Evidence Accumulation Models: Current Limitations and Future Directions
Evidence accumulation models (EAMs) have been the dominant models of speeded decision-making for several decades. These models propose that evidence accumulates for decision alternatives at some rate, until the evidence for one alternative reaches some threshold that triggers a decision. As a theory...
Gespeichert in:
| Veröffentlicht in: | Tutorials in quantitative methods for psychology Jg. 16; H. 2; S. 73 - 90 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Université d'Ottawa
01.04.2020
|
| Schlagworte: | |
| ISSN: | 1913-4126, 1913-4126 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Evidence accumulation models (EAMs) have been the dominant models of speeded decision-making for several decades. These models propose that evidence accumulates for decision alternatives at some rate, until the evidence for one alternative reaches some threshold that triggers a decision. As a theory, EAMs have provided an accurate account of the choice response time distributions in a range of decision-making tasks, and as a measurement tool, EAMs have provided direct insight into how cognitive processes differ between groups and experimental conditions, resulting in EAMs becoming the \emph {standard paradigm} of speeded decision-making. However, we argue that there are several limitations to how EAMs are currently tested and applied, which have begun to limit their value as a standard paradigm. Specifically, we believe that a theoretical plateau has been reached for the level of explanation that EAMs can provide about the decision-making process, and that applications of EAMs have started to become restrictive and of limited value. We provide several recommendations for how researchers can help to overcome these limitations. As a theory, we believe that EAMs can provide further value through being constrained by sources of data beyond the standard choice response time distributions, being extended to the entire decision-making process from encoding to responding, and having the random sources of variability replaced by systematic sources of variability. As a measurement tool, we believe that EAMs can provide further value through being a default method of inference for cognitive psychology in place of mean response time and choice, and being applied to a broader range of empirical questions that better capture individual differences in cognitive processes. |
|---|---|
| AbstractList | Evidence accumulation models (EAMs) have been the dominant models of speeded decision-making for several decades. These models propose that evidence accumulates for decision alternatives at some rate, until the evidence for one alternative reaches some threshold that triggers a decision. As a theory, EAMs have provided an accurate account of the choice response time distributions in a range of decision-making tasks, and as a measurement tool, EAMs have provided direct insight into how cognitive processes differ between groups and experimental conditions, resulting in EAMs becoming the \emph {standard paradigm} of speeded decision-making. However, we argue that there are several limitations to how EAMs are currently tested and applied, which have begun to limit their value as a standard paradigm. Specifically, we believe that a theoretical plateau has been reached for the level of explanation that EAMs can provide about the decision-making process, and that applications of EAMs have started to become restrictive and of limited value. We provide several recommendations for how researchers can help to overcome these limitations. As a theory, we believe that EAMs can provide further value through being constrained by sources of data beyond the standard choice response time distributions, being extended to the entire decision-making process from encoding to responding, and having the random sources of variability replaced by systematic sources of variability. As a measurement tool, we believe that EAMs can provide further value through being a default method of inference for cognitive psychology in place of mean response time and choice, and being applied to a broader range of empirical questions that better capture individual differences in cognitive processes. |
| Author | Wagenmakers, Eric-Jan Evans, Nathan J. |
| Author_xml | – sequence: 1 fullname: Evans, Nathan J. – sequence: 2 fullname: Wagenmakers, Eric-Jan |
| BookMark | eNpNUDtPwzAYtFCRKKUza_5Agl-xY7aqtKVSEQvM0Wf7C3KVR3EcJP49VWHghrvTnXTD3ZJZP_RIyD2jBaem4g_pszsVTBW8OFEtrsicGSZyybia_fM3ZDmOR3qGKplUYk52m6_gsXeYrZybuqmFFIY-exk8tuNjtp5ixD5lh9CFdKnGDHqfbac0RcyeQkR3Se_IdQPtiMs_XZD37eZt_ZwfXnf79eqQO66rlAshpbcUjZWNrpoStdLgTQnaVK7iSmtpmERoGHIHTiCgQl5BwxtNsbJiQfa_u36AY32KoYP4XQ8Q6kswxI8aYgquxdpbKC3DRprSSlDOGs_OBNYKKun5pR9lgF9j |
| CitedBy_id | crossref_primary_10_1038_s41467_025_58228_0 crossref_primary_10_1038_s41598_022_09885_4 crossref_primary_10_3758_s13414_023_02682_9 crossref_primary_10_3758_s13423_021_01900_5 crossref_primary_10_1016_j_enganabound_2023_03_005 crossref_primary_10_1016_j_ijhcs_2024_103224 crossref_primary_10_1002_ijop_13238 crossref_primary_10_1016_j_tics_2024_07_004 crossref_primary_10_1016_j_tics_2022_11_009 crossref_primary_10_1038_s41598_024_71762_z crossref_primary_10_3389_fnhum_2023_1214485 crossref_primary_10_1007_s42113_021_00115_0 crossref_primary_10_1007_s11238_025_10040_4 crossref_primary_10_3758_s13428_025_02810_3 crossref_primary_10_3758_s13421_020_01117_2 crossref_primary_10_1109_ACCESS_2023_3322959 crossref_primary_10_1038_s41598_023_32841_9 crossref_primary_10_1080_23273798_2024_2387226 crossref_primary_10_1162_jocn_a_01663 crossref_primary_10_3758_s13423_023_02371_6 crossref_primary_10_1098_rsos_231613 crossref_primary_10_7554_eLife_98351 crossref_primary_10_1016_j_chb_2025_108720 crossref_primary_10_1016_j_jocm_2024_100469 crossref_primary_10_3389_fpsyg_2022_1039172 crossref_primary_10_1080_13825585_2024_2442786 crossref_primary_10_1177_09637214221141692 crossref_primary_10_1177_17470218241228859 crossref_primary_10_3758_s13423_021_02003_x crossref_primary_10_1016_j_trf_2024_09_020 crossref_primary_10_1162_imag_a_00338 crossref_primary_10_1080_20445911_2022_2055560 crossref_primary_10_3389_fncom_2023_1222924 crossref_primary_10_3758_s13414_022_02650_9 crossref_primary_10_1177_03010066211017458 crossref_primary_10_1177_17470218251357942 crossref_primary_10_1016_j_bpsgos_2021_02_001 crossref_primary_10_1016_j_concog_2024_103763 crossref_primary_10_1177_17470218231176950 crossref_primary_10_1523_JNEUROSCI_1232_21_2021 crossref_primary_10_7554_eLife_98351_3 crossref_primary_10_1017_S0954579422000645 crossref_primary_10_3758_s13423_023_02418_8 crossref_primary_10_3758_s13423_025_02680_y |
| ContentType | Journal Article |
| DBID | DOA |
| DOI | 10.20982/tqmp.16.2.p073 |
| DatabaseName | DOAJ Directory of Open Access Journals |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1913-4126 |
| EndPage | 90 |
| ExternalDocumentID | oai_doaj_org_article_dba5b1ef495b4a6cb9d1cb9abb304007 |
| GroupedDBID | 53G 5VS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ GX1 KQ8 M~E |
| ID | FETCH-LOGICAL-c278t-3344db0e9b4f78f5e767ad95a798c826774914eaf1e2cac3eae6e28af2f70e8b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528188000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1913-4126 |
| IngestDate | Fri Oct 03 12:45:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c278t-3344db0e9b4f78f5e767ad95a798c826774914eaf1e2cac3eae6e28af2f70e8b3 |
| OpenAccessLink | https://doaj.org/article/dba5b1ef495b4a6cb9d1cb9abb304007 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dba5b1ef495b4a6cb9d1cb9abb304007 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Tutorials in quantitative methods for psychology |
| PublicationYear | 2020 |
| Publisher | Université d'Ottawa |
| Publisher_xml | – name: Université d'Ottawa |
| SSID | ssj0000651463 |
| Score | 2.0140061 |
| Snippet | Evidence accumulation models (EAMs) have been the dominant models of speeded decision-making for several decades. These models propose that evidence... |
| SourceID | doaj |
| SourceType | Open Website |
| StartPage | 73 |
| SubjectTerms | sampling models |
| Title | Evidence Accumulation Models: Current Limitations and Future Directions |
| URI | https://doaj.org/article/dba5b1ef495b4a6cb9d1cb9abb304007 |
| Volume | 16 |
| WOSCitedRecordID | wos000528188000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1913-4126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651463 issn: 1913-4126 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1913-4126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651463 issn: 1913-4126 databaseCode: M~E dateStart: 20050101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09SwMxGA5SHLqIn_hNBtdrk1zukrhVaXWxOCh0O_LxBgR71vYquPjbzSWndHNxyfAGQsgb3jxPSJ4HoSsmA10LzCozWkDGS-8zA6XLtPZALXdO2WQ2IaZTOZupxw2rr_ZNWJIHTgs3dEYXhoIPQN5wXVqjHA2NNiZv91_8R06E2iBTqQYHIBBt1AIfyTNOWZl0fRhRkg2b9_liQMtBIJWkdUzfkOuP58pkF-10gBCP0kT20BbU-6j_W5c-D9Ddj_MnHlm7nnd-W7h1MXtdXeNOYQnHr0rp_g3r2uFJVAvBXU0L0UP0PBk_3d5nnf9BZpmQTZbnnDtDQBnuhfQFiFJopwotlLSBFgTkpigH7Skwq20OGkpgUnvmBQFp8iPUq99qOEY49HtNClc6KzkEUEQUAyoMKcAXNvcn6KZdgmqRJC6qVnQ6BkIqqi4V1V-pOP2PQc5Qn7WUNj6OOUe9ZrmGC7RtP5qX1fIyZjm0D1_jb2FVsVA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+Accumulation+Models%3A+Current+Limitations+and+Future+Directions&rft.jtitle=Tutorials+in+quantitative+methods+for+psychology&rft.au=Evans%2C+Nathan+J.&rft.au=Wagenmakers%2C+Eric-Jan&rft.date=2020-04-01&rft.pub=Universit%C3%A9+d%27Ottawa&rft.issn=1913-4126&rft.eissn=1913-4126&rft.volume=16&rft.issue=2&rft.spage=73&rft.epage=90&rft_id=info:doi/10.20982%2Ftqmp.16.2.p073&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dba5b1ef495b4a6cb9d1cb9abb304007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-4126&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-4126&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-4126&client=summon |