NmRF: identification of multispecies RNA 2’-O-methylation modification sites from RNA sequences

Abstract 2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2′-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety of RNA types (miRNA, tRNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics Jg. 23; H. 1
Hauptverfasser: Ao, Chunyan, Zou, Quan, Yu, Liang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Oxford University Press 17.01.2022
Oxford Publishing Limited (England)
Schlagworte:
ISSN:1467-5463, 1477-4054, 1477-4054
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Abstract 2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2′-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety of RNA types (miRNA, tRNA, mRNA, etc.), plays an important role in biological processes and is associated with different diseases. There are few functional mechanisms developed at present, and traditional high-throughput experiments are time-consuming and expensive to explore functional mechanisms. For a deeper understanding of relevant biological mechanisms, it is necessary to develop efficient and accurate recognition tools based on machine learning. Based on this, we constructed a predictor called NmRF based on optimal mixed features and random forest classifier to identify 2'-O-methylation modification sites. The predictor can identify modification sites of multiple species at the same time. To obtain a better prediction model, a two-step strategy is adopted; that is, the optimal hybrid feature set is obtained by combining the light gradient boosting algorithm and incremental feature selection strategy. In 10-fold cross-validation, the accuracies of Homo sapiens and Saccharomyces cerevisiae were 89.069 and 93.885%, and the AUC were 0.9498 and 0.9832, respectively. The rigorous 10-fold cross-validation and independent tests confirm that the proposed method is significantly better than existing tools. A user-friendly web server is accessible at http://lab.malab.cn/∼acy/NmRF.
AbstractList 2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2'-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety of RNA types (miRNA, tRNA, mRNA, etc.), plays an important role in biological processes and is associated with different diseases. There are few functional mechanisms developed at present, and traditional high-throughput experiments are time-consuming and expensive to explore functional mechanisms. For a deeper understanding of relevant biological mechanisms, it is necessary to develop efficient and accurate recognition tools based on machine learning. Based on this, we constructed a predictor called NmRF based on optimal mixed features and random forest classifier to identify 2'-O-methylation modification sites. The predictor can identify modification sites of multiple species at the same time. To obtain a better prediction model, a two-step strategy is adopted; that is, the optimal hybrid feature set is obtained by combining the light gradient boosting algorithm and incremental feature selection strategy. In 10-fold cross-validation, the accuracies of Homo sapiens and Saccharomyces cerevisiae were 89.069 and 93.885%, and the AUC were 0.9498 and 0.9832, respectively. The rigorous 10-fold cross-validation and independent tests confirm that the proposed method is significantly better than existing tools. A user-friendly web server is accessible at http://lab.malab.cn/∼acy/NmRF.
Abstract 2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2′-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety of RNA types (miRNA, tRNA, mRNA, etc.), plays an important role in biological processes and is associated with different diseases. There are few functional mechanisms developed at present, and traditional high-throughput experiments are time-consuming and expensive to explore functional mechanisms. For a deeper understanding of relevant biological mechanisms, it is necessary to develop efficient and accurate recognition tools based on machine learning. Based on this, we constructed a predictor called NmRF based on optimal mixed features and random forest classifier to identify 2'-O-methylation modification sites. The predictor can identify modification sites of multiple species at the same time. To obtain a better prediction model, a two-step strategy is adopted; that is, the optimal hybrid feature set is obtained by combining the light gradient boosting algorithm and incremental feature selection strategy. In 10-fold cross-validation, the accuracies of Homo sapiens and Saccharomyces cerevisiae were 89.069 and 93.885%, and the AUC were 0.9498 and 0.9832, respectively. The rigorous 10-fold cross-validation and independent tests confirm that the proposed method is significantly better than existing tools. A user-friendly web server is accessible at http://lab.malab.cn/∼acy/NmRF.
2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2'-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety of RNA types (miRNA, tRNA, mRNA, etc.), plays an important role in biological processes and is associated with different diseases. There are few functional mechanisms developed at present, and traditional high-throughput experiments are time-consuming and expensive to explore functional mechanisms. For a deeper understanding of relevant biological mechanisms, it is necessary to develop efficient and accurate recognition tools based on machine learning. Based on this, we constructed a predictor called NmRF based on optimal mixed features and random forest classifier to identify 2'-O-methylation modification sites. The predictor can identify modification sites of multiple species at the same time. To obtain a better prediction model, a two-step strategy is adopted; that is, the optimal hybrid feature set is obtained by combining the light gradient boosting algorithm and incremental feature selection strategy. In 10-fold cross-validation, the accuracies of Homo sapiens and Saccharomyces cerevisiae were 89.069 and 93.885%, and the AUC were 0.9498 and 0.9832, respectively. The rigorous 10-fold cross-validation and independent tests confirm that the proposed method is significantly better than existing tools. A user-friendly web server is accessible at http://lab.malab.cn/∼acy/NmRF.2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2'-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety of RNA types (miRNA, tRNA, mRNA, etc.), plays an important role in biological processes and is associated with different diseases. There are few functional mechanisms developed at present, and traditional high-throughput experiments are time-consuming and expensive to explore functional mechanisms. For a deeper understanding of relevant biological mechanisms, it is necessary to develop efficient and accurate recognition tools based on machine learning. Based on this, we constructed a predictor called NmRF based on optimal mixed features and random forest classifier to identify 2'-O-methylation modification sites. The predictor can identify modification sites of multiple species at the same time. To obtain a better prediction model, a two-step strategy is adopted; that is, the optimal hybrid feature set is obtained by combining the light gradient boosting algorithm and incremental feature selection strategy. In 10-fold cross-validation, the accuracies of Homo sapiens and Saccharomyces cerevisiae were 89.069 and 93.885%, and the AUC were 0.9498 and 0.9832, respectively. The rigorous 10-fold cross-validation and independent tests confirm that the proposed method is significantly better than existing tools. A user-friendly web server is accessible at http://lab.malab.cn/∼acy/NmRF.
Author Zou, Quan
Yu, Liang
Ao, Chunyan
Author_xml – sequence: 1
  givenname: Chunyan
  orcidid: 0000-0002-3008-6357
  surname: Ao
  fullname: Ao, Chunyan
  email: acy196707@163.com
– sequence: 2
  givenname: Quan
  surname: Zou
  fullname: Zou, Quan
  email: zouquan@nclab.net
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-8351-3332
  surname: Yu
  fullname: Yu, Liang
  email: lyu@xidian.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34850821$$D View this record in MEDLINE/PubMed
BookMark eNp90c1KAzEQB_AgFW2rJ--yIIggq_nqJvUmYlUoLYieQ5JNMGV3UzfZQ2--hq_nkxjbiiAiOSSH30yG_wxAr_GNAeAIwQsEx-RSOXWplFSUwx3QR5SxnMIR7X29C5aPaEH2wSCEBYQYMo72wD6hfAQ5Rn0gZ_Xj5CpzpWmis07L6HyTeZvVXRVdWBrtTMgeZ9cZ_nh7z-d5beLLqtqw2pc_NcHFJG3r6zUP5rUzjTbhAOxaWQVzuL2H4Hly-3Rzn0_ndw8319NcY8ZjzpG1tsCGWsw54UQjYpWiiJE0f1nocYkkUTghy8YaGUO4Le24lIxiBRMbgrNN32Xr09chitoFbapKNsZ3QeACjjCBmNFET37Rhe_aJk2XVDopKIKSOt6qTtWmFMvW1bJdie_wEkAboFsfQmus0C6uw4itdJVAUHwtSKQFie2CUs35r5rvtn_r04323fJf-Am6fZ_7
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2025_145088
crossref_primary_10_1093_bib_bbaf332
crossref_primary_10_1016_j_jmb_2025_168978
crossref_primary_10_1016_j_omtn_2022_10_004
crossref_primary_10_3389_fgene_2023_1254827
crossref_primary_10_1016_j_jbc_2024_107140
crossref_primary_10_1093_bib_bbad476
crossref_primary_10_1016_j_csbj_2022_08_053
crossref_primary_10_3390_foods12071498
crossref_primary_10_1093_nar_gkad818
crossref_primary_10_3389_fgene_2023_1133775
crossref_primary_10_3390_ijms232113493
crossref_primary_10_3389_fgene_2022_1012828
crossref_primary_10_3389_fgene_2025_1608490
crossref_primary_10_1007_s11704_022_2559_6
crossref_primary_10_3389_fgene_2023_1165765
crossref_primary_10_59717_j_xinn_life_2024_100112
crossref_primary_10_1016_j_compbiomed_2023_107065
crossref_primary_10_3390_diagnostics13142465
crossref_primary_10_1016_j_ymeth_2022_10_008
crossref_primary_10_3389_fmicb_2023_1170785
crossref_primary_10_1016_j_csbj_2025_03_024
crossref_primary_10_1093_bioinformatics_btaf417
crossref_primary_10_3389_fgene_2022_1069558
crossref_primary_10_1016_j_ymeth_2023_08_012
crossref_primary_10_1021_acsomega_5c01924
crossref_primary_10_3390_ijms241310854
crossref_primary_10_1016_j_ymeth_2022_02_009
crossref_primary_10_2174_1574893618666230516144641
crossref_primary_10_3390_genes15080996
crossref_primary_10_1016_j_compbiomed_2022_105918
crossref_primary_10_1093_nar_gkac830
crossref_primary_10_1016_j_ymeth_2023_01_007
crossref_primary_10_1093_bib_bbac573
crossref_primary_10_1093_bib_bbac571
crossref_primary_10_3389_fmed_2023_1052923
crossref_primary_10_1016_j_compbiomed_2022_105577
crossref_primary_10_1016_j_compbiomed_2022_106523
crossref_primary_10_1016_j_ijbiomac_2024_130180
crossref_primary_10_1109_TCBB_2023_3237769
crossref_primary_10_1016_j_ymeth_2022_03_007
crossref_primary_10_3389_fgene_2023_1157021
crossref_primary_10_1016_j_ymeth_2024_11_004
crossref_primary_10_1093_bib_bbae601
crossref_primary_10_1016_j_ijbiomac_2023_124247
crossref_primary_10_1371_journal_pcbi_1010404
Cites_doi 10.1155/2017/7049406
10.1261/rna.069112.118
10.1093/bib/bby127
10.1093/nar/gkz779
10.1093/nar/gkx1076
10.3390/e21090897
10.1016/j.neucom.2020.12.068
10.1016/j.cub.2005.07.029
10.1186/s12864-019-5654-9
10.1021/acschemneuro.7b00490
10.2174/1574893614666190902154332
10.1093/nar/gks698
10.1093/nar/gkw810
10.1093/bioinformatics/btab463
10.1093/bib/bbz120
10.1007/s11704-019-8208-z
10.1093/nar/gkw104
10.2174/1574893615999200503030350
10.2174/1574893615666200120103948
10.1093/bioinformatics/bty824
10.1038/ni.1979
10.1016/j.knosys.2020.106254
10.1186/1471-2164-9-S2-S22
10.1093/nar/gkab124
10.1021/acs.jcim.9b01012
10.2174/1574893615999200711165743
10.1007/s00521-019-04569-z
10.1093/bioinformatics/btaa914
10.1371/journal.pcbi.1008696
10.1038/s41467-020-15493-5
10.2217/epi-2019-0321
10.2174/1574893614666190919103752
10.1038/nbt.3437
10.1089/cmb.2018.0004
10.1093/bib/bbv033
10.1093/bioinformatics/bts565
10.3389/fgene.2021.639461
10.1093/nar/gkx449
10.1016/j.ygeno.2020.08.016
10.1093/nar/gkab122
10.1093/bib/bbz049
10.1504/IJDMB.2013.056078
10.1093/bioinformatics/btz694
10.1093/nar/gkx934
10.1093/bib/bbz112
10.3389/fbioe.2020.00134
10.1093/bib/bbz081
10.1016/j.ymthe.2021.04.004
10.1093/bib/bbz041
10.1074/mcp.RA118.001169
10.1093/bib/bbab244
10.1016/S0968-0004(02)02109-6
10.1093/nar/gkaa755
10.1186/s12864-018-4928-y
10.1016/S0300-9084(02)01402-5
10.1093/bib/bbz125
10.1016/j.ygeno.2016.05.003
10.1093/bfgp/elaa023
10.1093/nar/gkaa258
10.1016/S0092-8674(02)00718-3
10.3389/fbioe.2020.584807
10.1093/bib/bbaa367
10.1093/nar/gkaa790
10.1093/bioinformatics/bty112
10.1016/j.jtbi.2018.12.034
10.1155/2015/861402
10.1016/j.inffus.2021.02.015
10.1016/0167-4781(94)90250-X
10.2174/1574893614666191114123453
10.1016/j.jtbi.2018.11.012
10.1186/s12859-019-3265-8
10.1093/bioinformatics/btab169
10.1002/ctm2.432
10.1186/s12864-019-6019-0
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbab480
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE

Genetics Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 34850821
10_1093_bib_bbab480
10.1093/bib/bbab480
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c278t-81fff62e4f288383c13fbb4173463d6c9d1a3b2ffff79c1ee38fdf9da742b0173
IEDL.DBID TOX
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000763000800177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Fri Sep 05 13:17:45 EDT 2025
Mon Oct 06 16:59:24 EDT 2025
Mon Jul 21 05:59:08 EDT 2025
Sat Nov 29 05:43:27 EST 2025
Tue Nov 18 22:08:04 EST 2025
Fri May 23 09:42:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords light gradient boosting
random forest
RNA
feature extraction
2’-O-methylation sites
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-81fff62e4f288383c13fbb4173463d6c9d1a3b2ffff79c1ee38fdf9da742b0173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3008-6357
0000-0002-8351-3332
PMID 34850821
PQID 2626200231
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2605230274
proquest_journals_2626200231
pubmed_primary_34850821
crossref_citationtrail_10_1093_bib_bbab480
crossref_primary_10_1093_bib_bbab480
oup_primary_10_1093_bib_bbab480
PublicationCentury 2000
PublicationDate 2022-01-17
PublicationDateYYYYMMDD 2022-01-17
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-17
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Wang (2022012000302551600_ref72) 2020; 60
Long (2022012000302551600_ref63) 2020; 15
Incarnato (2022012000302551600_ref8) 2017; 45
Wang (2022012000302551600_ref11) 2008; 9
Zhang (2022012000302551600_ref69) 2020; 18
Li (2022012000302551600_ref65) 2020; 22
Cai (2022012000302551600_ref36) 2021; 22
Lv (2022012000302551600_ref66) 2021
Yu (2022012000302551600_ref25) 1997; 3
Tahir (2022012000302551600_ref30) 2019; 465
Ao (2022012000302551600_ref35) 2020; 112
Zou (2022012000302551600_ref33) 2020; 21
Dong (2022012000302551600_ref67) 2020; 14
Yu (2022012000302551600_ref71) 2020; 15
Ding (2022012000302551600_ref79) 2020; 23
Shang (2022012000302551600_ref53) 2021; 434
Zhao (2022012000302551600_ref9) 2015; 2015
Zeng (2022012000302551600_ref2) 2016; 17
Zuo (2022012000302551600_ref15) 2020; 15
Shen (2022012000302551600_ref70) 2019; 462
Chen (2022012000302551600_ref87) 2021; 37
Yin (2022012000302551600_ref19) 2020; 48
Zhou (2022012000302551600_ref44) 2016; 44
Luo (2022012000302551600_ref4) 2020; 21
Li (2022012000302551600_ref3) 2018; 46
Ajuh (2022012000302551600_ref26) 1994; 1219
Zou (2022012000302551600_ref34) 2019; 25
Wang (2022012000302551600_ref76) 2021; 22
Bachellerie (2022012000302551600_ref7) 2002; 84
Zhou (2022012000302551600_ref31) 2019; 20
Ke (2022012000302551600_ref54) 2017
Hong (2022012000302551600_ref64) 2020; 21
Luo (2022012000302551600_ref5) 2021; 12
Xue (2022012000302551600_ref22) 2018; 9
Long (2022012000302551600_ref51) 2021; 11
Tang (2022012000302551600_ref52) 2021; 29
Tang (2022012000302551600_ref56) 2020; 21
Jiang (2022012000302551600_ref81) 2013; 8
Guo (2022012000302551600_ref37) 2020; 8
Wei (2022012000302551600_ref46) 2018; 35
Zhang (2022012000302551600_ref84) 2021; 2021
Mostavi (2022012000302551600_ref29) 2018; 2018
Lv (2022012000302551600_ref59) 2020; 8
He (2022012000302551600_ref49) 2020; 15
He (2022012000302551600_ref68) 2020; 14
Yang (2022012000302551600_ref28) 2018; 25
Jiang (2022012000302551600_ref18) 2019; 20
Yang (2022012000302551600_ref57) 2020; 21
Zuest (2022012000302551600_ref23) 2011; 12
Chen (2022012000302551600_ref42) 2021; 49
Decatur (2022012000302551600_ref20) 2002; 27
Yang (2022012000302551600_ref50) 2021; 75
Cai (2022012000302551600_ref43) 2021; 37
Ju (2022012000302551600_ref55) 2020; 15
Ao (2022012000302551600_ref40) 2021; 20
Ding (2022012000302551600_ref78) 2020; 204
Li (2022012000302551600_ref74) 2017; 45
Chen (2022012000302551600_ref27) 2016; 107
Chen (2022012000302551600_ref41) 2020; 21
Huang (2022012000302551600_ref82) 2020; 12
Xuan (2022012000302551600_ref1) 2018; 46
Wu (2022012000302551600_ref38) 2021
Zhao (2022012000302551600_ref48) 2018; 19
Doench (2022012000302551600_ref47) 2016; 34
Tang (2022012000302551600_ref58) 2019; 18
Lin (2022012000302551600_ref86) 2020
Kiss (2022012000302551600_ref6) 2002; 109
Wang (2022012000302551600_ref12) 2010; 5
Wang (2022012000302551600_ref16) 2020; 48
Zeng (2022012000302551600_ref17) 2018; 34
Dong (2022012000302551600_ref21) 2012; 40
Chen (2022012000302551600_ref24) 2021; 49
Zhang (2022012000302551600_ref61) 2020; 15
Lin (2022012000302551600_ref85) 2020; 21
Zhao (2022012000302551600_ref10) 2017; 2017
Chen (2022012000302551600_ref80) 2020; 11
Chen (2022012000302551600_ref39) 2020; 21
Yang (2022012000302551600_ref77) 2020; 48
Hong (2022012000302551600_ref45) 2020; 36
Yin (2022012000302551600_ref14) 2021; 49
Fu (2022012000302551600_ref32) 2012; 28
Xiong (2022012000302551600_ref75) 2021; 49
Pedregosa (2022012000302551600_ref73) 2011; 12
Li (2022012000302551600_ref13) 2005; 15
Yu (2022012000302551600_ref83) 2021; 17
Li (2022012000302551600_ref60) 2019; 21
Hong (2022012000302551600_ref62) 2020; 21
References_xml – volume: 2017
  start-page: 7049406
  year: 2017
  ident: 2022012000302551600_ref10
  article-title: Methods of MicroRNA promoter prediction and transcription factor mediated regulatory network
  publication-title: Biomed Res Int
  doi: 10.1155/2017/7049406
– volume: 25
  start-page: 205
  year: 2019
  ident: 2022012000302551600_ref34
  article-title: Gene2vec: gene subsequence embedding for prediction of mammalian N6-Methyladenosine sites from mRNA
  publication-title: RNA
  doi: 10.1261/rna.069112.118
– volume: 21
  start-page: 621
  year: 2020
  ident: 2022012000302551600_ref56
  article-title: ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby127
– volume: 48
  start-page: D1042
  year: 2020
  ident: 2022012000302551600_ref19
  article-title: VARIDT 1.0: variability of drug transporter database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz779
– volume: 46
  start-page: D1121
  year: 2018
  ident: 2022012000302551600_ref3
  article-title: Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1076
– volume: 21
  start-page: 14
  year: 2019
  ident: 2022012000302551600_ref60
  article-title: Evidential decision tree based on belief entropy
  publication-title: Entropy
  doi: 10.3390/e21090897
– volume: 22
  start-page: 1
  year: 2020
  ident: 2022012000302551600_ref65
  article-title: DeepATT: a hybrid category attention neural network for identifying functional effects of DNA sequences
  publication-title: Brief Bioinform
– volume: 434
  start-page: 80
  year: 2021
  ident: 2022012000302551600_ref53
  article-title: Prediction of drug-target interactions based on multi-layer network representation learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.068
– volume: 15
  start-page: 1501
  year: 2005
  ident: 2022012000302551600_ref13
  article-title: Methylation protects miRNAs and siRNAs from a 3 '-end uridylation activity in Arabildopsis
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.07.029
– volume: 20
  year: 2019
  ident: 2022012000302551600_ref18
  article-title: LightCpG: a multi-view CpG sites detection on single-cell whole genome sequence data (vol 20, 306, 2019)
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5654-9
– volume: 9
  start-page: 1128
  year: 2018
  ident: 2022012000302551600_ref22
  article-title: What contributes to serotonin-norepinephrine reuptake inhibitors' dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation
  publication-title: ACS Chem Nerosci
  doi: 10.1021/acschemneuro.7b00490
– volume: 15
  start-page: 300
  year: 2020
  ident: 2022012000302551600_ref63
  article-title: Predicting protein phosphorylation sites based on deep learning
  publication-title: Current Bioinformatics
  doi: 10.2174/1574893614666190902154332
– volume: 40
  year: 2012
  ident: 2022012000302551600_ref21
  article-title: RTL-P: a sensitive approach for detecting sites of 2 '-O-methylation in RNA molecules
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks698
– volume: 45
  start-page: 1433
  year: 2017
  ident: 2022012000302551600_ref8
  article-title: High-throughput single-base resolution mapping of RNA 2 '-O-methylated residues
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw810
– year: 2021
  ident: 2022012000302551600_ref38
  article-title: EPSOL: sequence-based protein solubility prediction using multidimensional embedding
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btab463
– volume: 21
  start-page: 1825
  year: 2020
  ident: 2022012000302551600_ref62
  article-title: Convolutional neural network-based annotation of bacterial type IV secretion system effectors with enhanced accuracy and reduced false discovery
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz120
– volume: 14
  start-page: 241
  year: 2020
  ident: 2022012000302551600_ref67
  article-title: A survey on ensemble learning
  publication-title: Front Comp Sci
  doi: 10.1007/s11704-019-8208-z
– volume: 44
  start-page: e91
  year: 2016
  ident: 2022012000302551600_ref44
  article-title: SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw104
– volume: 15
  start-page: 1213
  year: 2020
  ident: 2022012000302551600_ref49
  article-title: MRMD2.0: a python tool for machine learning with feature ranking and reduction
  publication-title: Current Bioinformatics
  doi: 10.2174/1574893615999200503030350
– volume: 15
  start-page: 1036
  year: 2020
  ident: 2022012000302551600_ref71
  article-title: Exploiting XG boost for predicting enhancer-promoter interactions
  publication-title: Current Bioinformatics
  doi: 10.2174/1574893615666200120103948
– volume: 22
  start-page: 1
  year: 2021
  ident: 2022012000302551600_ref76
  article-title: Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment
  publication-title: Brief Bioinform
– volume: 35
  start-page: 1326
  year: 2018
  ident: 2022012000302551600_ref46
  article-title: Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty824
– volume: 12
  start-page: 137
  year: 2011
  ident: 2022012000302551600_ref23
  article-title: Ribose 2 '-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
  publication-title: Nat Immunol
  doi: 10.1038/ni.1979
– volume: 204
  year: 2020
  ident: 2022012000302551600_ref78
  article-title: Identification of drug-target interactions via dual Laplacian regularized least squares with multiple kernel fusion
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106254
– volume: 9
  start-page: S22
  issue: Suppl 2
  year: 2008
  ident: 2022012000302551600_ref11
  article-title: Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-S2-S22
– volume: 49
  start-page: 3719
  year: 2021
  ident: 2022012000302551600_ref75
  article-title: Modeling multi-species RNA modification through multi-task curriculum learning
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab124
– volume: 60
  start-page: 1876
  year: 2020
  ident: 2022012000302551600_ref72
  article-title: Identification of highest-affinity binding sites of yeast transcription factor families
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b01012
– volume: 15
  start-page: 898
  year: 2020
  ident: 2022012000302551600_ref61
  article-title: Review of the applications of deep learning in bioinformatics
  publication-title: Current Bioinformatics
  doi: 10.2174/1574893615999200711165743
– volume: 23
  start-page: 10303
  year: 2020
  ident: 2022012000302551600_ref79
  article-title: Identification of drug-target interactions via fuzzy bipartite local model
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-019-04569-z
– volume: 2021
  start-page: 6664362
  year: 2021
  ident: 2022012000302551600_ref84
  article-title: iBLP: an XGBoost-based predictor for identifying bioluminescent proteins
  publication-title: Comput Math Methods Med
– volume: 37
  year: 2021
  ident: 2022012000302551600_ref43
  article-title: iEnhancer-XG: interpretable sequence-based enhancers and their strength predictor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa914
– volume: 17
  year: 2021
  ident: 2022012000302551600_ref83
  article-title: Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-specific pathways
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008696
– volume: 11
  start-page: 1675
  year: 2020
  ident: 2022012000302551600_ref80
  article-title: The Litsea genome and the evolution of the laurel family
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15493-5
– volume: 12
  start-page: 1443
  year: 2020
  ident: 2022012000302551600_ref82
  article-title: Prediction of transcription factors binding events based on epigenetic modifications in different human cells
  publication-title: Epigenomics
  doi: 10.2217/epi-2019-0321
– volume: 15
  start-page: 589
  year: 2020
  ident: 2022012000302551600_ref15
  article-title: Analysis of the epigenetic signature of cell reprogramming by computational DNA methylation profiles
  publication-title: Current Bioinformatics
  doi: 10.2174/1574893614666190919103752
– volume: 34
  start-page: 184
  year: 2016
  ident: 2022012000302551600_ref47
  article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3437
– volume: 25
  start-page: 1266
  year: 2018
  ident: 2022012000302551600_ref28
  article-title: iRNA-2OM: a sequence-based predictor for identifying 2 '-O-methylation sites in Homo sapiens
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2018.0004
– volume: 17
  start-page: 193
  year: 2016
  ident: 2022012000302551600_ref2
  article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv033
– start-page: 2739
  volume-title: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20
  year: 2020
  ident: 2022012000302551600_ref86
– volume: 28
  start-page: 3150
  year: 2012
  ident: 2022012000302551600_ref32
  article-title: CD-HIT: accelerated for clustering the next-generation sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts565
– volume: 12
  start-page: 639461
  year: 2021
  ident: 2022012000302551600_ref5
  article-title: Effects of DNA methylation on TFs in human embryonic stem cells
  publication-title: Front Genet
  doi: 10.3389/fgene.2021.639461
– volume: 48
  start-page: D1031
  year: 2020
  ident: 2022012000302551600_ref16
  article-title: Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics
  publication-title: Nucleic Acids Res
– volume: 45
  start-page: W162
  year: 2017
  ident: 2022012000302551600_ref74
  article-title: NOREVA: normalization and evaluation of MS-based metabolomics data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx449
– volume: 112
  start-page: 4666
  year: 2020
  ident: 2022012000302551600_ref35
  article-title: Prediction of antioxidant proteins using hybrid feature representation method and random forest
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.08.016
– volume: 49
  year: 2021
  ident: 2022012000302551600_ref42
  article-title: iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab122
– volume: 21
  start-page: 1058
  year: 2020
  ident: 2022012000302551600_ref57
  article-title: Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz049
– volume: 8
  start-page: 282
  year: 2013
  ident: 2022012000302551600_ref81
  article-title: Predicting human microRNA-disease associations based on support vector machine
  publication-title: Int J Data Min Bioinform
  doi: 10.1504/IJDMB.2013.056078
– volume: 36
  start-page: 1037
  year: 2020
  ident: 2022012000302551600_ref45
  article-title: Identifying enhancer–promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz694
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2022012000302551600_ref73
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 46
  start-page: D327
  year: 2018
  ident: 2022012000302551600_ref1
  article-title: RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx934
– volume: 21
  start-page: 1676
  year: 2020
  ident: 2022012000302551600_ref39
  article-title: Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz112
– volume: 8
  start-page: 10
  year: 2020
  ident: 2022012000302551600_ref59
  article-title: RF-PseU: a random forest predictor for RNA pseudouridine sites
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00134
– volume: 21
  start-page: 1437
  year: 2020
  ident: 2022012000302551600_ref64
  article-title: Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz081
– volume: 29
  year: 2021
  ident: 2022012000302551600_ref52
  article-title: mRNALocater: enhance the prediction accuracy of eukaryotic mRNA subcellular localization by using model fusion strategy
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2021.04.004
– volume: 21
  start-page: 1047
  year: 2020
  ident: 2022012000302551600_ref41
  article-title: iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz041
– volume: 21
  start-page: 1
  year: 2020
  ident: 2022012000302551600_ref33
  article-title: Sequence clustering in bioinformatics: an empirical study
  publication-title: Brief Bioinform
– volume: 18
  start-page: 1683
  year: 2019
  ident: 2022012000302551600_ref58
  article-title: Simultaneous improvement in the precision, accuracy, and robustness of label-free proteome quantification by optimizing data manipulation chains
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.RA118.001169
– volume: 14
  start-page: 14
  year: 2020
  ident: 2022012000302551600_ref68
  article-title: Hybritus: a password strength checker by ensemble learning from the query feedbacks of websites
  publication-title: Front Comp Sci
– year: 2021
  ident: 2022012000302551600_ref66
  article-title: DeepIPs: comprehensive assessment and computational identification of phosphorylation sites of SARS-CoV-2 infection using a deep learning-based approach
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab244
– volume: 27
  start-page: 344
  year: 2002
  ident: 2022012000302551600_ref20
  article-title: rRNA modifications and ribosome function
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(02)02109-6
– volume: 49
  start-page: D1233
  year: 2021
  ident: 2022012000302551600_ref14
  article-title: INTEDE: interactome of drug-metabolizing enzymes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa755
– volume: 19
  year: 2018
  ident: 2022012000302551600_ref48
  article-title: Imbalance learning for the prediction of N-6-methylation sites in mRNAs
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4928-y
– volume: 84
  start-page: 775
  year: 2002
  ident: 2022012000302551600_ref7
  article-title: The expanding snoRNA world
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(02)01402-5
– volume: 21
  start-page: 2099
  year: 2020
  ident: 2022012000302551600_ref85
  article-title: A novel molecular representation with BiGRU neural networks for learning atom
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz125
– volume: 107
  start-page: 255
  year: 2016
  ident: 2022012000302551600_ref27
  article-title: Identifying 2 '-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2016.05.003
– volume: 20
  start-page: 1
  year: 2021
  ident: 2022012000302551600_ref40
  article-title: Prediction of bio-sequence modifications and the associations with diseases
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/elaa023
– volume: 48
  start-page: W436
  year: 2020
  ident: 2022012000302551600_ref77
  article-title: NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa258
– volume: 109
  start-page: 145
  year: 2002
  ident: 2022012000302551600_ref6
  article-title: Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00718-3
– volume: 2018
  start-page: 2394
  year: 2018
  ident: 2022012000302551600_ref29
  article-title: Deep-2'-O-me: predicting 2'-O-methylation sites by convolutional neural networks
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 8
  start-page: 584807
  year: 2020
  ident: 2022012000302551600_ref37
  article-title: Discrimination of thermophilic proteins and non-thermophilic proteins using feature dimension reduction
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.584807
– volume: 22
  year: 2021
  ident: 2022012000302551600_ref36
  article-title: ITP-Pred: an interpretable method for predicting, therapeutic peptides with fused features low-dimension representation
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa367
– volume: 49
  start-page: D1396
  year: 2021
  ident: 2022012000302551600_ref24
  article-title: RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa790
– volume: 5
  year: 2010
  ident: 2022012000302551600_ref12
  article-title: Signal transducers and activators of transcription-1 (STAT1) regulates microRNA transcription in interferon gamma-stimulated HeLa cells
  publication-title: PLoS One
– volume: 34
  start-page: 2425
  year: 2018
  ident: 2022012000302551600_ref17
  article-title: Prediction of potential disease-associated microRNAs using structural perturbation method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty112
– volume: 18
  year: 2020
  ident: 2022012000302551600_ref69
  article-title: AIEpred: an ensemble predictive model of classifier chain to identify anti-inflammatory peptides
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 3
  start-page: 324
  year: 1997
  ident: 2022012000302551600_ref25
  article-title: A new method for detecting sites of 2′-O-methylation in RNA molecules
  publication-title: RNA
– volume: 465
  start-page: 1
  year: 2019
  ident: 2022012000302551600_ref30
  article-title: iRNA-PseKNC(2methyl): identify RNA 2'-O-methylation sites by convolution neural network and Chou's pseudo components
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.12.034
– volume: 2015
  start-page: 861402
  year: 2015
  ident: 2022012000302551600_ref9
  article-title: MicroRNA promoter identification in Arabidopsis using multiple histone markers
  publication-title: Biomed Res Int
  doi: 10.1155/2015/861402
– volume: 75
  start-page: 140
  year: 2021
  ident: 2022012000302551600_ref50
  article-title: Risk prediction of diabetes: big data mining with fusion of multifarious physical examination indicators
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.02.015
– volume-title: 31st Annual Conference on Neural Information Processing Systems (NIPS)
  year: 2017
  ident: 2022012000302551600_ref54
– volume: 1219
  start-page: 89
  year: 1994
  ident: 2022012000302551600_ref26
  article-title: Chemical secondary structure probing of two highly methylated regions in Xenopus laevis 28S ribosomal RNA
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0167-4781(94)90250-X
– volume: 15
  start-page: 725
  year: 2020
  ident: 2022012000302551600_ref55
  article-title: Prediction of Neddylation sites using the composition of k-spaced amino acid pairs and fuzzy SVM
  publication-title: Current Bioinformatics
  doi: 10.2174/1574893614666191114123453
– volume: 462
  start-page: 230
  year: 2019
  ident: 2022012000302551600_ref70
  article-title: Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou’s general PseAAC
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2018.11.012
– volume: 20
  start-page: 690
  year: 2019
  ident: 2022012000302551600_ref31
  article-title: NmSEER V2.0: a prediction tool for 2'-O-methylation sites based on random forest and multi-encoding combination
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3265-8
– volume: 37
  year: 2021
  ident: 2022012000302551600_ref87
  article-title: MUFFIN: multi-scale feature fusion for drug–drug interaction prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab169
– volume: 11
  year: 2021
  ident: 2022012000302551600_ref51
  article-title: Integrated biomarker profiling of the metabolome associated with impaired fasting glucose and type 2 diabetes mellitus in large-scale Chinese patients
  publication-title: Clin Transl Med
  doi: 10.1002/ctm2.432
– volume: 21
  start-page: 672
  year: 2020
  ident: 2022012000302551600_ref4
  article-title: Identification of methylation states of DNA regions for Illumina methylation BeadChip
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6019-0
SSID ssj0020781
Score 2.5199049
Snippet Abstract 2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the...
2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2′-hydroxyl...
2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2'-hydroxyl...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Base Sequence
Biological activity
Computational Biology - methods
Gene sequencing
Humans
Hydroxyl groups
Learning algorithms
Machine Learning
Methylation
Methyltransferase
miRNA
Post-transcription
Prediction models
Ribonucleic acid
RNA
RNA - genetics
RNA modification
tRNA
Title NmRF: identification of multispecies RNA 2’-O-methylation modification sites from RNA sequences
URI https://www.ncbi.nlm.nih.gov/pubmed/34850821
https://www.proquest.com/docview/2626200231
https://www.proquest.com/docview/2605230274
Volume 23
WOSCitedRecordID wos000763000800177&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford University Press Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50UfDi-1GfETwJwU3S3aTeFnHxIFUWld5K0iQgaCuuCnvzb_j3_CUmbbeyKuq5M6TMdMhMZ75vAA5MKDvW5dnYEsVx6BJiHHHVwV2mrW0zymVJu3hzzuNYJEl0WQ_IDn9o4UfsSN2qI6WkCoUvzUlH-EUFVxdJU1d5vpoKRMSxZ3evYXhfdCcungkw27ecsrxb-gv_fatFmK-zR9Sr3L0EUyZfhtlqn-RoBWR8P-gfo1tdjwCVVkeFReXYoAdVuroYDeIeou-vb_gC-_3Ro2oaDt0X-lPH95SHyGNPSvFm4HoVrvunVydnuN6hgDPKxRMWxFrbpSa0fq2wYBlhVqmQcOYMpbtZpIlkijohy6OMGMOE1TbS0pXMykUrW4NWXuRmA5DMlJaueuSRzZyHtepwzmjbmLZ0uooFcDg2cJrVBON-z8VdWjW6WepsltY2C-CgEX6oeDV-FttznvpdYnvsxbQOv2FKu55n31PbBbDfPHaB47shMjfFs5cp_4i7qjyA9cr7zTksFC5xpWTzz-O3YI56QESbYMK3ofX0-Gx2YCZ7cV593IVpnojd8mv9ANl-5mE
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NmRF%3A+identification+of+multispecies+RNA+2%E2%80%99-O-methylation+modification+sites+from+RNA+sequences&rft.jtitle=Briefings+in+bioinformatics&rft.au=Ao%2C+Chunyan&rft.au=Zou%2C+Quan&rft.au=Yu%2C+Liang&rft.date=2022-01-17&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbab480&rft.externalDocID=10.1093%2Fbib%2Fbbab480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon