A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed

Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over complex and test tube ensembles containing arbitrary numbers of interacting strand species, serving the needs of researchers in molecular programming, nucleic acid nanotechnology, synthetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology Jg. 9; H. 10; S. 2665
Hauptverfasser: nace, Mark E, Porubsky, Nicholas J, Pierce, Niles A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 16.10.2020
ISSN:2161-5063, 2161-5063
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over complex and test tube ensembles containing arbitrary numbers of interacting strand species, serving the needs of researchers in molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences. Here, to enhance the underlying physical model, ensure scalability for large calculations, and achieve dramatic speedups when calculating diverse physical quantities over complex and test tube ensembles, we introduce a unified dynamic programming framework that combines three ingredients: (1) recursions that specify the dependencies between subproblems and incorporate the details of the structural ensemble and the free energy model, (2) evaluation algebras that define the mathematical form of each subproblem, (3) operation orders that specify the computational trajectory through the dependency graph of subproblems. The physical model is enhanced using new recursions that operate over the complex ensemble including coaxial and dangle stacking subensembles. The recursions are coded generically and then compiled with a quantity-specific evaluation algebra and operation order to generate an executable for each physical quantity: partition function, equilibrium base-pairing probabilities, MFE energy and proxy structure, suboptimal proxy structures, and Boltzmann sampled structures. For large complexes (e.g., 30 000 nt), scalability is achieved for partition function calculations using an overflow-safe evaluation algebra, and for equilibrium base-pairing probabilities using a backtrack-free operation order. A new blockwise operation order that treats subcomplex blocks for the complex species in a test tube ensemble enables dramatic speedups (e.g., 20-120× ) using vectorization and caching. With these performance enhancements, equilibrium analysis of substantial test tube ensembles can be performed in ≤ 1 min on a single computational core (e.g., partition function and equilibrium concentration for all complex species of up to six strands formed from two strand species of 300 nt each, or for all complex species of up to two strands formed from 80 strand species of 100 nt each). A new sampling algorithm simultaneously samples multiple structures from the complex ensemble to yield speedups of an order of magnitude or more as the number of structures increases above ≈103. These advances are available within the NUPACK 4.0 code base (www.nupack.org) which can be flexibly scripted using the all-new NUPACK Python module.Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over complex and test tube ensembles containing arbitrary numbers of interacting strand species, serving the needs of researchers in molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences. Here, to enhance the underlying physical model, ensure scalability for large calculations, and achieve dramatic speedups when calculating diverse physical quantities over complex and test tube ensembles, we introduce a unified dynamic programming framework that combines three ingredients: (1) recursions that specify the dependencies between subproblems and incorporate the details of the structural ensemble and the free energy model, (2) evaluation algebras that define the mathematical form of each subproblem, (3) operation orders that specify the computational trajectory through the dependency graph of subproblems. The physical model is enhanced using new recursions that operate over the complex ensemble including coaxial and dangle stacking subensembles. The recursions are coded generically and then compiled with a quantity-specific evaluation algebra and operation order to generate an executable for each physical quantity: partition function, equilibrium base-pairing probabilities, MFE energy and proxy structure, suboptimal proxy structures, and Boltzmann sampled structures. For large complexes (e.g., 30 000 nt), scalability is achieved for partition function calculations using an overflow-safe evaluation algebra, and for equilibrium base-pairing probabilities using a backtrack-free operation order. A new blockwise operation order that treats subcomplex blocks for the complex species in a test tube ensemble enables dramatic speedups (e.g., 20-120× ) using vectorization and caching. With these performance enhancements, equilibrium analysis of substantial test tube ensembles can be performed in ≤ 1 min on a single computational core (e.g., partition function and equilibrium concentration for all complex species of up to six strands formed from two strand species of 300 nt each, or for all complex species of up to two strands formed from 80 strand species of 100 nt each). A new sampling algorithm simultaneously samples multiple structures from the complex ensemble to yield speedups of an order of magnitude or more as the number of structures increases above ≈103. These advances are available within the NUPACK 4.0 code base (www.nupack.org) which can be flexibly scripted using the all-new NUPACK Python module.
AbstractList Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over complex and test tube ensembles containing arbitrary numbers of interacting strand species, serving the needs of researchers in molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences. Here, to enhance the underlying physical model, ensure scalability for large calculations, and achieve dramatic speedups when calculating diverse physical quantities over complex and test tube ensembles, we introduce a unified dynamic programming framework that combines three ingredients: (1) recursions that specify the dependencies between subproblems and incorporate the details of the structural ensemble and the free energy model, (2) evaluation algebras that define the mathematical form of each subproblem, (3) operation orders that specify the computational trajectory through the dependency graph of subproblems. The physical model is enhanced using new recursions that operate over the complex ensemble including coaxial and dangle stacking subensembles. The recursions are coded generically and then compiled with a quantity-specific evaluation algebra and operation order to generate an executable for each physical quantity: partition function, equilibrium base-pairing probabilities, MFE energy and proxy structure, suboptimal proxy structures, and Boltzmann sampled structures. For large complexes (e.g., 30 000 nt), scalability is achieved for partition function calculations using an overflow-safe evaluation algebra, and for equilibrium base-pairing probabilities using a backtrack-free operation order. A new blockwise operation order that treats subcomplex blocks for the complex species in a test tube ensemble enables dramatic speedups (e.g., 20-120× ) using vectorization and caching. With these performance enhancements, equilibrium analysis of substantial test tube ensembles can be performed in ≤ 1 min on a single computational core (e.g., partition function and equilibrium concentration for all complex species of up to six strands formed from two strand species of 300 nt each, or for all complex species of up to two strands formed from 80 strand species of 100 nt each). A new sampling algorithm simultaneously samples multiple structures from the complex ensemble to yield speedups of an order of magnitude or more as the number of structures increases above ≈103. These advances are available within the NUPACK 4.0 code base (www.nupack.org) which can be flexibly scripted using the all-new NUPACK Python module.Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over complex and test tube ensembles containing arbitrary numbers of interacting strand species, serving the needs of researchers in molecular programming, nucleic acid nanotechnology, synthetic biology, and across the life sciences. Here, to enhance the underlying physical model, ensure scalability for large calculations, and achieve dramatic speedups when calculating diverse physical quantities over complex and test tube ensembles, we introduce a unified dynamic programming framework that combines three ingredients: (1) recursions that specify the dependencies between subproblems and incorporate the details of the structural ensemble and the free energy model, (2) evaluation algebras that define the mathematical form of each subproblem, (3) operation orders that specify the computational trajectory through the dependency graph of subproblems. The physical model is enhanced using new recursions that operate over the complex ensemble including coaxial and dangle stacking subensembles. The recursions are coded generically and then compiled with a quantity-specific evaluation algebra and operation order to generate an executable for each physical quantity: partition function, equilibrium base-pairing probabilities, MFE energy and proxy structure, suboptimal proxy structures, and Boltzmann sampled structures. For large complexes (e.g., 30 000 nt), scalability is achieved for partition function calculations using an overflow-safe evaluation algebra, and for equilibrium base-pairing probabilities using a backtrack-free operation order. A new blockwise operation order that treats subcomplex blocks for the complex species in a test tube ensemble enables dramatic speedups (e.g., 20-120× ) using vectorization and caching. With these performance enhancements, equilibrium analysis of substantial test tube ensembles can be performed in ≤ 1 min on a single computational core (e.g., partition function and equilibrium concentration for all complex species of up to six strands formed from two strand species of 300 nt each, or for all complex species of up to two strands formed from 80 strand species of 100 nt each). A new sampling algorithm simultaneously samples multiple structures from the complex ensemble to yield speedups of an order of magnitude or more as the number of structures increases above ≈103. These advances are available within the NUPACK 4.0 code base (www.nupack.org) which can be flexibly scripted using the all-new NUPACK Python module.
Author nace, Mark E
Pierce, Niles A
Porubsky, Nicholas J
Author_xml – sequence: 1
  givenname: Mark E
  surname: nace
  fullname: nace, Mark E
– sequence: 2
  givenname: Nicholas J
  surname: Porubsky
  fullname: Porubsky, Nicholas J
– sequence: 3
  givenname: Niles A
  surname: Pierce
  fullname: Pierce, Niles A
BookMark eNpNUM1OAjEYbIwmIvIA3nr0ANht99fbBkFJ8CdBzuRr-y1Uuy1ul5h9AN_bNXpwLjOHmUlmLsip8w4JuYrYNGI8ugEVQuek8dNCMpZwcUIGPEqjScJScfpPn5NRCG-sR5KIROQD8lXSjTOVQU3vOge1UfSl8bsG6tq4HV30Aj99804r39B2j7R0YLtgAvUVXboWG1Dtj_PpqCz26VIZTddtA06HWzp3e3CqL3_0Gm0Y07UCC9JY03Zj2nvo-oCoL8lZBTbg6I-HZLOYv84eJqvn--WsXE0Uz_J2Eke5kKhYBSpBLTQr4krmSkImRIGQqkzkijMsCh2LJC2KfiWXlQQJeSaF4ENy_dt7aPzHEUO7rU1QaC049Mew5XHcX8XigvFvcN9qXA
CitedBy_id crossref_primary_10_1093_nar_gkac1086
crossref_primary_10_1371_journal_pone_0320282
crossref_primary_10_1021_jacs_2c11208
crossref_primary_10_1021_jacs_3c04344
crossref_primary_10_1038_s41586_024_07706_4
crossref_primary_10_1109_TNB_2024_3403158
crossref_primary_10_1016_j_bioorg_2024_107561
crossref_primary_10_1038_s41467_025_60455_4
crossref_primary_10_1016_j_nbt_2025_07_004
crossref_primary_10_1021_jacs_4c03148
crossref_primary_10_1261_rna_079756_123
crossref_primary_10_1002_mabi_202300427
crossref_primary_10_1016_j_trac_2023_116963
crossref_primary_10_1093_nar_gkac590
crossref_primary_10_1021_jacs_4c07221
crossref_primary_10_3390_ijms23084265
crossref_primary_10_1007_s11427_023_2306_x
crossref_primary_10_1093_nar_gkac650
crossref_primary_10_1038_s43588_024_00646_z
crossref_primary_10_1039_D3RA03995A
crossref_primary_10_1002_smtd_202401501
crossref_primary_10_1186_s13015_023_00229_z
crossref_primary_10_1016_j_aca_2022_339568
crossref_primary_10_1016_j_aca_2024_342530
crossref_primary_10_1038_s41467_024_45385_x
crossref_primary_10_1038_s41592_021_01187_3
crossref_primary_10_1093_bib_bbad421
crossref_primary_10_1016_j_bios_2023_115927
crossref_primary_10_1038_s41467_025_59389_8
crossref_primary_10_1002_advs_202409880
crossref_primary_10_1016_j_omtn_2021_12_039
crossref_primary_10_1038_s41467_023_36073_3
crossref_primary_10_1109_TNB_2021_3139079
crossref_primary_10_1039_D4NR05369A
crossref_primary_10_1007_s44258_024_00015_5
crossref_primary_10_7554_eLife_90156
crossref_primary_10_7554_eLife_90156_3
crossref_primary_10_1002_EXP_20210265
crossref_primary_10_1049_cit2_70055
crossref_primary_10_3390_life11111280
crossref_primary_10_1038_s41592_022_01653_6
crossref_primary_10_1093_nar_gkae980
crossref_primary_10_1038_s41467_023_42272_9
crossref_primary_10_1186_s13036_024_00459_8
ContentType Journal Article
DBID 7X8
DOI 10.1021/acssynbio.9b00523
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2161-5063
GroupedDBID 53G
55A
7X8
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
GGK
GNL
IH9
JG~
ROL
UI2
VF5
VG9
W1F
ID FETCH-LOGICAL-c278t-4183bec0fac5ed3d094fb8cba7339ea6c738c20e99d4356995532bfbaba87b332
IEDL.DBID 7X8
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582582100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2161-5063
IngestDate Thu Jul 10 17:41:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-4183bec0fac5ed3d094fb8cba7339ea6c738c20e99d4356995532bfbaba87b332
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2441610490
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2441610490
PublicationCentury 2000
PublicationDate 20201016
PublicationDateYYYYMMDD 2020-10-16
PublicationDate_xml – month: 10
  year: 2020
  text: 20201016
  day: 16
PublicationDecade 2020
PublicationTitle ACS synthetic biology
PublicationYear 2020
SSID ssj0000553538
Score 2.448667
Snippet Dynamic programming algorithms within the NUPACK software suite enable analysis of nucleic acid sequences over complex and test tube ensembles containing...
SourceID proquest
SourceType Aggregation Database
StartPage 2665
Title A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed
URI https://www.proquest.com/docview/2441610490
Volume 9
WOSCitedRecordID wos000582582100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UetCDb_HNCB4bm-42ya4XKdriqRSq0FvZJxY0qaYK_QH-b2fzUMGL4DmzEHYnM9_OTL6PkAtP2Y3AvBNQp2XQwYwSeJHCoB1bTU1iKA9dITaRDAZ8PBbDquCWV2OVdUwsArXJtK-RtzANITjxfarr2UvgVaN8d7WS0FgmDYZQxnt1MuZfNZYwilhUiFlTXBtEmI7rxiZtt6TO80WqptmlKKujv8JxkWP6m_99uy2yUaFL6JbusE2WbLpD1n9wDu6Sjy4gznSIPOG2VKOHYTmj9YzPoV8PawGiWUB0CDVtCWQOivqh_xUCLQeeCRlXd_XUgCe5TU1-Bb30sZgpAC-y9pQ3YYROUHKBL5qANjCaYcLcIw_93v3NXVBpMQSaJnyOp8gZHnfopI6sYQZvhU5xrWTCmLAy1gnjmoZWCIMALBYCt54qp6SSPFGM0X2ykmapPSBAuYqliWgiuOtYxZUVKqbOmo6yYVvrQ3Je7_EEfd03MGRqs7d88r3LR3-wOSZr1F-O_fhJfEIaDr9ne0pW9ft8mr-eFa7yCbx3ypw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Dynamic+Programming+Framework+for+the+Analysis+of+Interacting+Nucleic+Acid+Strands%3A+Enhanced+Models%2C+Scalability%2C+and+Speed&rft.jtitle=ACS+synthetic+biology&rft.au=nace%2C+Mark+E&rft.au=Porubsky%2C+Nicholas+J&rft.au=Pierce%2C+Niles+A&rft.date=2020-10-16&rft.issn=2161-5063&rft.eissn=2161-5063&rft.volume=9&rft.issue=10&rft.spage=2665&rft_id=info:doi/10.1021%2Facssynbio.9b00523&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon