Numerical Solutions of Neutral Stochastic Functional Differential Equations

This paper examines the numerical solutions of neutral stochastic functional differential equations ( NSFDEs) $d[x(t)\, - \,u(x_t )]\, = \,f(x_t )dt\, + \,g(x_t )dw(t),\,t \ge \,0$. The key contribution is to establish the strong mean square convergence theory of the Euler- Maruyama approximate solu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 46; číslo 4; s. 1821 - 1841
Hlavní autoři: Wu, Fuke, Mao, Xuerong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2008
Témata:
ISSN:0036-1429, 1095-7170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper examines the numerical solutions of neutral stochastic functional differential equations ( NSFDEs) $d[x(t)\, - \,u(x_t )]\, = \,f(x_t )dt\, + \,g(x_t )dw(t),\,t \ge \,0$. The key contribution is to establish the strong mean square convergence theory of the Euler- Maruyama approximate solution under the local Lipschitz condition, the linear growth condition, and contractive mapping. These conditions are generally imposed to guarantee the existence and uniqueness of the true solution, so the numerical results given here are obtained under quite general conditions. Although the way of analysis borrows from [X. Mao, LMS J. Comput. Math., 6 (2003), pp. 141-161], to cope with $u(x_t )$, several new techniques have been developed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/070697021