-HphPkLdk0q_Z-shzMcWYmdk-B_LdaBEJ3dkbirq-hNDnIxVRXs4nNUN2OIe7GT6qUcvBbMC7Y-r8BD7-L-7DL02RZCEws5ClPOuUJ-EWmJnKOrCxPJolSZETpNojJBaoVssTSEOYS2qZJpouIyE8rYwqQ6WYWZalDZdWCJ4EhjhCqPSbtHpBT8mhJ0iYTEXsoAoskXz42XIqeMGK-5oySRzMleOdkr9_YK4KC55a3W4fir8TIZo2no7RBAe2LW3I_UYY6AkDar-bEMYKepxjFGGyeqsoMxtkEYwxPKUxTAWu0OTd8TL9r4-ZmbMBdTwIQ769OGmdH72G7BrPkYvQzft9GR-9m2c-QvIIbqsQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED7xS4KXDQbbwjrwJB4ALSNN7Lp-ZEAFolQIFQmegu04CAmlE20n_nzuHDfiYUzizZEdJ8qd4--zfd8B7AirkKIZF3cL_AXytjWxTlUZa2ucKISRqfOS-X05GHRvbtTlHPxsYmGcc_7wmftFRb-XX4zslJbKDhQOa-Tf87AoOE_bdbRWs6LiU0j45LcpFmLEFTJsY7YTdTA8uv2NdDBFluo1WCgFHEIXhD-UJfvVnOSTrLyNN_280_v4vjdehQ8BX7LD2iHWYM5Vn2AtjOAx2w0y03vrcHfIwgW7IJ3-Z9bDOY7sxI5J8r-W60CQzq5I3tVX9GZHuZiuCnbyPKmbMUS-2En1UI4eCxYkW-834Lp3Mjw6jUO-hdimUk1iLoTQyDASo5B1tE1hE1WUumul4VlSZkiukC-WllCHNI5rxTOdll2prSssN9lnWKhGlfsKLJMCiYzUZYfUeySn8FdO4CWRCnspI0hmXzy3QYyccmI85p6UJCone-VkrzzYK4L95pY_tRLH_xqvkzGahsEOEbRmZs3DWB3nCAlpu1p0VAQ_mmocZbR1ois3mmIbBDIio0xFEXyp3aHpe-ZFm_9-5jYsnw4v-nn_bHD-DVZSCp_wJ39asDB5mrrvsGT_Th7GT1venV8A9tztEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Matrix+Function+Dimensionality+Reduction+Framework+and+Extension+for+Manifold+Learning&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ran%2C+Ruisheng&rft.au=Feng%2C+Ji&rft.au=Zhang%2C+Shougui&rft.au=Fang%2C+Bin&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=52&rft.issue=4&rft.spage=2137&rft.epage=2148&rft_id=info:doi/10.1109%2FTCYB.2020.3003620&rft_id=info%3Apmid%2F32697725&rft.externalDocID=9146330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon