Deep learning-based approaches for abusive content detection and classification for multi-class online user-generated data

•an abusive language detection model that perform multiclass classification of offensive language.•experimented with five deep learning models: Bi-LSTM, LSTM, Bi-GRU, GRU, and multi-dense LSTM.•dataset is classified in to three levels: offensive language categorization (Level A), offensive language...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of cognitive computing in engineering Ročník 5; s. 104 - 122
Hlavní autori: Kaur, Simrat, Singh, Sarbjeet, Kaushal, Sakshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2024
KeAi Communications Co., Ltd
Predmet:
ISSN:2666-3074, 2666-3074
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •an abusive language detection model that perform multiclass classification of offensive language.•experimented with five deep learning models: Bi-LSTM, LSTM, Bi-GRU, GRU, and multi-dense LSTM.•dataset is classified in to three levels: offensive language categorization (Level A), offensive language detection (Level B), and offensive language target identification (Level c).•Gated Recurrent Unit (GRU) achieved the highest accuracy for Level A (78.65 %) and Level B (88.59 %). However, for Level C, all models except for the Long Short-Term Memory (LSTM) model achieved near-perfect accuracy values of 99.9 %. With the rapid growth of social media culture, the use of offensive or hateful language has surged, which necessitates the development of effective abusive language detection models for online platforms. This paper focuses on developing a multi-class classification model to identify different types of offensive language. The input data is taken in the form of labeled tweets and is classified into offensive language detection, offensive language categorization, and offensive language target identification. The data undergoes pre-processing, which removes NaN value and punctuation, as well as performs tokenization followed by the generation of a word cloud to assess data quality. Further, the tf-idf technique is used for the selection of features. In the case of classifiers, multiple deep learning techniques, namely, bidirectional gated recurrent unit, multi-dense long short-term memory, bidirectional long short-term memory, gated recurrent unit, and long short-term memory, are applied where it has been found that all the models, except long short-term memory, achieved a high accuracy of 99.9 % for offensive language target identification. Bidirectional LSTM and multi-dense LSTM obtained the lowest loss and RMSE values of 0.01 and 0.1, respectively. This research provides valuable insights and contributes to the development of effective abusive language detection methods to promote a safe and respectful online environment. The insights gained can aid platform administrators in efficiently moderating content and taking appropriate actions against offensive language.
AbstractList With the rapid growth of social media culture, the use of offensive or hateful language has surged, which necessitates the development of effective abusive language detection models for online platforms. This paper focuses on developing a multi-class classification model to identify different types of offensive language. The input data is taken in the form of labeled tweets and is classified into offensive language detection, offensive language categorization, and offensive language target identification. The data undergoes pre-processing, which removes NaN value and punctuation, as well as performs tokenization followed by the generation of a word cloud to assess data quality. Further, the tf-idf technique is used for the selection of features. In the case of classifiers, multiple deep learning techniques, namely, bidirectional gated recurrent unit, multi-dense long short-term memory, bidirectional long short-term memory, gated recurrent unit, and long short-term memory, are applied where it has been found that all the models, except long short-term memory, achieved a high accuracy of 99.9 % for offensive language target identification. Bidirectional LSTM and multi-dense LSTM obtained the lowest loss and RMSE values of 0.01 and 0.1, respectively. This research provides valuable insights and contributes to the development of effective abusive language detection methods to promote a safe and respectful online environment. The insights gained can aid platform administrators in efficiently moderating content and taking appropriate actions against offensive language.
•an abusive language detection model that perform multiclass classification of offensive language.•experimented with five deep learning models: Bi-LSTM, LSTM, Bi-GRU, GRU, and multi-dense LSTM.•dataset is classified in to three levels: offensive language categorization (Level A), offensive language detection (Level B), and offensive language target identification (Level c).•Gated Recurrent Unit (GRU) achieved the highest accuracy for Level A (78.65 %) and Level B (88.59 %). However, for Level C, all models except for the Long Short-Term Memory (LSTM) model achieved near-perfect accuracy values of 99.9 %. With the rapid growth of social media culture, the use of offensive or hateful language has surged, which necessitates the development of effective abusive language detection models for online platforms. This paper focuses on developing a multi-class classification model to identify different types of offensive language. The input data is taken in the form of labeled tweets and is classified into offensive language detection, offensive language categorization, and offensive language target identification. The data undergoes pre-processing, which removes NaN value and punctuation, as well as performs tokenization followed by the generation of a word cloud to assess data quality. Further, the tf-idf technique is used for the selection of features. In the case of classifiers, multiple deep learning techniques, namely, bidirectional gated recurrent unit, multi-dense long short-term memory, bidirectional long short-term memory, gated recurrent unit, and long short-term memory, are applied where it has been found that all the models, except long short-term memory, achieved a high accuracy of 99.9 % for offensive language target identification. Bidirectional LSTM and multi-dense LSTM obtained the lowest loss and RMSE values of 0.01 and 0.1, respectively. This research provides valuable insights and contributes to the development of effective abusive language detection methods to promote a safe and respectful online environment. The insights gained can aid platform administrators in efficiently moderating content and taking appropriate actions against offensive language.
Author Kaur, Simrat
Kaushal, Sakshi
Singh, Sarbjeet
Author_xml – sequence: 1
  givenname: Simrat
  orcidid: 0000-0002-6954-0246
  surname: Kaur
  fullname: Kaur, Simrat
  email: simrat_sekhon88@yahoo.com
– sequence: 2
  givenname: Sarbjeet
  surname: Singh
  fullname: Singh, Sarbjeet
– sequence: 3
  givenname: Sakshi
  surname: Kaushal
  fullname: Kaushal, Sakshi
BookMark eNp9UcFu1DAQtVArUdp-QS_-gQR7HDvJgQMqUCpV4gJna2xPto5Se2VnK8HXk91FiBOnGc3MezPz3jt2kXIixu6kaKWQ5v3cxtl7akFA1wpohYA37AqMMY0SfXfxT_6W3dY6i21ikBKG8Yr9-kS05wthSTHtGoeVAsf9vmT0z1T5lAtHd6jxlbjPaaW08kAr-TXmxDEF7hesNU7R46l0BLwcljU2pwbPaYmJ-KFSaXaUqOC6bQi44g27nHCpdPsnXrMfXz5_v__aPH17eLz_-NR46EdotBIQOhncAJ6GIKaBlNAaevBoFGEwWkyArgPjepQO-kH1QQKMvdZhdOqaPZ55Q8bZ7kt8wfLTZoz2VMhlZ7Gs0S9kh2BwMgE19WMXJjGCQnRKD4a60el-41JnLl9yrYWmv3xS2KMbdrYnN-zRDSvAblpvqA9nFG1vvkYqtvpIyVOIZVNyuyP-F_8bbL6XWg
Cites_doi 10.1016/j.procs.2018.08.169
10.1016/j.ijcce.2022.03.003
10.18653/v1/D18-1302
10.18653/v1/W17-3006
10.1007/s10772-017-9408-2
10.18653/v1/N19-1144
10.1109/IJCNN55064.2022.9892696
10.1016/j.ijcce.2023.01.001
10.1016/j.ijcce.2022.08.002
10.1016/j.procs.2021.05.080
10.1016/j.neucom.2019.01.078
10.1007/s00500-022-07261-y
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.ijcce.2024.02.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2666-3074
EndPage 122
ExternalDocumentID oai_doaj_org_article_8d6af6da5e794df0923aab3586e49b57
10_1016_j_ijcce_2024_02_002
S2666307424000068
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADVLN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ARCSS
EBS
FDB
GROUPED_DOAJ
M~E
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c2792-5302d41db82ce8d0f8e3055272ca63ead650f2ab426b7a1b27837d1229755d9b3
IEDL.DBID DOA
ISSN 2666-3074
IngestDate Fri Oct 03 12:43:34 EDT 2025
Sat Nov 29 01:44:11 EST 2025
Sat Nov 09 15:59:11 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gated recurrent unit
Deep learning models
Target identification
Offensive language
Offensive language categorization
Abusive language
Long short term memory
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2792-5302d41db82ce8d0f8e3055272ca63ead650f2ab426b7a1b27837d1229755d9b3
ORCID 0000-0002-6954-0246
OpenAccessLink https://doaj.org/article/8d6af6da5e794df0923aab3586e49b57
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_8d6af6da5e794df0923aab3586e49b57
crossref_primary_10_1016_j_ijcce_2024_02_002
elsevier_sciencedirect_doi_10_1016_j_ijcce_2024_02_002
PublicationCentury 2000
PublicationDate 2024
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle International journal of cognitive computing in engineering
PublicationYear 2024
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., & Kumar, R. (2019). Predicting the type and target of offensive posts in social media.
Kumar, Koul, Mahajan (bib0026) 2022
Husain, F. (2020). Arabic offensive language detection using machine learning and ensemble machine learning approaches.
Chakraborty, Seddiqui (bib0011) 2019
Bertaglia, Grigoriu, Dumontier, van Dijck (bib0002) 2021
Kumar, Koul, Singh (bib0029) 2022
Haque, Islam, Tasneem, Das (bib0017) 2023; 4
Liu, Guo (bib0027) 2019
Rai, Kumar, Kaushik, Raj, Ali (bib0025) 2022; 3
1–5.
Sabry, S.S., Adewumi, T., Abid, N., Kovács, G., Liwicki, F., & Liwicki, M. (2022). Hat5: Hate language identification using text-to-text transfer transformer.
1–7.
Park, J.H., Shin, J., & Fung, P. (2018). Reducing gender bias in abusive language detection.
Roy, Bhawal, Subalalitha (bib0012) 2022
Khan, Haroon (bib0030) 2022; 3
Humayoun (bib0001) 2022
Nobata, Tetreault, Thomas, Mehdad, Chang (bib0018) 2016
Kumar, Singh (bib0006) 2017
Lowd (bib0008) 2018
Spertus (bib0007) 1997
Nayel, Shashirekha (bib0013) 2019
Haddad, Orabe, Al-Abood, Ghneim (bib0021) 2020
Mubarak, Darwish, Magdy (bib0004) 2017
Turki, Roy (bib0023) 2022
Litvak, Vanetik, Liebeskind, Hmdia, Madeghem (bib0022) 2022
1–6.
Zhao, Shen, Yao (bib0028) 2019
Khairy, Mahmoud, Abd-El-Hafeez (bib0003) 2021
Ibrohim, Budi (bib0015) 2018
Pitenis, Z., Zampieri, M., & Ranasinghe, T. (2020). Offensive language identification in Greek.
Akhter, Jiangbin, Naqvi, AbdelMajeed, Zia (bib0016) 2021
Alshalan, Al-Khalifa, Alsaeed, Al-Baity, Alshalan (bib0005) 2020
Park, J.H., & Fung, P. (2017). One-step and two-step classification for abusive language detection on twitter.
Kumar (10.1016/j.ijcce.2024.02.002_bib0029) 2022
Nobata (10.1016/j.ijcce.2024.02.002_bib0018) 2016
Alshalan (10.1016/j.ijcce.2024.02.002_bib0005) 2020
Kumar (10.1016/j.ijcce.2024.02.002_bib0026) 2022
Humayoun (10.1016/j.ijcce.2024.02.002_bib0001) 2022
Akhter (10.1016/j.ijcce.2024.02.002_bib0016) 2021
10.1016/j.ijcce.2024.02.002_bib0014
10.1016/j.ijcce.2024.02.002_bib0019
Mubarak (10.1016/j.ijcce.2024.02.002_bib0004) 2017
10.1016/j.ijcce.2024.02.002_bib0010
Chakraborty (10.1016/j.ijcce.2024.02.002_bib0011) 2019
Kumar (10.1016/j.ijcce.2024.02.002_bib0006) 2017
Haque (10.1016/j.ijcce.2024.02.002_bib0017) 2023; 4
Liu (10.1016/j.ijcce.2024.02.002_bib0027) 2019
Turki (10.1016/j.ijcce.2024.02.002_bib0023) 2022
Lowd (10.1016/j.ijcce.2024.02.002_bib0008) 2018
Ibrohim (10.1016/j.ijcce.2024.02.002_bib0015) 2018
Khan (10.1016/j.ijcce.2024.02.002_bib0030) 2022; 3
Roy (10.1016/j.ijcce.2024.02.002_bib0012) 2022
10.1016/j.ijcce.2024.02.002_bib0024
Nayel (10.1016/j.ijcce.2024.02.002_bib0013) 2019
Spertus (10.1016/j.ijcce.2024.02.002_bib0007) 1997
Bertaglia (10.1016/j.ijcce.2024.02.002_bib0002) 2021
10.1016/j.ijcce.2024.02.002_bib0009
Haddad (10.1016/j.ijcce.2024.02.002_bib0021) 2020
Litvak (10.1016/j.ijcce.2024.02.002_bib0022) 2022
Rai (10.1016/j.ijcce.2024.02.002_bib0025) 2022; 3
Zhao (10.1016/j.ijcce.2024.02.002_bib0028) 2019
10.1016/j.ijcce.2024.02.002_bib0020
Khairy (10.1016/j.ijcce.2024.02.002_bib0003) 2021
References_xml – start-page: 76
  year: 2020
  end-page: 81
  ident: bib0021
  article-title: Arabic offensive language detection with attention-based deep neural networks
  publication-title: Proceedings of the 4th workshop on open-source Arabic corpora and processing tools, with a shared task on offensive language detection
– volume: 3
  start-page: 153
  year: 2022
  end-page: 160
  ident: bib0030
  article-title: An unsupervised deep learning ensemble model for anomaly detection in static attributed social networks
  publication-title: International Journal of Cognitive Computing in Engineering
– reference: , 1–6.
– reference: Pitenis, Z., Zampieri, M., & Ranasinghe, T. (2020). Offensive language identification in Greek.
– start-page: 1
  year: 2022
  end-page: 10
  ident: bib0001
  article-title: Abusive and Threatening Language Detection in Urdu using Supervised Machine Learning and Feature Combinations
– start-page: 222
  year: 2018
  end-page: 229
  ident: bib0015
  article-title: A dataset and preliminaries study for abusive language detection in Indonesian social media
  publication-title: Procedia Computer Science
– start-page: 325
  year: 2019
  end-page: 338
  ident: bib0027
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
– start-page: 191
  year: 2021
  end-page: 200
  ident: bib0002
  article-title: Abusive language on social media through the legal looking glass
  publication-title: Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib0008
  article-title: Can Facebook use AI to fight online abuse
  publication-title: Scientific American
– volume: 3
  start-page: 98
  year: 2022
  end-page: 105
  ident: bib0025
  article-title: Fake News Classification using transformer based enhanced LSTM and BERT
  publication-title: International Journal of Cognitive Computing in Engineering
– start-page: 8253
  year: 2022
  end-page: 8272
  ident: bib0026
  article-title: A deep learning approaches and fastai text classification to predict 25 medical diseases from medical speech utterances, transcription and intent
  publication-title: Soft computing
– start-page: 52
  year: 2017
  end-page: 56
  ident: bib0004
  article-title: Abusive language detection on Arabic social media
  publication-title: Proceedings of the first workshop on abusive language online
– reference: Park, J.H., Shin, J., & Fung, P. (2018). Reducing gender bias in abusive language detection.
– start-page: 145
  year: 2016
  end-page: 153
  ident: bib0018
  article-title: Abusive language detection in online user content
  publication-title: Proceedings of the 25th international conference on world wide web
– reference: , 1–7.
– start-page: 336
  year: 2019
  end-page: 343
  ident: bib0013
  article-title: DEEP at HASOC2019: A machine learning framework for hate speech and offensive language detection
  publication-title: FIRE (Working Notes)
– reference: Park, J.H., & Fung, P. (2017). One-step and two-step classification for abusive language detection on twitter.
– start-page: 1
  year: 2022
  end-page: 20
  ident: bib0012
  article-title: Hate speech and offensive language detection in Dravidian languages using deep ensemble framework
  publication-title: Computer Speech & Language
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0011
  article-title: Threat and abusive language detection on social media in bengali language
  publication-title: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)
– reference: Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., & Kumar, R. (2019). Predicting the type and target of offensive posts in social media.
– start-page: 1
  year: 2022
  end-page: 27
  ident: bib0029
  article-title: A deep learning approaches in text-to-speech system: A systematic review and recent research perspective
  publication-title: Multimedia Tools and Applications
– start-page: 1058
  year: 1997
  end-page: 1065
  ident: bib0007
  publication-title: Smokey: Automatic recognition of hostile messages. Proceedings of the 14th National Conference on Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence Conference (AAAI-97/IAAI-97)
– reference: Husain, F. (2020). Arabic offensive language detection using machine learning and ensemble machine learning approaches.
– reference: , 1–5.
– start-page: 5450
  year: 2019
  end-page: 5456
  ident: bib0028
  article-title: Recurrent neural network for text classification with hierarchical multiscale dense connections
  publication-title: IJCAI
– reference: Sabry, S.S., Adewumi, T., Abid, N., Kovács, G., Liwicki, F., & Liwicki, M. (2022). Hat5: Hate language identification using text-to-text transfer transformer.
– start-page: 1
  year: 2022
  end-page: 13
  ident: bib0023
  article-title: Novel hate speech detection using word cloud visualization and ensemble learning coupled with count vectorizer
  publication-title: Applied Sciences
– start-page: 156
  year: 2021
  end-page: 166
  ident: bib0003
  article-title: Automatic detection of cyberbullying and abusive language in Arabic content on social networks: A survey
  publication-title: Procedia Computer Science
– volume: 4
  start-page: 21
  year: 2023
  end-page: 35
  ident: bib0017
  article-title: Multi-class sentiment classification on Bengali social media comments using machine learning
  publication-title: International Journal of Cognitive Computing in Engineering
– start-page: 1
  year: 2020
  end-page: 12
  ident: bib0005
  article-title: Detection of hate speech in covid-19–related tweets in the arab region: Deep learning and topic modeling approach
  publication-title: Journal of Medical Internet Research
– start-page: 3715
  year: 2022
  end-page: 3723
  ident: bib0022
  article-title: Offensive language detection in Hebrew: Can other languages help?
  publication-title: Proceedings of the Thirteenth Language Resources and Evaluation Conference
– start-page: 1
  year: 2021
  end-page: 16
  ident: bib0016
  article-title: Abusive language detection from social media comments using conventional machine learning and deep learning approaches
  publication-title: Multimedia Systems
– start-page: 297
  year: 2017
  end-page: 303
  ident: bib0006
  article-title: An automatic speech recognition system for spontaneous Punjabi speech corpus
  publication-title: International Journal of Speech Technology
– start-page: 1058
  year: 1997
  ident: 10.1016/j.ijcce.2024.02.002_bib0007
– start-page: 191
  year: 2021
  ident: 10.1016/j.ijcce.2024.02.002_bib0002
  article-title: Abusive language on social media through the legal looking glass
– start-page: 3715
  year: 2022
  ident: 10.1016/j.ijcce.2024.02.002_bib0022
  article-title: Offensive language detection in Hebrew: Can other languages help?
– start-page: 222
  year: 2018
  ident: 10.1016/j.ijcce.2024.02.002_bib0015
  article-title: A dataset and preliminaries study for abusive language detection in Indonesian social media
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.08.169
– volume: 3
  start-page: 98
  year: 2022
  ident: 10.1016/j.ijcce.2024.02.002_bib0025
  article-title: Fake News Classification using transformer based enhanced LSTM and BERT
  publication-title: International Journal of Cognitive Computing in Engineering
  doi: 10.1016/j.ijcce.2022.03.003
– ident: 10.1016/j.ijcce.2024.02.002_bib0010
  doi: 10.18653/v1/D18-1302
– ident: 10.1016/j.ijcce.2024.02.002_bib0009
  doi: 10.18653/v1/W17-3006
– start-page: 1
  year: 2018
  ident: 10.1016/j.ijcce.2024.02.002_bib0008
  article-title: Can Facebook use AI to fight online abuse
  publication-title: Scientific American
– start-page: 297
  year: 2017
  ident: 10.1016/j.ijcce.2024.02.002_bib0006
  article-title: An automatic speech recognition system for spontaneous Punjabi speech corpus
  publication-title: International Journal of Speech Technology
  doi: 10.1007/s10772-017-9408-2
– ident: 10.1016/j.ijcce.2024.02.002_bib0014
– ident: 10.1016/j.ijcce.2024.02.002_bib0024
  doi: 10.18653/v1/N19-1144
– start-page: 1
  year: 2021
  ident: 10.1016/j.ijcce.2024.02.002_bib0016
  article-title: Abusive language detection from social media comments using conventional machine learning and deep learning approaches
  publication-title: Multimedia Systems
– start-page: 76
  year: 2020
  ident: 10.1016/j.ijcce.2024.02.002_bib0021
  article-title: Arabic offensive language detection with attention-based deep neural networks
– ident: 10.1016/j.ijcce.2024.02.002_bib0020
  doi: 10.1109/IJCNN55064.2022.9892696
– volume: 4
  start-page: 21
  year: 2023
  ident: 10.1016/j.ijcce.2024.02.002_bib0017
  article-title: Multi-class sentiment classification on Bengali social media comments using machine learning
  publication-title: International Journal of Cognitive Computing in Engineering
  doi: 10.1016/j.ijcce.2023.01.001
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijcce.2024.02.002_bib0023
  article-title: Novel hate speech detection using word cloud visualization and ensemble learning coupled with count vectorizer
  publication-title: Applied Sciences
– volume: 3
  start-page: 153
  year: 2022
  ident: 10.1016/j.ijcce.2024.02.002_bib0030
  article-title: An unsupervised deep learning ensemble model for anomaly detection in static attributed social networks
  publication-title: International Journal of Cognitive Computing in Engineering
  doi: 10.1016/j.ijcce.2022.08.002
– start-page: 1
  year: 2019
  ident: 10.1016/j.ijcce.2024.02.002_bib0011
  article-title: Threat and abusive language detection on social media in bengali language
– start-page: 145
  year: 2016
  ident: 10.1016/j.ijcce.2024.02.002_bib0018
  article-title: Abusive language detection in online user content
– start-page: 156
  year: 2021
  ident: 10.1016/j.ijcce.2024.02.002_bib0003
  article-title: Automatic detection of cyberbullying and abusive language in Arabic content on social networks: A survey
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2021.05.080
– ident: 10.1016/j.ijcce.2024.02.002_bib0019
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijcce.2024.02.002_bib0001
  article-title: Abusive and Threatening Language Detection in Urdu using Supervised Machine Learning and Feature Combinations
– start-page: 325
  year: 2019
  ident: 10.1016/j.ijcce.2024.02.002_bib0027
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– start-page: 52
  year: 2017
  ident: 10.1016/j.ijcce.2024.02.002_bib0004
  article-title: Abusive language detection on Arabic social media
– start-page: 5450
  year: 2019
  ident: 10.1016/j.ijcce.2024.02.002_bib0028
  article-title: Recurrent neural network for text classification with hierarchical multiscale dense connections
– start-page: 8253
  year: 2022
  ident: 10.1016/j.ijcce.2024.02.002_bib0026
  article-title: A deep learning approaches and fastai text classification to predict 25 medical diseases from medical speech utterances, transcription and intent
  publication-title: Soft computing
  doi: 10.1007/s00500-022-07261-y
– start-page: 1
  year: 2020
  ident: 10.1016/j.ijcce.2024.02.002_bib0005
  article-title: Detection of hate speech in covid-19–related tweets in the arab region: Deep learning and topic modeling approach
  publication-title: Journal of Medical Internet Research
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijcce.2024.02.002_bib0012
  article-title: Hate speech and offensive language detection in Dravidian languages using deep ensemble framework
  publication-title: Computer Speech & Language
– start-page: 336
  year: 2019
  ident: 10.1016/j.ijcce.2024.02.002_bib0013
  article-title: DEEP at HASOC2019: A machine learning framework for hate speech and offensive language detection
– start-page: 1
  year: 2022
  ident: 10.1016/j.ijcce.2024.02.002_bib0029
  article-title: A deep learning approaches in text-to-speech system: A systematic review and recent research perspective
  publication-title: Multimedia Tools and Applications
SSID ssj0002811289
Score 2.242487
Snippet •an abusive language detection model that perform multiclass classification of offensive language.•experimented with five deep learning models: Bi-LSTM, LSTM,...
With the rapid growth of social media culture, the use of offensive or hateful language has surged, which necessitates the development of effective abusive...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 104
SubjectTerms Abusive language
Deep learning models
Gated recurrent unit
Long short term memory
Offensive language
Offensive language categorization
Target identification
Title Deep learning-based approaches for abusive content detection and classification for multi-class online user-generated data
URI https://dx.doi.org/10.1016/j.ijcce.2024.02.002
https://doaj.org/article/8d6af6da5e794df0923aab3586e49b57
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-3074
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811289
  issn: 2666-3074
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-3074
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811289
  issn: 2666-3074
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8sCIReMkjj3yqhigYgCpm-X4HNQOAdHSgYHfzp2ToLLAwpIhDzvyXfJ9tj5_x9ipTJ1R4L1QWqcik5UXBoISiSlg4EyOkBhNXO-K0UiPx-ZhqdQXacIae-Bm4M41KFcpcHnAzIFqgITEuTLNtQqZKfO4jxxZz9JkahqXjJBHaNPZDEVB12TqPRljyqxx6ZQ_oCg69i8h0hLKDDfZeksP-UXzWltsJdTbbKMrvcDbL3GHfVyH8Mrbkg_PgrAIeOcPHmYcqSh3VGByETip0RFaOIR51F3V3NXAPdFm0gnF0MQHorhQxAu8cdDgtIYhnqM1NVJTTnrSXfY0vHm8uhVtGQXhyR1QUF0gyBIotfRBw6DSgWy-ZCG9UylmEpK0SroSsbosXFJS7Y0CEkl7bnMwZbrHevVLHfYZD9pktDM2rUBllSvKCiEQEuVyDfinyPvsrBtR-9q4ZdhORja1MQCWAmAH0mIA-uySRv37VrK6jicwAWybAPavBOgz1cXMtqyhYQPY1OS33g_-o_dDtkZNNosyR6w3f3sPx2zVL-aT2dtJTEo83n_efAGbt-m3
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+approaches+for+abusive+content+detection+and+classification+for+multi-class+online+user-generated+data&rft.jtitle=International+journal+of+cognitive+computing+in+engineering&rft.au=Kaur%2C+Simrat&rft.au=Singh%2C+Sarbjeet&rft.au=Kaushal%2C+Sakshi&rft.date=2024&rft.issn=2666-3074&rft.eissn=2666-3074&rft.volume=5&rft.spage=104&rft.epage=122&rft_id=info:doi/10.1016%2Fj.ijcce.2024.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijcce_2024_02_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3074&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3074&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3074&client=summon