Numerical Solutions of Neutral Stochastic Functional Differential Equations
This paper examines the numerical solutions of neutral stochastic functional differential equations ( NSFDEs) $d[x(t)\, - \,u(x_t )]\, = \,f(x_t )dt\, + \,g(x_t )dw(t),\,t \ge \,0$. The key contribution is to establish the strong mean square convergence theory of the Euler- Maruyama approximate solu...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 46; číslo 4; s. 1821 - 1841 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2008
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper examines the numerical solutions of neutral stochastic functional differential equations ( NSFDEs) $d[x(t)\, - \,u(x_t )]\, = \,f(x_t )dt\, + \,g(x_t )dw(t),\,t \ge \,0$. The key contribution is to establish the strong mean square convergence theory of the Euler- Maruyama approximate solution under the local Lipschitz condition, the linear growth condition, and contractive mapping. These conditions are generally imposed to guarantee the existence and uniqueness of the true solution, so the numerical results given here are obtained under quite general conditions. Although the way of analysis borrows from [X. Mao, LMS J. Comput. Math., 6 (2003), pp. 141-161], to cope with $u(x_t )$, several new techniques have been developed. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/070697021 |