A PRECONDITIONING FRAMEWORK FOR SEQUENCES OF DIAGONALLY MODIFIED LINEAR SYSTEMS ARISING IN OPTIMIZATION
We propose a framework for building preconditioned for sequences of linear systems of the form (A + ∆ k )x k = b k , where A is symmetric positive semidefinite and ∆ k is diagonal positive semidefinite. Such sequences arise in several optimization methods, e.g., in affine-scaling methods for bound-c...
Saved in:
| Published in: | SIAM journal on numerical analysis Vol. 50; no. 6; pp. 3280 - 3302 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2012
|
| Subjects: | |
| ISSN: | 0036-1429, 1095-7170 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose a framework for building preconditioned for sequences of linear systems of the form (A + ∆ k )x k = b k , where A is symmetric positive semidefinite and ∆ k is diagonal positive semidefinite. Such sequences arise in several optimization methods, e.g., in affine-scaling methods for bound-constrained convex quadratic programming and bound-constrained linear least squares, as well as in trust-region and overestimation methods for convex unconstrained optimization problems and nonlinear least squares. For all the matrices of a sequence, the preconditioners are obtained by updating any preconditioner for A available in the LDL T form. The preconditioners in the framework satisfy the natural requirement of being effective on slowly varying sequences; furthermore, under an additional property they are also able to cluster eigenvalues of the preconditioned matrix when some entries of ∆ k are sufficiently large. We present two low-cost preconditioners sharing the above-mentioned properties and evaluate them on sequences of linear systems generated by the reflective Newton method applied to bound-constrained convex quadratic programming problems and on sequences arising in solving nonlinear least-squares problems with the regularized Euclidean residual method. The results of the numerical experiments show the effectiveness of these preconditioners. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/110860707 |