A General Matrix Function Dimensionality Reduction Framework and Extension for Manifold Learning
Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combinin...
Uloženo v:
| Vydáno v: | IEEE transactions on cybernetics Ročník 52; číslo 4; s. 2137 - 2148 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combining the unified criterion with the matrix function, we propose a general matrix function dimensionality reduction framework. This framework is configurable, that is, one can select suitable functions to construct such a matrix transformation framework, and then a series of new dimensionality reduction methods can be derived from this framework. In this article, we discuss how to choose suitable functions from two aspects: 1) solving the SSS problem and 2) improving pattern classification ability. As an extension, with the inverse hyperbolic tangent function and linear function, we propose a new matrix function dimensionality reduction framework. Compared with the existing methods to solve the SSS problem, these new methods can obtain better pattern classification ability and have less computational complexity. The experimental results on handwritten digit, letters databases, and two face databases show the superiority of the new methods. |
|---|---|
| AbstractList | Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combining the unified criterion with the matrix function, we propose a general matrix function dimensionality reduction framework. This framework is configurable, that is, one can select suitable functions to construct such a matrix transformation framework, and then a series of new dimensionality reduction methods can be derived from this framework. In this article, we discuss how to choose suitable functions from two aspects: 1) solving the SSS problem and 2) improving pattern classification ability. As an extension, with the inverse hyperbolic tangent function and linear function, we propose a new matrix function dimensionality reduction framework. Compared with the existing methods to solve the SSS problem, these new methods can obtain better pattern classification ability and have less computational complexity. The experimental results on handwritten digit, letters databases, and two face databases show the superiority of the new methods. Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combining the unified criterion with the matrix function, we propose a general matrix function dimensionality reduction framework. This framework is configurable, that is, one can select suitable functions to construct such a matrix transformation framework, and then a series of new dimensionality reduction methods can be derived from this framework. In this article, we discuss how to choose suitable functions from two aspects: 1) solving the SSS problem and 2) improving pattern classification ability. As an extension, with the inverse hyperbolic tangent function and linear function, we propose a new matrix function dimensionality reduction framework. Compared with the existing methods to solve the SSS problem, these new methods can obtain better pattern classification ability and have less computational complexity. The experimental results on handwritten digit, letters databases, and two face databases show the superiority of the new methods.Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem, we first summarize the existing dimensionality reduction methods and construct a unified criterion function of these methods. Then, combining the unified criterion with the matrix function, we propose a general matrix function dimensionality reduction framework. This framework is configurable, that is, one can select suitable functions to construct such a matrix transformation framework, and then a series of new dimensionality reduction methods can be derived from this framework. In this article, we discuss how to choose suitable functions from two aspects: 1) solving the SSS problem and 2) improving pattern classification ability. As an extension, with the inverse hyperbolic tangent function and linear function, we propose a new matrix function dimensionality reduction framework. Compared with the existing methods to solve the SSS problem, these new methods can obtain better pattern classification ability and have less computational complexity. The experimental results on handwritten digit, letters databases, and two face databases show the superiority of the new methods. |
| Author | Ran, Ruisheng Fang, Bin Zhang, Shougui Feng, Ji |
| Author_xml | – sequence: 1 givenname: Ruisheng orcidid: 0000-0002-0785-2703 surname: Ran fullname: Ran, Ruisheng email: rshran@cqnu.edu.cn organization: College of Computer and Information Science, College of Intelligent Science, Chongqing Normal University, Chongqing, China – sequence: 2 givenname: Ji surname: Feng fullname: Feng, Ji email: fengji@cqnu.edu.cn organization: College of Computer and Information Science, Chongqing Normal University, Chongqing, China – sequence: 3 givenname: Shougui surname: Zhang fullname: Zhang, Shougui email: shgzhang@cqnu.edu.cn organization: School of Mathematical Science, Chongqing Normal University, Chongqing, China – sequence: 4 givenname: Bin orcidid: 0000-0003-1955-6626 surname: Fang fullname: Fang, Bin email: fb@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32697725$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9v1DAQxS1UREvpB0BIyBIXLrv4v-NjWboFaRESKgdOxnEmyCWxWzsR7bfHq2x76AFfPPL83pNn3kt0FFMEhF5TsqaUmA9Xm58f14wwsuaEcMXIM3TCqGpWjGl59FgrfYzOSrkm9TT1yTQv0DFnymjN5An6dY4vIUJ2A_7qphzu8HaOfgop4k9hhFhq5YYw3ePv0M1LY5vdCH9T_oNd7PDF3bRguE-5msTQp6HDO3A5hvj7FXreu6HA2eE-RT-2F1ebz6vdt8svm_PdyjNtppWQUjopDWkNbRhtO09M17vG61Zw0nPW1P_S3hMtuG5BOCO4Y32jnYfOi5afoveL701OtzOUyY6heBgGFyHNxTLBlOTSKFbRd0_Q6zTnOmallNCCcalMpd4eqLkdobM3OYwu39uH3VVAL4DPqZQMvfVhcvsNTdmFwVJi90HZfVB2H5Q9BFWV9Inywfx_mjeLJgDAI2-oUJwT_g_Lr5yp |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2022_11_043 crossref_primary_10_1016_j_engappai_2024_107958 crossref_primary_10_1109_TCYB_2023_3291049 crossref_primary_10_1016_j_knosys_2022_110028 crossref_primary_10_1007_s00371_025_03928_3 crossref_primary_10_1007_s41870_023_01245_3 crossref_primary_10_1016_j_infrared_2025_106014 crossref_primary_10_1007_s11042_021_10571_2 crossref_primary_10_1016_j_knosys_2024_112296 crossref_primary_10_1016_j_neunet_2022_09_029 crossref_primary_10_1109_ACCESS_2022_3208901 crossref_primary_10_1016_j_eswa_2023_122750 crossref_primary_10_3233_HIS_230016 |
| Cites_doi | 10.1007/3-540-36592-3_45 10.1109/TSMCB.2012.2218234 10.1111/j.2517-6161.1948.tb00008.x 10.1109/TPAMI.2019.2932058 10.1016/j.chemolab.2007.10.002 10.1137/S00361445024180 10.1109/TCYB.2014.2336697 10.1016/j.neunet.2017.09.014 10.1109/TIP.2007.906769 10.1016/0024-3795(94)00206-1 10.1109/TCYB.2016.2591583 10.1016/j.patcog.2006.02.023 10.1109/ICDM.2007.89 10.1016/j.imavis.2005.11.006 10.1016/j.neucom.2016.02.063 10.1109/TNNLS.2019.2908982 10.1109/34.879790 10.1109/TIP.2013.2297020 10.1137/04061101X 10.1109/TSMCB.2009.2032926 10.1109/TCYB.2016.2578642 10.1162/jocn.1991.3.1.71 10.1016/j.neucom.2011.07.007 10.1016/j.jvcir.2009.08.003 10.1109/TIP.2019.2907054 10.1111/j.1469-1809.1936.tb02137.x 10.1609/aaai.v31i1.10714 10.1126/science.290.5500–2323 10.1109/ICCSPA.2013.6487298 10.56021/9781421407944 10.1016/j.patcog.2014.12.016 10.1016/j.patcog.2010.06.016 10.1109/TIP.2013.2255300 10.1587/transinf.2017EDP7259 10.1109/TNNLS.2014.2337335 10.1126/science.290.5500.2319 10.1016/j.ins.2019.02.008 10.1109/ICCV.2007.4408855 10.1137/S1064827502419154 10.7551/mitpress/1120.003.0080 10.1145/1291233.1291329 10.1109/TPAMI.2007.250598 10.1049/iet-cvi.2009.0138 10.1016/j.future.2010.11.002 10.1007/11582267_74 10.1016/j.patcog.2010.04.007 10.1162/089976603321780317 10.1109/TPAMI.2007.1131 10.1109/34.598228 10.1109/ICME.2011.6012027 10.1109/TIP.2011.2114354 10.1016/j.neucom.2006.11.007 10.1016/j.patcog.2016.07.029 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.3003620 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 2148 |
| ExternalDocumentID | 32697725 10_1109_TCYB_2020_3003620 9146330 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61876026 funderid: 10.13039/501100001809 – fundername: Humanities and Social Sciences Project of the Ministry of Education of China grantid: 20YJAZH084; 18XJC880002 – fundername: School Fund Project of CQNU grantid: 16XLB006; 16XZH07 funderid: 10.13039/100010338 – fundername: Project of Natural Science Foundation Project of CQ CSTC of China grantid: cstc2016jcyjA0419; cstc2017jcyjAX0316 funderid: 10.13039/501100001809 – fundername: Chongqing Technology Innovation and Application Development Key Project grantid: cstc2019jscx-mbdxX0061 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c279t-4555a5590b91821bdc09dfa8c7b430f3287721fc07437be4a943a2f87acedc4b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778931500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 00:52:41 EDT 2025 Sun Nov 30 04:16:13 EST 2025 Thu Jan 02 22:55:22 EST 2025 Tue Nov 18 22:31:17 EST 2025 Sat Nov 29 02:02:30 EST 2025 Wed Aug 27 02:40:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c279t-4555a5590b91821bdc09dfa8c7b430f3287721fc07437be4a943a2f87acedc4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1955-6626 0000-0002-0785-2703 |
| PMID | 32697725 |
| PQID | 2647423569 |
| PQPubID | 85422 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_32697725 crossref_citationtrail_10_1109_TCYB_2020_3003620 crossref_primary_10_1109_TCYB_2020_3003620 proquest_miscellaneous_2426535962 proquest_journals_2647423569 ieee_primary_9146330 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref54 Chen (ref28) ref17 ref16 ref19 ref18 Levada (ref10) ref51 ref50 Ran (ref47) 2019; 30 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 He (ref22); 16 ref24 ref26 ref25 ref20 ref21 Cai (ref23) ref27 ref29 |
| References_xml | – ident: ref34 doi: 10.1007/3-540-36592-3_45 – ident: ref45 doi: 10.1109/TSMCB.2012.2218234 – ident: ref3 doi: 10.1111/j.2517-6161.1948.tb00008.x – ident: ref12 doi: 10.1109/TPAMI.2019.2932058 – ident: ref24 doi: 10.1016/j.chemolab.2007.10.002 – ident: ref53 doi: 10.1137/S00361445024180 – ident: ref17 doi: 10.1109/TCYB.2014.2336697 – ident: ref44 doi: 10.1016/j.neunet.2017.09.014 – ident: ref33 doi: 10.1109/TIP.2007.906769 – ident: ref55 doi: 10.1016/0024-3795(94)00206-1 – ident: ref16 doi: 10.1109/TCYB.2016.2591583 – ident: ref30 doi: 10.1016/j.patcog.2006.02.023 – ident: ref49 doi: 10.1109/ICDM.2007.89 – ident: ref29 doi: 10.1016/j.imavis.2005.11.006 – ident: ref43 doi: 10.1016/j.neucom.2016.02.063 – ident: ref18 doi: 10.1109/TNNLS.2019.2908982 – ident: ref56 doi: 10.1109/34.879790 – ident: ref48 doi: 10.1109/TIP.2013.2297020 – ident: ref54 doi: 10.1137/04061101X – start-page: 846 volume-title: Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR) ident: ref28 article-title: Local discriminant embedding and its variants – ident: ref58 doi: 10.1109/TSMCB.2009.2032926 – ident: ref51 doi: 10.1109/TCYB.2016.2578642 – ident: ref1 doi: 10.1162/jocn.1991.3.1.71 – ident: ref42 doi: 10.1016/j.neucom.2011.07.007 – volume: 16 start-page: 153 volume-title: Proc. Adv. NIPS ident: ref22 article-title: Locality preserving projections – ident: ref31 doi: 10.1016/j.jvcir.2009.08.003 – ident: ref9 doi: 10.1109/TIP.2019.2907054 – ident: ref2 doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: ref14 doi: 10.1609/aaai.v31i1.10714 – ident: ref7 doi: 10.1126/science.290.5500–2323 – ident: ref35 doi: 10.1109/ICCSPA.2013.6487298 – ident: ref52 doi: 10.56021/9781421407944 – ident: ref10 article-title: A review on unsupervised learning for dimensionality reduction: From linear methods to manifold learning publication-title: unpublished – ident: ref15 doi: 10.1016/j.patcog.2014.12.016 – ident: ref36 doi: 10.1016/j.patcog.2010.06.016 – ident: ref21 doi: 10.1109/TIP.2013.2255300 – ident: ref41 doi: 10.1587/transinf.2017EDP7259 – ident: ref8 doi: 10.1109/TNNLS.2014.2337335 – ident: ref6 doi: 10.1126/science.290.5500.2319 – ident: ref13 doi: 10.1016/j.ins.2019.02.008 – ident: ref37 doi: 10.1109/ICCV.2007.4408855 – ident: ref11 doi: 10.1137/S1064827502419154 – ident: ref4 doi: 10.7551/mitpress/1120.003.0080 – ident: ref50 doi: 10.1145/1291233.1291329 – start-page: 528 volume-title: Proc. AAAI ident: ref23 article-title: Isometric projection – ident: ref32 doi: 10.1109/TPAMI.2007.250598 – ident: ref38 doi: 10.1049/iet-cvi.2009.0138 – ident: ref39 doi: 10.1016/j.future.2010.11.002 – ident: ref26 doi: 10.1007/11582267_74 – ident: ref40 doi: 10.1016/j.patcog.2010.04.007 – ident: ref5 doi: 10.1162/089976603321780317 – ident: ref25 doi: 10.1109/TPAMI.2007.1131 – ident: ref57 doi: 10.1109/34.598228 – ident: ref19 doi: 10.1109/ICME.2011.6012027 – ident: ref20 doi: 10.1109/TIP.2011.2114354 – ident: ref27 doi: 10.1016/j.neucom.2006.11.007 – ident: ref46 doi: 10.1016/j.patcog.2016.07.029 – volume: 30 start-page: 1 issue: 6 year: 2019 ident: ref47 article-title: Face recognition based on exponential neighborhood preserving discriminant embedding publication-title: J. Comput. |
| SSID | ssj0000816898 |
| Score | 2.3675663 |
| Snippet | Many dimensionality reduction methods in the manifold learning field have the so-called small-sample-size (SSS) problem. Starting from solving the SSS problem,... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2137 |
| SubjectTerms | Criteria Cybernetics Dimensionality reduction Handwriting Hyperbolic functions Laplace equations Learning systems Linear functions Machine learning manifold learning Manifolds Manifolds (mathematics) Mathematical analysis matrix function Pattern classification Principal component analysis Reduction small-sample-size (SSS) problem |
| Title | A General Matrix Function Dimensionality Reduction Framework and Extension for Manifold Learning |
| URI | https://ieeexplore.ieee.org/document/9146330 https://www.ncbi.nlm.nih.gov/pubmed/32697725 https://www.proquest.com/docview/2647423569 https://www.proquest.com/docview/2426535962 |
| Volume | 52 |
| WOSCitedRecordID | wos000778931500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPHhR18_qKhE8qFi32zamOfq1eFARUVhPNUlTEaQr7q74851Js8WDCt5SkqalM2neSzJvAHa5kUjRtA2zAn-BadfoUMWyDJXRlhdci9g6yfwrcXOT9fvydgoOm1gYa607fGaPqOj28ouBGdNSWUfisEb-PQ3TQog6VqtZT3EJJFzq2xgLIaIK4Tcxu5Hs3J89niIZjJGjOgUWSgCHwAXBD-XI_jYjuRQrv6NNN-v0Fv73vosw79ElO6ndoQVTtlqClh-_Q7bnRab3l-HphPkLdk0q_Z-shzMcWYmdk-B_LdaBEJ3dkbirq-hNDnIxVRXs4nNUN2OIe7GT6qUcvBbMC7Y-r8BD7-L-7DL02RZCEws5ClPOuUJ-EWmJnKOrCxPJolSZETpNojJBaoVssTSEOYS2qZJpouIyE8rYwqQ6WYWZalDZdWCJ4EhjhCqPSbtHpBT8mhJ0iYTEXsoAoskXz42XIqeMGK-5oySRzMleOdkr9_YK4KC55a3W4fir8TIZo2no7RBAe2LW3I_UYY6AkDar-bEMYKepxjFGGyeqsoMxtkEYwxPKUxTAWu0OTd8TL9r4-ZmbMBdTwIQ769OGmdH72G7BrPkYvQzft9GR-9m2c-QvIIbqsQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED7xS4KXDQbbwjrwJB4ALSNN7Lp-ZEAFolQIFQmegu04CAmlE20n_nzuHDfiYUzizZEdJ8qd4--zfd8B7AirkKIZF3cL_AXytjWxTlUZa2ucKISRqfOS-X05GHRvbtTlHPxsYmGcc_7wmftFRb-XX4zslJbKDhQOa-Tf87AoOE_bdbRWs6LiU0j45LcpFmLEFTJsY7YTdTA8uv2NdDBFluo1WCgFHEIXhD-UJfvVnOSTrLyNN_280_v4vjdehQ8BX7LD2iHWYM5Vn2AtjOAx2w0y03vrcHfIwgW7IJ3-Z9bDOY7sxI5J8r-W60CQzq5I3tVX9GZHuZiuCnbyPKmbMUS-2En1UI4eCxYkW-834Lp3Mjw6jUO-hdimUk1iLoTQyDASo5B1tE1hE1WUumul4VlSZkiukC-WllCHNI5rxTOdll2prSssN9lnWKhGlfsKLJMCiYzUZYfUeySn8FdO4CWRCnspI0hmXzy3QYyccmI85p6UJCone-VkrzzYK4L95pY_tRLH_xqvkzGahsEOEbRmZs3DWB3nCAlpu1p0VAQ_mmocZbR1ois3mmIbBDIio0xFEXyp3aHpe-ZFm_9-5jYsnw4v-nn_bHD-DVZSCp_wJ39asDB5mrrvsGT_Th7GT1venV8A9tztEA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Matrix+Function+Dimensionality+Reduction+Framework+and+Extension+for+Manifold+Learning&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ran%2C+Ruisheng&rft.au=Feng%2C+Ji&rft.au=Zhang%2C+Shougui&rft.au=Fang%2C+Bin&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=52&rft.issue=4&rft.spage=2137&rft.epage=2148&rft_id=info:doi/10.1109%2FTCYB.2020.3003620&rft_id=info%3Apmid%2F32697725&rft.externalDocID=9146330 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |