Scalable spatio-temporal Bayesian analysis of high-dimensional electroencephalography data

We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More specifically, we deal with multi-subject electroencephalography (EEG) data with a binary response distinguishing between alcoholic and control gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of statistics Jg. 49; H. 1; S. 107 - 128
Hauptverfasser: MOHAMMED, Shariq, DEY, Dipak K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA Wiley 01.03.2021
John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0319-5724, 1708-945X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More specifically, we deal with multi-subject electroencephalography (EEG) data with a binary response distinguishing between alcoholic and control groups. The covariates are matrix-variate with measurements taken from each subject at different locations across multiple time points. EEG data have a complex structure with both spatial and temporal attributes. We use a divide-and-conquer strategy and build separate local models, that is, one model at each time point. We employ Bayesian variable selection approaches using a structured continuous spike-and-slab prior to identify the locations that respond to a certain stimulus. We incorporate the spatio-temporal structure through a Kronecker product of the spatial and temporal correlation matrices. We develop a highly scalable estimation algorithm, using likelihood approximation, to deal with large number of parameters in the model. Variable selection is done via clustering of the locations based on their duration of activation. We use scoring rules to evaluate the prediction performance. Simulation studies demonstrate the efficiency of our scalable algorithm in terms of estimation and fast computation. We present results using our scalable approach on a case study of multi-subject EEG data. Les auteurs présentent une approche de modélisation bayésienne évolutive pour l’identification des régions du cerveau qui répondent à un certain stimulus afin de les utiliser pour classer les sujets. Ils travaillent nommément avec des données d’électroencéphalogramme (EEG) multi-sujets où une variable binaire distingue les sujets alcooliques des individus du groupe contrôle. Les covariables sont des matrices de mesures prises sur chaque sujet à différents endroits et différents moments. Les données d’EEG ont une structure complexe comportant des attributs spatiaux et temporels. Les auteurs adoptent une stratégie de type diviser pour régner et construisent des modèles locaux, à raison d’un modèle pour chaque point temporel. Ils mettent de l’avant une approche bayésienne de sélection de variables exploitant une loi a priori continue en pic et plateau afin d’identifier la localisation d’un certain stimulus. Ils incorporent la structure spatio-temporelle à l’aide d’un produit de Kronecker des matrices de corrélation spatiales et temporelles. Ils développent un algorithme d’estimation hautement évolutif misant sur une approximation de la vraisemblance afin de gérer le grand nombre de paramètres dans le modèle. Une sélection de variables est faite en regroupant les lieux selon la durée de leur activation. Les auteurs exploitent des règles de pointage afin d’évaluer la performance en termes de prévisions. Ils démontrent par des études de simulation l’efficacité de leur algorithme évolutif et en termes d’estimation et de rapidité des calculs. Ils présentent les résultats obtenus avec leur méthode évolutive pour une étude de cas avec des données EEG multi-sujets.
AbstractList We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More specifically, we deal with multi‐subject electroencephalography (EEG) data with a binary response distinguishing between alcoholic and control groups. The covariates are matrix‐variate with measurements taken from each subject at different locations across multiple time points. EEG data have a complex structure with both spatial and temporal attributes. We use a divide‐and‐conquer strategy and build separate local models, that is, one model at each time point. We employ Bayesian variable selection approaches using a structured continuous spike‐and‐slab prior to identify the locations that respond to a certain stimulus. We incorporate the spatio‐temporal structure through a Kronecker product of the spatial and temporal correlation matrices. We develop a highly scalable estimation algorithm, using likelihood approximation, to deal with large number of parameters in the model. Variable selection is done via clustering of the locations based on their duration of activation. We use scoring rules to evaluate the prediction performance. Simulation studies demonstrate the efficiency of our scalable algorithm in terms of estimation and fast computation. We present results using our scalable approach on a case study of multi‐subject EEG data. Résumé Les auteurs présentent une approche de modélisation bayésienne évolutive pour l'identification des régions du cerveau qui répondent à un certain stimulus afin de les utiliser pour classer les sujets. Ils travaillent nommément avec des données d'électroencéphalogramme (EEG) multi‐sujets où une variable binaire distingue les sujets alcooliques des individus du groupe contrôle. Les covariables sont des matrices de mesures prises sur chaque sujet à différents endroits et différents moments. Les données d'EEG ont une structure complexe comportant des attributs spatiaux et temporels. Les auteurs adoptent une stratégie de type diviser pour régner et construisent des modèles locaux, à raison d'un modèle pour chaque point temporel. Ils mettent de l'avant une approche bayésienne de sélection de variables exploitant une loi a priori continue en pic et plateau afin d'identifier la localisation d'un certain stimulus. Ils incorporent la structure spatio‐temporelle à l'aide d'un produit de Kronecker des matrices de corrélation spatiales et temporelles. Ils développent un algorithme d'estimation hautement évolutif misant sur une approximation de la vraisemblance afin de gérer le grand nombre de paramètres dans le modèle. Une sélection de variables est faite en regroupant les lieux selon la durée de leur activation. Les auteurs exploitent des règles de pointage afin d'évaluer la performance en termes de prévisions. Ils démontrent par des études de simulation l'efficacité de leur algorithme évolutif et en termes d'estimation et de rapidité des calculs. Ils présentent les résultats obtenus avec leur méthode évolutive pour une étude de cas avec des données EEG multi‐sujets.
We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More specifically, we deal with multi-subject electroencephalography (EEG) data with a binary response distinguishing between alcoholic and control groups. The covariates are matrix-variate with measurements taken from each subject at different locations across multiple time points. EEG data have a complex structure with both spatial and temporal attributes. We use a divide-and-conquer strategy and build separate local models, that is, one model at each time point. We employ Bayesian variable selection approaches using a structured continuous spike-and-slab prior to identify the locations that respond to a certain stimulus. We incorporate the spatio-temporal structure through a Kronecker product of the spatial and temporal correlation matrices. We develop a highly scalable estimation algorithm, using likelihood approximation, to deal with large number of parameters in the model. Variable selection is done via clustering of the locations based on their duration of activation. We use scoring rules to evaluate the prediction performance. Simulation studies demonstrate the efficiency of our scalable algorithm in terms of estimation and fast computation. We present results using our scalable approach on a case study of multi-subject EEG data. Les auteurs présentent une approche de modélisation bayésienne évolutive pour l’identification des régions du cerveau qui répondent à un certain stimulus afin de les utiliser pour classer les sujets. Ils travaillent nommément avec des données d’électroencéphalogramme (EEG) multi-sujets où une variable binaire distingue les sujets alcooliques des individus du groupe contrôle. Les covariables sont des matrices de mesures prises sur chaque sujet à différents endroits et différents moments. Les données d’EEG ont une structure complexe comportant des attributs spatiaux et temporels. Les auteurs adoptent une stratégie de type diviser pour régner et construisent des modèles locaux, à raison d’un modèle pour chaque point temporel. Ils mettent de l’avant une approche bayésienne de sélection de variables exploitant une loi a priori continue en pic et plateau afin d’identifier la localisation d’un certain stimulus. Ils incorporent la structure spatio-temporelle à l’aide d’un produit de Kronecker des matrices de corrélation spatiales et temporelles. Ils développent un algorithme d’estimation hautement évolutif misant sur une approximation de la vraisemblance afin de gérer le grand nombre de paramètres dans le modèle. Une sélection de variables est faite en regroupant les lieux selon la durée de leur activation. Les auteurs exploitent des règles de pointage afin d’évaluer la performance en termes de prévisions. Ils démontrent par des études de simulation l’efficacité de leur algorithme évolutif et en termes d’estimation et de rapidité des calculs. Ils présentent les résultats obtenus avec leur méthode évolutive pour une étude de cas avec des données EEG multi-sujets.
We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More specifically, we deal with multi‐subject electroencephalography (EEG) data with a binary response distinguishing between alcoholic and control groups. The covariates are matrix‐variate with measurements taken from each subject at different locations across multiple time points. EEG data have a complex structure with both spatial and temporal attributes. We use a divide‐and‐conquer strategy and build separate local models, that is, one model at each time point. We employ Bayesian variable selection approaches using a structured continuous spike‐and‐slab prior to identify the locations that respond to a certain stimulus. We incorporate the spatio‐temporal structure through a Kronecker product of the spatial and temporal correlation matrices. We develop a highly scalable estimation algorithm, using likelihood approximation, to deal with large number of parameters in the model. Variable selection is done via clustering of the locations based on their duration of activation. We use scoring rules to evaluate the prediction performance. Simulation studies demonstrate the efficiency of our scalable algorithm in terms of estimation and fast computation. We present results using our scalable approach on a case study of multi‐subject EEG data.
Author DEY, Dipak K.
MOHAMMED, Shariq
Author_xml – sequence: 1
  givenname: Shariq
  surname: MOHAMMED
  fullname: MOHAMMED, Shariq
– sequence: 2
  givenname: Dipak K.
  surname: DEY
  fullname: DEY, Dipak K.
BookMark eNp1kE1Lw0AQQBdRsK0e_AFCwJOHtLuzyaZ71OInBQ_tQbwsk2TTJGyzcTdF8u-NRr15GhjeG4Y3JceNbTQhF4zOGaWwyGo_ZyyWcEQmLKHLUEbx6zGZUM5kGCcQnZKp9zWlPGYMJuRtk6HB1OjAt9hVNuz0vrUOTXCLvfYVNgE2aHpf-cAWQVntyjCv9rrxlR32gTY665zVTabbEo3dOWzLPsixwzNyUqDx-vxnzsj2_m67egzXLw9Pq5t1mEEiIQQKUZ6yXAguINIgKBMsK5hIBEedSpZgnAkuRVTQIscIIYWIyYIVOeQc-YxcjWdbZ98P2neqtgc3_OYVxFQCcODJQF2PVOas904XqnXVHl2vGFVf5dRQTn2XG9jFyH5URvf_g2r1vPk1Lkej9p11f0a0TAQsJeefR8d7vQ
Cites_doi 10.1016/j.neuroimage.2008.02.059
10.1080/01621459.2013.776499
10.1186/1743-0003-5-25
10.1016/S0079-6123(06)59003-X
10.1111/rssc.12369
10.1080/00401706.1970.10488634
10.1111/rssb.12031
10.1198/016214506000001437
10.1007/978-981-13-0908-3
10.1016/0167-8760(84)90014-X
10.1080/01621459.2015.1044091
10.1080/01621459.1971.10482346
10.1111/biom.12126
10.1016/j.neuroimage.2007.09.048
10.1111/biom.12355
10.1002/sam.11477
10.1109/TSP.2013.2272287
10.1214/aos/1056562461
10.1037/0278-7393.6.2.174
10.1214/14-BA860
10.1016/j.jneumeth.2003.10.009
10.1093/biomet/57.1.97
10.1080/01621459.1988.10478694
10.1111/j.2517-6161.1988.tb01729.x
10.1006/nimg.2002.1143
10.1016/j.bspc.2014.01.009
10.1109/TMI.2017.2780185
10.1111/rssb.12154
10.1093/biomet/83.4.715
10.1214/16-AOAS931
10.1080/01621459.1993.10476321
10.1016/j.neuroimage.2007.07.062
10.1016/j.neuroimage.2016.08.064
10.1111/j.2517-6161.1996.tb02080.x
10.1109/JSTSP.2016.2600023
10.1214/11-AOAS531
10.1111/j.1467-9868.2008.00663.x
ContentType Journal Article
Copyright 2021 Statistical Society of Canada
Copyright_xml – notice: 2021 Statistical Society of Canada
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
H8D
JBE
JQ2
L7M
L~C
L~D
DOI 10.1002/cjs.11592
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
Aerospace Database
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1708-945X
EndPage 128
ExternalDocumentID 10_1002_cjs_11592
CJS11592
48762893
Genre article
GroupedDBID .3N
.GA
05W
0R~
123
1L6
1OC
29B
33P
3SF
3WU
4.4
44B
50Y
50Z
52M
52O
52T
52U
52W
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCUV
ABDBF
ABFAN
ABJNI
ABPVW
ABQDR
ABYWD
ACAHQ
ACCZN
ACGFO
ACGFS
ACIWK
ACMTB
ACPOU
ACTMH
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADODI
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AELLO
AEUPB
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFVYC
AFWVQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DRFUL
DRSTM
DSRWC
EBS
ECEWR
ESX
F00
F01
F04
F21
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HQ6
HZ~
IPSME
JAA
JENOY
JMS
JPL
JST
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
PZZ
Q.N
QB0
QRW
R.K
ROL
RX1
SA0
SUPJJ
TN5
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WYISQ
XBAML
XV2
ZZTAW
~IA
~WT
.Y3
3-9
31~
AANHP
AASGY
AAWIL
ABAWQ
ABXSQ
ACBWZ
ACDIW
ACHJO
ACRPL
ACYXJ
ADNMO
ADULT
AGLNM
AGQPQ
AI.
AIHAF
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FSPIC
GIFXF
HF~
HGD
HVGLF
JAAYA
JBMMH
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
LW6
PALCI
RIWAO
RJQFR
RNS
VH1
AAYXX
AIQQE
CITATION
O8X
7SC
8BJ
8FD
FQK
H8D
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2792-2024db1d663624e260161cf16763aeb917a5c63964f0fda4a2b2419f1fd2d3a3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617161100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0319-5724
IngestDate Mon Nov 10 00:42:59 EST 2025
Sat Nov 29 01:41:54 EST 2025
Wed Aug 20 07:26:01 EDT 2025
Thu Jul 03 21:28:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2792-2024db1d663624e260161cf16763aeb917a5c63964f0fda4a2b2419f1fd2d3a3
Notes NOTE: This article has supplementary material for online publication.
NOTE: This article is intended for the special issue on Neuroimaging and must be held for that issue.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3107-2969
0000-0002-9367-9731
PQID 2509223237
PQPubID 46823
PageCount 22
ParticipantIDs proquest_journals_2509223237
crossref_primary_10_1002_cjs_11592
wiley_primary_10_1002_cjs_11592_CJS11592
jstor_primary_48762893
PublicationCentury 2000
PublicationDate 20210301
March 2021
2021-03-00
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210301
  day: 1
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Ottawa
PublicationTitle Canadian journal of statistics
PublicationYear 2021
Publisher Wiley
John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2002; 16
2009; 44
1971; 66
2007; 102
2014; 70
2015; 71
2013; 108
1993; 88
2016b; 111
2013; 61
2008; 39
1970; 12
2016; 10
2008; 5
2020; 13
1988; 50
1996; 58
2006; 159
2008; 70
2003; 31
2016; 78
1970; 57
2004; 134
2013; 14
2017; 37
2019; 68
1996; 83
1980; 6
2018
1988; 83
2011; 24
2017; 18
2014
1994; 18
2017; 144
2014; 9
2012; 6
2016a; 10
2014; 11
2014; 76
e_1_2_8_28_1
Andersen M. R. (e_1_2_8_3_1) 2014
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Andersen M. R. (e_1_2_8_4_1) 2017; 18
Hernández‐Lobato D. (e_1_2_8_16_1) 2013; 14
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Vecchia A. V. (e_1_2_8_37_1) 1988; 50
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
Tibshirani R. (e_1_2_8_33_1) 1996; 58
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
Titsias M. K. (e_1_2_8_35_1) 2011
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 6
  start-page: 174
  year: 1980
  article-title: A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity
  publication-title: Journal of Experimental Psychology: Human Learning and Memory
– volume: 10
  start-page: 1315
  issue: 7
  year: 2016
  end-page: 1325
  article-title: Modeling effective connectivity in high‐dimensional cortical source signals
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– volume: 88
  start-page: 669
  year: 1993
  end-page: 679
  article-title: Bayesian analysis of binary and polychotomous response data
  publication-title: Journal of the American Statistical Association
– volume: 111
  start-page: 800
  year: 2016b
  end-page: 812
  article-title: Hierarchical nearest‐neighbor Gaussian process models for large geostatistical datasets
  publication-title: Journal of the American Statistical Association
– volume: 71
  start-page: 905
  year: 2015
  end-page: 917
  article-title: Local‐aggregate modeling for big data via distributed optimization: Applications to neuroimaging
  publication-title: Biometrics
– volume: 11
  start-page: 42
  year: 2014
  end-page: 52
  article-title: A survey of methods used for source localization using EEG signals
  publication-title: Biomedical Signal Processing and Control
– volume: 6
  start-page: 1021
  year: 2012
  end-page: 1046
  article-title: A two‐way regularization method for MEG source reconstruction
  publication-title: The Annals of Applied Statistics
– volume: 70
  start-page: 132
  year: 2014
  end-page: 143
  article-title: A variational Bayes spatiotemporal model for electromagnetic brain mapping
  publication-title: Biometrics
– volume: 5
  start-page: 25
  year: 2008
  article-title: Review on solving the inverse problem in EEG source analysis
  publication-title: Journal of Neuroengineering and Rehabilitation
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 83
  start-page: 715
  year: 1996
  end-page: 726
  article-title: The multivariate skew‐normal distribution
  publication-title: Biometrika
– volume: 70
  start-page: 825
  year: 2008
  end-page: 848
  article-title: Gaussian predictive process models for large spatial data sets
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 68
  start-page: 1305
  year: 2019
  end-page: 1326
  article-title: Bayesian variable selection using spike‐and‐slab priors with application to high dimensional electroencephalography data by local modelling
  publication-title: Journal of the Royal Statistical Society: Series C
– volume: 66
  start-page: 783
  year: 1971
  end-page: 801
  article-title: Elicitation of personal probabilities and expectations
  publication-title: Journal of the American Statistical Association
– year: 2018
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: Journal of the American Statistical Association
– volume: 18
  start-page: 49
  year: 1994
  end-page: 65
  article-title: Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain
  publication-title: International Journal of Psychophysiology
– volume: 18
  start-page: 5076
  year: 2017
  end-page: 5133
  article-title: Bayesian inference for spatio‐temporal spike‐and‐slab priors
  publication-title: The Journal of Machine Learning Research
– volume: 37
  start-page: 1011
  issue: 4
  year: 2017
  end-page: 1023
  article-title: Estimating dynamic connectivity states in fMRI using regime‐switching factor models
  publication-title: IEEE Transactions on Medical Imaging
– volume: 50
  start-page: 297
  year: 1988
  end-page: 312
  article-title: Estimation and model identification for continuous spatial processes
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 144
  start-page: 142
  year: 2017
  end-page: 152
  article-title: Bayesian EEG source localization using a structured sparsity prior
  publication-title: NeuroImage
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 83
  start-page: 1023
  year: 1988
  end-page: 1032
  article-title: Bayesian variable selection in linear regression
  publication-title: Journal of the American Statistical Association
– volume: 9
  start-page: 449
  year: 2014
  end-page: 474
  article-title: Bayesian regularization via graph laplacian
  publication-title: Bayesian Analysis
– volume: 24
  start-page: 2339
  year: 2011
  end-page: 2347
– volume: 61
  start-page: 4658
  year: 2013
  end-page: 4672
  article-title: Expectation‐maximization Gaussian‐mixture approximate message passing
  publication-title: IEEE Transactions on Signal Processing
– volume: 44
  start-page: 947
  issue: 3
  year: 2009
  end-page: 966
  article-title: A unified Bayesian framework for MEG/EEG source imaging
  publication-title: NeuroImage
– volume: 39
  start-page: 1104
  issue: 3
  year: 2008
  end-page: 1120
  article-title: Multiple sparse priors for the M/EEG inverse problem
  publication-title: NeuroImage
– volume: 159
  start-page: 29
  year: 2006
  end-page: 42
  article-title: Source analysis of EEG oscillations using high‐resolution EEG and MEG
  publication-title: Progress in Brain Research
– volume: 39
  start-page: 318
  year: 2008
  end-page: 335
  article-title: Bayesian M/EEG source reconstruction with spatio‐temporal priors
  publication-title: NeuroImage
– start-page: 1745
  year: 2014
  end-page: 1753
– volume: 16
  start-page: 678
  issue: 3
  year: 2002
  end-page: 695
  article-title: Anatomically informed basis functions for EEG source localization: Combining functional and anatomical constraints
  publication-title: NeuroImage
– volume: 108
  start-page: 540
  year: 2013
  end-page: 552
  article-title: Tensor regression with applications in neuroimaging data analysis
  publication-title: Journal of the American Statistical Association
– volume: 76
  start-page: 463
  year: 2014
  end-page: 483
  article-title: Regularized matrix regression
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 13
  start-page: 465
  issue: 5
  year: 2020
  end-page: 481
  article-title: Classification of high‐dimensional electroencephalography data with location selection using structured spike‐and‐slab prior
  publication-title: Statistical Analysis and Data Mining: The ASA Data Science Journal
– volume: 31
  start-page: 705
  year: 2003
  end-page: 767
  article-title: Slice sampling
  publication-title: The Annals of Statistics
– volume: 14
  start-page: 1891
  year: 2013
  end-page: 1945
  article-title: Generalized spike‐and‐slab priors for Bayesian group feature selection using expectation propagation
  publication-title: The Journal of Machine Learning Research
– volume: 78
  start-page: 505
  year: 2016
  end-page: 562
  article-title: Of quantiles and expectiles: Consistent scoring functions, Choquet representations and forecast rankings
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B
– volume: 10
  start-page: 1286
  year: 2016a
  end-page: 1316
  article-title: Nonseparable dynamic nearest neighbor Gaussian process models for large spatio‐temporal data with an application to particulate matter analysis
  publication-title: The Annals of Applied Statistics
– ident: e_1_2_8_40_1
  doi: 10.1016/j.neuroimage.2008.02.059
– ident: e_1_2_8_42_1
  doi: 10.1080/01621459.2013.776499
– ident: e_1_2_8_14_1
  doi: 10.1186/1743-0003-5-25
– ident: e_1_2_8_31_1
  doi: 10.1016/S0079-6123(06)59003-X
– ident: e_1_2_8_23_1
  doi: 10.1111/rssc.12369
– ident: e_1_2_8_17_1
  doi: 10.1080/00401706.1970.10488634
– ident: e_1_2_8_41_1
  doi: 10.1111/rssb.12031
– ident: e_1_2_8_13_1
  doi: 10.1198/016214506000001437
– ident: e_1_2_8_19_1
  doi: 10.1007/978-981-13-0908-3
– ident: e_1_2_8_27_1
  doi: 10.1016/0167-8760(84)90014-X
– start-page: 1745
  volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: e_1_2_8_3_1
– ident: e_1_2_8_9_1
  doi: 10.1080/01621459.2015.1044091
– ident: e_1_2_8_29_1
  doi: 10.1080/01621459.1971.10482346
– ident: e_1_2_8_26_1
  doi: 10.1111/biom.12126
– ident: e_1_2_8_12_1
  doi: 10.1016/j.neuroimage.2007.09.048
– ident: e_1_2_8_18_1
  doi: 10.1111/biom.12355
– ident: e_1_2_8_24_1
  doi: 10.1002/sam.11477
– ident: e_1_2_8_38_1
  doi: 10.1109/TSP.2013.2272287
– ident: e_1_2_8_25_1
  doi: 10.1214/aos/1056562461
– ident: e_1_2_8_30_1
  doi: 10.1037/0278-7393.6.2.174
– ident: e_1_2_8_21_1
  doi: 10.1214/14-BA860
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_8_15_1
  doi: 10.1093/biomet/57.1.97
– ident: e_1_2_8_22_1
  doi: 10.1080/01621459.1988.10478694
– volume: 50
  start-page: 297
  year: 1988
  ident: e_1_2_8_37_1
  article-title: Estimation and model identification for continuous spatial processes
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1988.tb01729.x
– volume: 14
  start-page: 1891
  year: 2013
  ident: e_1_2_8_16_1
  article-title: Generalized spike‐and‐slab priors for Bayesian group feature selection using expectation propagation
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_8_28_1
  doi: 10.1006/nimg.2002.1143
– ident: e_1_2_8_20_1
  doi: 10.1016/j.bspc.2014.01.009
– ident: e_1_2_8_34_1
  doi: 10.1109/TMI.2017.2780185
– ident: e_1_2_8_11_1
  doi: 10.1111/rssb.12154
– ident: e_1_2_8_5_1
  doi: 10.1093/biomet/83.4.715
– ident: e_1_2_8_8_1
  doi: 10.1214/16-AOAS931
– ident: e_1_2_8_2_1
  doi: 10.1080/01621459.1993.10476321
– volume: 18
  start-page: 5076
  year: 2017
  ident: e_1_2_8_4_1
  article-title: Bayesian inference for spatio‐temporal spike‐and‐slab priors
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_8_36_1
  doi: 10.1016/j.neuroimage.2007.07.062
– start-page: 2339
  volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: e_1_2_8_35_1
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuroimage.2016.08.064
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_2_8_33_1
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_8_39_1
  doi: 10.1109/JSTSP.2016.2600023
– ident: e_1_2_8_32_1
  doi: 10.1214/11-AOAS531
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1467-9868.2008.00663.x
SSID ssj0035112
Score 2.238918
Snippet We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 107
SubjectTerms Alcoholism
Algorithms
Approximation
Bayesian analysis
Brain
Case studies
Classification
Clustering
Computation
Correlation analysis
Data
Dimensional analysis
EEG inverse problem
Electroencephalography
Estimation
Feature selection
Gibbs sampling
Kronecker product
likelihood approximation
Localization
Matrices
Murphy diagram
Performance evaluation
Scores
Simulation
Statistical methods
Stimuli
Stimulus
Time
variable selection
Variables
Title Scalable spatio-temporal Bayesian analysis of high-dimensional electroencephalography data
URI https://www.jstor.org/stable/48762893
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjs.11592
https://www.proquest.com/docview/2509223237
Volume 49
WOSCitedRecordID wos000617161100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1708-945X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035112
  issn: 0319-5724
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcHUQ_rwcequL4I4sFL2TZJW4MnXV1E1kXcFfZkSZsEEdkVq4I3P4Kf0U_iJH3oHgTBWw9pKZnMzD_tzC8A-8IIpXgkPRb5zOOYEDzBQu35JsswgcexUs7SvbjfPxyNxNUMHFW9MAUfov7gZj3DxWvr4DLN29_Q0Ow-R38PBcbfOdtUhTuvudPr7k2vCsT2Fxmt-nTCmPIKLOTTdn3zVDoqKhKntOZPxepSTnfpXy-7DIul0iTHxdJYgRk9bsLCZY1pzZvQsFKzIDWvwu0AzWUbqUjuqqw_3z9KbtUDOZFv2nZbElkyTMjEEEs6xkHKng9QsD1IeaiOjRaPd7LCYRNbhroGw-7ZsHPulacveJmFCqL7UK7SQKEkiSjXDj0WZCaIMCJJneI2T4YZ6puIG98oySVNUQ0IExhFFZNsHWbHk7HeAGJ46PvKZyxlxhLHUs2NEdL4XGsWK9GCvcoGyWPB2EgKmjJNcOISN3EtWHfWqUdwG8dRbbVguzJXUvpfnqCwEyh8KItbcOAM8_uTk87FwF1s_n3oFjSoLW5xxWjbMPv89KJ3YD57RaM97ZYL8QuyGuKo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHaQXrwUe1WJ-LePASmu5uEhe8-CpVaxFboSfDJruLiFRpVfDmR_Az-kmc3SRVD4LgLYdNCDs7M_9sZn4LsCOMUIqH0mOhzzyOCcETLNCeb9IUE3gUKeUs3Ym63b3BQFxOwX7RC5PxISYbbtYzXLy2Dm43pBtf1ND0bowOHwgMwGUesmivBOXjq9Z1p4jE9h8ZLRp1gojygizk08bk5h_5KCtJ_CE2v0tWl3Na8_972wWYy7UmOcgWxyJM6WEVZi8moNZxFSpWbGas5iW46aHBbCsVGbs664-395xcdU8O5au2_ZZE5hQT8mCIZR3jIGVPCMjoHiQ_VsfGi8dbWQCxiS1EXYZ-66R_1Pby8xe81GIF0YEoV0lToSgJKdcOPtZMTTPEmCR1gh96MkhR4YTc-EZJLmmCekCYplFUMclqUBo-DPUKEMMD31c-YwkzljmWaG6MkMbnWrNIiTpsF0aIHzPKRpzxlGmMExe7iatDzZlnMoLbSI56qw7rhb3i3APHMUo7gdKHsqgOu84yvz85PjrruYvVvw_dgpl2_6ITd06752tQobbUxZWmrUPpafSsN2A6fUEDjjbzVfkJQkLmmA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcH2RXRg-_F1VWDePBStk3S1oAX3XXxsS7iA_ZkSZsEEVkXVwVvfgQ_o5_ESdquehAEbz2koWQyM_-2M78AbAsjlOKR9FjkM49jQvAEC7XnmyzDBB7HSjlLd-Neb7ffF-cTsFf2wuR8iPEHN-sZLl5bB9dDZZpf1NDsboQOHwoMwFUeipBXoNq-6Fx3y0hs_5HRslEnjCkvyUI-bY5v_pGP8pLEH2Lzu2R1Oacz97-nnYfZQmuS_XxzLMCEHizCzNkY1DpahGkrNnNW8xLcXKLBbCsVGbk664-394JcdU8O5Ku2_ZZEFhQT8mCIZR3jIGVPCMjpHqQ4VsfGi-GtLIHYxBaiLsNV5_CqdeQV5y94mcUKogNRrtJAoSiJKNcOPhZkJogwJkmd4oueDDNUOBE3vlGSS5qiHhAmMIoqJlkNKoOHgV4BYnjo-8pnLGXGMsdSzY0R0vhcaxYrUYet0gjJMKdsJDlPmSa4cIlbuDrUnHnGI7iN5Ki36tAo7ZUUHjhKUNoJlD6UxXXYcZb5feakdXLpLlb_PnQTps7bnaR73Dtdg2lqK11cZVoDKk-Pz3odJrMXtN_jRrEpPwHz--YT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+spatio%E2%80%90temporal+Bayesian+analysis+of+high%E2%80%90dimensional+electroencephalography+data&rft.jtitle=Canadian+journal+of+statistics&rft.au=Mohammed%2C+Shariq&rft.au=Dey%2C+Dipak+K.&rft.date=2021-03-01&rft.issn=0319-5724&rft.eissn=1708-945X&rft.volume=49&rft.issue=1&rft.spage=107&rft.epage=128&rft_id=info:doi/10.1002%2Fcjs.11592&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cjs_11592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0319-5724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0319-5724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0319-5724&client=summon