A review on evaluating mental stress by deep learning using EEG signals

Mental stress is a common problem that affects individuals all over the world. Stress reduces human functionality during routine work and may lead to severe health defects. Early detection of stress is important for preventing diseases and other negative health-related consequences of stress. Severa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 36; číslo 21; s. 12629 - 12654
Hlavní autoři: Badr, Yara, Tariq, Usman, Al-Shargie, Fares, Babiloni, Fabio, Al Mughairbi, Fadwa, Al-Nashash, Hasan
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.07.2024
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mental stress is a common problem that affects individuals all over the world. Stress reduces human functionality during routine work and may lead to severe health defects. Early detection of stress is important for preventing diseases and other negative health-related consequences of stress. Several neuroimaging techniques have been utilized to assess mental stress, however, due to its ease of use, robustness, and non-invasiveness, electroencephalography (EEG) is commonly used. This paper aims to fill a knowledge gap by reviewing the different EEG-related deep learning algorithms with a focus on Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) for the evaluation of mental stress. The review focuses on data representation, individual deep neural network model architectures, hybrid models, and results amongst others. The contributions of the paper address important issues such as data representation and model architectures. Out of all reviewed papers, 67% used CNN, 9% LSTM, and 24% hybrid models. Based on the reviewed literature, we found that dataset size and different representations contributed to the performance of the proposed networks. Raw EEG data produced classification accuracy around 62% while using spectral and topographical representation produced up to 88%. Nevertheless, the roles of generalizability across different deep learning models and individual differences remain key areas of inquiry. The review encourages the exploration of innovative avenues, such as EEG data image representations concurrently with graph convolutional neural networks (GCN), to mitigate the impact of inter-subject variability. This novel approach not only allows us to harmonize structural nuances within the data but also facilitates the integration of temporal dynamics, thereby enabling a more comprehensive assessment of mental stress levels.
AbstractList Mental stress is a common problem that affects individuals all over the world. Stress reduces human functionality during routine work and may lead to severe health defects. Early detection of stress is important for preventing diseases and other negative health-related consequences of stress. Several neuroimaging techniques have been utilized to assess mental stress, however, due to its ease of use, robustness, and non-invasiveness, electroencephalography (EEG) is commonly used. This paper aims to fill a knowledge gap by reviewing the different EEG-related deep learning algorithms with a focus on Convolutional Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) for the evaluation of mental stress. The review focuses on data representation, individual deep neural network model architectures, hybrid models, and results amongst others. The contributions of the paper address important issues such as data representation and model architectures. Out of all reviewed papers, 67% used CNN, 9% LSTM, and 24% hybrid models. Based on the reviewed literature, we found that dataset size and different representations contributed to the performance of the proposed networks. Raw EEG data produced classification accuracy around 62% while using spectral and topographical representation produced up to 88%. Nevertheless, the roles of generalizability across different deep learning models and individual differences remain key areas of inquiry. The review encourages the exploration of innovative avenues, such as EEG data image representations concurrently with graph convolutional neural networks (GCN), to mitigate the impact of inter-subject variability. This novel approach not only allows us to harmonize structural nuances within the data but also facilitates the integration of temporal dynamics, thereby enabling a more comprehensive assessment of mental stress levels.
Author Al Mughairbi, Fadwa
Badr, Yara
Tariq, Usman
Babiloni, Fabio
Al-Nashash, Hasan
Al-Shargie, Fares
Author_xml – sequence: 1
  givenname: Yara
  surname: Badr
  fullname: Badr, Yara
  organization: Biomedical Engineering, American University of Sharjah
– sequence: 2
  givenname: Usman
  surname: Tariq
  fullname: Tariq, Usman
  organization: Electrical Engineering, American University of Sharjah
– sequence: 3
  givenname: Fares
  surname: Al-Shargie
  fullname: Al-Shargie, Fares
  organization: Electrical Engineering, American University of Sharjah
– sequence: 4
  givenname: Fabio
  surname: Babiloni
  fullname: Babiloni, Fabio
  organization: Molecular Medicine, University of Rome Sapienza
– sequence: 5
  givenname: Fadwa
  surname: Al Mughairbi
  fullname: Al Mughairbi, Fadwa
  organization: Clinical Psychology, UAE University
– sequence: 6
  givenname: Hasan
  orcidid: 0000-0002-9685-4937
  surname: Al-Nashash
  fullname: Al-Nashash, Hasan
  email: hnashash@aus.edu
  organization: Electrical Engineering, American University of Sharjah
BookMark eNp9kMFOwzAMhiM0JLbBC3CKxLngJE2aHKdpDKRJXOAcpZ07derSkbRDe3taioTEYRf74P-zrW9GJr7xSMg9g0cGkD1FAMlZAjxNwGgwibwiU5YKkQiQekKmYNJ-rFJxQ2Yx7gEgVVpOyXpBA54q_KKNp3hydefayu_oAX3rahrbgDHS_Ey3iEdaowt-GHdxqKvVmsZq510db8l12Te8--1z8vG8el--JJu39etysUkKnmmZlNKg2EpdMoXMGc654rmSSvLCmBx1qoSQwAsQqS4Vy4SSWrNimztuoEAl5uRh3HsMzWeHsbX7pgvDB1ZAZpTMDGd9io-pIjQxBiztMVQHF86WgR2E2VGY7YXZH2FW9pD-BxVV29tofBtcVV9GxYjG_o7fYfj76gL1DQIzf14
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108124
crossref_primary_10_17816_humeco678196
crossref_primary_10_1007_s44163_025_00412_8
crossref_primary_10_3390_jcm14155357
crossref_primary_10_1016_j_inffus_2025_103368
crossref_primary_10_1109_TNSRE_2025_3576924
crossref_primary_10_1007_s00521_024_10207_0
crossref_primary_10_1109_TCPMT_2025_3539978
crossref_primary_10_1371_journal_pone_0319702
crossref_primary_10_1109_ACCESS_2025_3553932
crossref_primary_10_1007_s13042_024_02455_2
crossref_primary_10_13005_bpj_3052
crossref_primary_10_3390_s24216965
crossref_primary_10_1109_ACCESS_2025_3571437
crossref_primary_10_1016_j_chemolab_2025_105375
crossref_primary_10_46604_peti_2024_14819
Cites_doi 10.1016/j.bspc.2021.102741
10.1016/j.bspc.2020.101989
10.1016/j.apnr.2006.02.001
10.1016/j.bspc.2015.02.012
10.1007/s00521-022-07540-7
10.3389/frai.2020.00004
10.1155/2021/4620487
10.1007/s11517-017-1733-8
10.1109/ACCESS.2019.2917718
10.1186/s40708-021-00133-5
10.1016/j.knosys.2020.105596
10.1016/j.bspc.2017.07.022
10.29252/NIRP.BCN.9.2.107
10.1109/TAFFC.2019.2927337
10.1155/2022/7607592
10.1007/s00521-021-06352-5
10.1016/j.imu.2020.100412
10.1016/j.patcog.2017.10.013
10.1016/j.matpr.2021.05.659
10.1186/s12916-017-0805-9
10.1364/BOE.7.003882
10.1364/BOE.8.002583
10.1007/s12529-016-9562-y
10.3390/w11071387
10.1155/2020/7426461
10.1007/s11571-018-9496-y
10.1109/ACCESS.2019.2912200
10.1016/j.compbiomed.2021.104377
10.1371/journal.pone.0180944
10.1155/2018/1049257
10.1016/j.pjnns.2016.03.006
10.1016/j.ijpsycho.2018.02.005
10.1109/IJCNN.2011.6033297
10.3390/s20071886
10.1109/ICASSP.2018.8462243
10.1007/978-981-10-0266-3_4
10.1007/978-981-16-6887-6_3
10.1523/JNEUROSCI.3422-03.2004
10.1149/10701.16459ecst
10.2224/sbp.2013.41.9.1457
10.1016/j.neubiorev.2011.02.003
10.1109/JBHI.2019.2926407
10.1109/ICACCI.2018.8554715
10.1007/s00213-005-0147-8
10.29252/jncog.1.1.16
10.1109/SSD54932.2022.9955724
10.3390/s19050987
10.31224/osf.io/kaqew
10.1109/TNB.2015.2420576
10.1109/ICCSCE.2011.6190573
10.1007/978-3-030-49724-8_4
10.23919/ICACT.2018.8323716
10.23919/ICACT.2019.8702048
10.1088/0967-3334/36/7/1351
10.1016/j.dajour.2023.100211
10.3390/s20092505
10.1109/EMBC.2016.7591884
10.1109/ACCESS.2019.2927768
10.1111/j.1440-1681.2008.04904.x
10.1002/9780470987483.ch7
10.3390/electronics10222840
10.1186/s40537-021-00444-8
10.1109/ICSGRC.2012.6287173
10.1109/ICACCS.2013.6938735
10.1109/TNSRE.2022.3174821
10.1109/CSNT51715.2021.9509713
10.1007/s11906-001-0047-1
10.3390/s21093050
10.3390/s21155043
10.3390/brainsci9120376
10.13053/rcs-145-1-12
10.1046/j.1526-4610.1997.3708499.x
10.1007/978-3-030-59277-6_21
10.1111/1469-8986.3950585
10.1109/ICBDACI.2017.8070809
10.3390/ijerph15112461
10.3389/fpsyg.2020.01759
10.1007/978-981-19-6004-8_52
10.1088/1741-2552/ab0ab5
10.1002/capr.12439
10.1007/s00779-012-0593-3
10.1089/tmj.2017.0250
10.1007/978-3-030-00220-6_21
10.1007/978-1-4614-4984-3
10.1097/00006842-199903000-00014
10.1007/978-1-4842-6150-7
10.1007/978-3-540-30120-2_57
10.1080/10447318.2013.848320
10.1109/ICMLA.2017.0-110
10.1007/s00420-009-0467-9
10.1111/j.1469-8986.2012.01384.x
10.1109/SMC.2016.7844738
10.1007/978-3-319-47653-7
10.1109/ICSIPA.2015.7412205
10.3390/jmse11020259
10.1007/s11886-016-0798-6
10.3126/kumj.v10i3.8021
10.1109/I2MTC.2013.6555658
10.1080/02646838.2018.1540861
10.1016/j.physbeh.2015.09.032
10.5772/9651
10.1016/S0022-3999(97)00305-X
10.1109/TNNLS.2022.3159573
10.1016/j.asoc.2020.106954
10.1016/j.neuroimage.2011.07.030
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-024-09809-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

CrossRef
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 12654
ExternalDocumentID 10_1007_s00521_024_09809_5
GrantInformation_xml – fundername: American University of Sharjah
  grantid: FRG20-L-E25
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2785-f59e3d58f16e1a922262b65652c99be84633502c0348f617365881cdba290ce63
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Wed Nov 05 03:28:23 EST 2025
Sat Nov 29 04:30:42 EST 2025
Tue Nov 18 22:17:17 EST 2025
Fri Feb 21 02:39:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Deep learning
CNN
Hybrid model
LSTM
EEG
Mental stress
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2785-f59e3d58f16e1a922262b65652c99be84633502c0348f617365881cdba290ce63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9685-4937
OpenAccessLink https://link.springer.com/10.1007/s00521-024-09809-5
PQID 3079657921
PQPubID 2043988
PageCount 26
ParticipantIDs proquest_journals_3079657921
crossref_primary_10_1007_s00521_024_09809_5
crossref_citationtrail_10_1007_s00521_024_09809_5
springer_journals_10_1007_s00521_024_09809_5
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Abhishek, Nallavan (CR111) 2022; 3
Phutela, Relan, Gabrani, Kumaraguru, Samuel (CR115) 2022
Kamińska, Smółka, Zwoliński (CR77) 2021; 10
Esler (CR11) 2008; 35
CR39
Penchina, Sundaresan, Cheong, Martel (CR70) 2020
Al-shargie, Tang, Badruddin, Kiguchi (CR49) 2018; 56
CR35
Ong, Abdullah, Danaee, Soh, Soh, Japar (CR21) 2019; 37
Lataster (CR43) 2011; 58
Siuly, Li, Zhang (CR61) 2016
Bao, Yue, Rao (CR102) 2017
Le, Ho, Lee, Jung (CR105) 2019; 11
Geslani, Gaebelein (CR19) 2013; 41
Duffy, Shankardass, McAnulty, Als (CR62) 2017
CR48
CR47
Al-Shargie, Tang, Kiguchi (CR37) 2017; 8
Malviya, Mal (CR116) 2022
Ikram (CR121) 2023; 11
Shon, Im, Park, Lim, Jang, Kim (CR78) 2018; 15
Arsalan, Majid, Butt, Anwar (CR51) 2019; 23
Pruessner, Champagne, Meaney, Dagher (CR42) 2004; 24
Fu (CR110) 2022; 30
Park, Choi, Lee, Lee, An, Kim (CR86) 2011; 3
Sundaresan, Penchina, Cheong, Grace, Valero-Cabré, Martel (CR72) 2021; 8
Islam, Islam, Asraf (CR95) 2020; 20
Sengupta (CR101) 2020; 194
Castaldo, Melillo, Bracale, Caserta, Triassi, Pecchia (CR18) 2015; 18
CR54
CR50
Alonso, Romero, Ballester, Antonijoan, Mañanas (CR80) 2015; 36
Gu (CR100) 2018; 77
Bhatnagar, Khandelwal, Jain, Vyawahare (CR57) 2023; 7
Wang, Tong, Heng (CR118) 2019; 7
Abdul Hamid, Goyal, Bedi (CR104) 2021
Kotlęga, Gołąb-Janowska, Masztalewicz, Ciećwież, Nowacki (CR12) 2016; 50
Katmah, Al-Shargie, Tariq, Babiloni, Al-Mughairbi, Al-Nashash (CR31) 2021; 21
Fischer, Nater, Laferton (CR17) 2016
Alturki, AlSharabi, Abdurraqeeb, Aljalal (CR82) 2020; 20
Zeng, Yang, Dai, Qin, Zhang, Kong (CR69) 2018; 12
CR68
Emmert-Streib, Yang, Feng, Tripathi, Dehmer (CR59) 2020
Altaheri (CR112) 2021
Saeed, Anwar, Khalid, Majid, Bagci (CR55) 2020; 20
Lee (CR5) 2022
Berntson, Cacioppo (CR28) 2004; 41
Hasan, Kim (CR81) 2019; 9
Koolhaas (CR4) 2011; 35
CR60
Al-Shargie, Tang, Badruddin, Kiguchi (CR38) 2016
Darzi, Azami, Khosrowabadi (CR56) 2019; 1
Aljerf, AlMasri (CR23) 2018; 2
Karyotaki (CR1) 2020; 11
Kiourt, Pavlidis, Markantonatou (CR98) 2020
Jiang, Bian, Tian (CR65) 2019; 19
Hu (CR40) 2015; 14
Aljerf, AlMasri (CR6) 2018; 130
Ramos-Aguilar, Olvera-López, Olmos-Pineda (CR89) 2017; 145
Ring, Burns, Carroll (CR29) 2002; 39
Alzubaidi (CR93) 2021; 8
Martínez-Rodrigo, García-Martínez, Huerta, Alcaraz (CR73) 2021; 21
CR79
Boucsein, Fowles, Grimnes, Ben-Shakhar, Roth, Dawson, Filion (CR32) 2012; 49
Buddeberg-Fischer, Stamm, Buddeberg, Klaghofer (CR20) 2010; 83
CR76
Gaurav, Kumar (CR41) 2018; 8
CR113
CR71
CR117
Das Chakladar, Dey, Roy, Dogra (CR75) 2020; 60
Andersson, Finset (CR30) 1998; 44
CR3
CR8
Alickovic, Kevric, Subasi (CR83) 2018; 39
CR88
CR87
Kanoga, Mitsukura (CR64) 2017; 69
CR84
CR122
CR120
Umar Saeed, Anwar, Majid, Awais, Alnowami (CR46) 2018; 2018
Craik, He, Contreras-Vidal (CR58) 2019; 16
Gibson, Checkley, Papadopoulos, Poon, Daley, Wardle (CR34) 1999; 61
Jebelli, Khalili, Lee (CR67) 2019
Shrestha, Mahmood (CR103) 2019; 7
Sulaiman, Taib, Lias, Murat, Aris, Hamid (CR52) 2011; 12
Hanrahan, McCarthy, Kleiber, Lutgendorf, Tsalikian (CR33) 2006; 19
Lampert (CR14) 2016; 18
Ogrodniczuk, Kealy, Laverdière (CR2) 2021; 21
Al-Shargie, Kiguchi, Badruddin, Dass, Hani, Tang (CR36) 2016; 7
CR99
Shriram, Sundhararajan, Daimiwal (CR63) 2013; 7
CR97
Basnet, Jaiswal, Adhikari, Shyangwa (CR16) 2012; 10
CR96
Rahman, Watanobe, Nakamura (CR108) 2020; 2020
Pickering (CR13) 2001; 3
CR92
CR91
CR90
Pedrotti (CR24) 2014; 30
Hwang, You, Vaessen, Myin-Germeys, Park, Zhang (CR109) 2018; 24
Giannakakis, Grigoriadis, Giannakaki, Simantiraki, Roniotis, Tsiknakis (CR7) 2019
Khosrowabadi (CR10) 2018; 9
Mumtaz, Rasheed, Irfan (CR66) 2021; 68
Masood, Alghamdi (CR94) 2019; 7
Arsalan, Majid (CR9) 2021; 133
Sinha (CR44) 2005; 183
Alhagry, Fahmy, El-Khoribi (CR114) 2017; 8
Gossett (CR45) 2018; 125
Peng (CR85) 2013; 17
CR27
CR26
CR22
Rajendran, Jayalalitha, Adalarasu, Usha (CR53) 2022; 107
Khan (CR74) 2021; 2021
Yin, Zheng, Hu, Cui (CR119) 2021; 100
Herborn (CR25) 2015; 152
Bansevicius, Westgaard, Jensen (CR15) 1997; 37
CR106
CR107
C Ring (9809_CR29) 2002; 39
B Basnet (9809_CR16) 2012; 10
KA Herborn (9809_CR25) 2015; 152
D Shon (9809_CR78) 2018; 15
S Alhagry (9809_CR114) 2017; 8
9809_CR120
H Jebelli (9809_CR67) 2019
EL Gibson (9809_CR34) 1999; 61
9809_CR96
9809_CR122
R Lampert (9809_CR14) 2016; 18
9809_CR97
XH Le (9809_CR105) 2019; 11
9809_CR99
GG Berntson (9809_CR28) 2004; 41
B Penchina (9809_CR70) 2020
9809_CR26
9809_CR27
X Jiang (9809_CR65) 2019; 19
9809_CR22
SM Umar Saeed (9809_CR46) 2018; 2018
A Arsalan (9809_CR9) 2021; 133
D Kamińska (9809_CR77) 2021; 10
R Katmah (9809_CR31) 2021; 21
B Hwang (9809_CR109) 2018; 24
F Al-Shargie (9809_CR37) 2017; 8
JM Koolhaas (9809_CR4) 2011; 35
R Sinha (9809_CR44) 2005; 183
S Fischer (9809_CR17) 2016
MZ Islam (9809_CR95) 2020; 20
9809_CR79
R Ramos-Aguilar (9809_CR89) 2017; 145
9809_CR71
K Hanrahan (9809_CR33) 2006; 19
EW Gossett (9809_CR45) 2018; 125
9809_CR76
9809_CR106
9809_CR107
D Das Chakladar (9809_CR75) 2020; 60
E Karyotaki (9809_CR1) 2020; 11
RS Lee (9809_CR5) 2022
D Kotlęga (9809_CR12) 2016; 50
L Aljerf (9809_CR23) 2018; 2
AR Gaurav (9809_CR41) 2018; 8
M Esler (9809_CR11) 2008; 35
KS Park (9809_CR86) 2011; 3
SL Ong (9809_CR21) 2019; 37
W Boucsein (9809_CR32) 2012; 49
M Pedrotti (9809_CR24) 2014; 30
F Al-shargie (9809_CR49) 2018; 56
9809_CR84
L Aljerf (9809_CR6) 2018; 130
9809_CR87
R Fu (9809_CR110) 2022; 30
9809_CR113
9809_CR88
9809_CR117
S Siuly (9809_CR61) 2016
9809_CR90
L Malviya (9809_CR116) 2022
A Martínez-Rodrigo (9809_CR73) 2021; 21
9809_CR91
9809_CR92
S Kanoga (9809_CR64) 2017; 69
N Phutela (9809_CR115) 2022
X Yin (9809_CR119) 2021; 100
R Khosrowabadi (9809_CR10) 2018; 9
F Al-Shargie (9809_CR36) 2016; 7
A Craik (9809_CR58) 2019; 16
JC Pruessner (9809_CR42) 2004; 24
M Rahman (9809_CR108) 2020; 2020
9809_CR50
F Emmert-Streib (9809_CR59) 2020
9809_CR54
R Shriram (9809_CR63) 2013; 7
W Mumtaz (9809_CR66) 2021; 68
S Andersson (9809_CR30) 1998; 44
V Rajendran (9809_CR53) 2022; 107
FM Al-Shargie (9809_CR38) 2016
Z Wang (9809_CR118) 2019; 7
B Hu (9809_CR40) 2015; 14
C Kiourt (9809_CR98) 2020
9809_CR68
J Alonso (9809_CR80) 2015; 36
9809_CR60
F Duffy (9809_CR62) 2017
SMU Saeed (9809_CR55) 2020; 20
W Bao (9809_CR102) 2017
DSB Abdul Hamid (9809_CR104) 2021
JS Ogrodniczuk (9809_CR2) 2021; 21
E Alickovic (9809_CR83) 2018; 39
R Castaldo (9809_CR18) 2015; 18
GP Geslani (9809_CR19) 2013; 41
T Khan (9809_CR74) 2021; 2021
9809_CR35
A Abhishek (9809_CR111) 2022; 3
9809_CR39
S Bhatnagar (9809_CR57) 2023; 7
MJ Hasan (9809_CR81) 2019; 9
FA Alturki (9809_CR82) 2020; 20
G Giannakakis (9809_CR7) 2019
A Sundaresan (9809_CR72) 2021; 8
H Peng (9809_CR85) 2013; 17
A Shrestha (9809_CR103) 2019; 7
A Arsalan (9809_CR51) 2019; 23
A Darzi (9809_CR56) 2019; 1
9809_CR47
B Buddeberg-Fischer (9809_CR20) 2010; 83
9809_CR48
J Lataster (9809_CR43) 2011; 58
J Gu (9809_CR100) 2018; 77
RMA Ikram (9809_CR121) 2023; 11
9809_CR8
L Alzubaidi (9809_CR93) 2021; 8
H Altaheri (9809_CR112) 2021
N Sulaiman (9809_CR52) 2011; 12
S Sengupta (9809_CR101) 2020; 194
D Bansevicius (9809_CR15) 1997; 37
9809_CR3
TG Pickering (9809_CR13) 2001; 3
K Masood (9809_CR94) 2019; 7
H Zeng (9809_CR69) 2018; 12
References_xml – ident: CR22
– volume: 17
  start-page: 1341
  issue: 7
  year: 2013
  end-page: 1347
  ident: CR85
  article-title: A method of identifying chronic stress by EEG
  publication-title: Pers Ubiquit Comput
– volume: 183
  start-page: 171
  issue: 2
  year: 2005
  end-page: 180
  ident: CR44
  article-title: Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study
  publication-title: Psychopharmacology
– volume: 19
  start-page: 987
  issue: 5
  year: 2019
  ident: CR65
  article-title: Removal of Artifacts from EEG Signals: A Review
  publication-title: Sensors
– ident: CR97
– ident: CR68
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  end-page: 74
  ident: CR93
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J Big Data
– ident: CR39
– start-page: 15
  year: 2016
  end-page: 19
  ident: CR38
  article-title: Mental stress quantification using EEG signals
  publication-title: International conference for innovation in biomedical engineering and life sciences
– volume: 83
  start-page: 373
  issue: 4
  year: 2010
  end-page: 379
  ident: CR20
  article-title: Chronic stress experience in young physicians: impact of person-and workplace-related factors
  publication-title: Int Arch Occup Environ Health
– volume: 68
  start-page: 102741
  year: 2021
  ident: CR66
  article-title: Review of challenges associated with the EEG artifact removal methods
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102741
– ident: CR54
– start-page: 173
  year: 2019
  end-page: 180
  ident: CR67
  article-title: Mobile EEG-based workers’ stress recognition by applying deep neural network
  publication-title: Advances in informatics and computing in civil and construction engineering
– volume: 60
  start-page: 101989
  year: 2020
  ident: CR75
  article-title: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101989
– ident: CR8
– volume: 7
  start-page: 93711
  year: 2019
  end-page: 93722
  ident: CR118
  article-title: Phase-locking value based graph convolutional neural networks for emotion recognition
  publication-title: IEEE Access
– ident: CR106
– volume: 100
  start-page: 106954
  year: 2021
  ident: CR119
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Appl Soft Comp
– volume: 36
  start-page: 1351
  issue: 7
  year: 2015
  ident: CR80
  article-title: Stress assessment based on EEG univariate features and functional connectivity measures
  publication-title: Physiol Meas
– ident: CR71
– volume: 39
  start-page: 585
  issue: 5
  year: 2002
  end-page: 590
  ident: CR29
  article-title: Shifting hemodynamics of blood pressure control during prolonged mental stress
  publication-title: Psychophysiology
– volume: 19
  start-page: 95
  issue: 2
  year: 2006
  end-page: 101
  ident: CR33
  article-title: Strategies for salivary cortisol collection and analysis in research with children
  publication-title: Appl Nurs Res
  doi: 10.1016/j.apnr.2006.02.001
– volume: 24
  start-page: 2825
  issue: 11
  year: 2004
  end-page: 2831
  ident: CR42
  article-title: Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C] raclopride
  publication-title: J Neurosci
– ident: CR92
– ident: CR88
– volume: 145
  start-page: 151
  year: 2017
  end-page: 162
  ident: CR89
  article-title: Analysis of EEG signal processing techniques based on spectrograms
  publication-title: Res Comput Sci
– volume: 18
  start-page: 370
  year: 2015
  end-page: 377
  ident: CR18
  article-title: Acute mental stress assessment via short term HRV analysis in healthy adults: a systematic review with meta-analysis
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.02.012
– ident: CR60
– year: 2022
  ident: CR116
  article-title: A novel technique for stress detection from EEG signal using hybrid deep learning model
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07540-7
– volume: 41
  start-page: 57
  issue: 2
  year: 2004
  end-page: 64
  ident: CR28
  article-title: Heart rate variability: stress and psychiatric conditions
  publication-title: Dyn Electrocardiogr
– start-page: 227
  year: 2020
  end-page: 238
  ident: CR70
  article-title: Deep LSTM recurrent neural network for anxiety classification from EEG in adolescents with autism
  publication-title: Brain Informatics: 13th international conference, BI 2020, Padua, Italy, September 19, 2020 proceedings
– volume: 14
  start-page: 553
  issue: 5
  year: 2015
  end-page: 561
  ident: CR40
  article-title: Signal quality assessment model for wearable EEG sensor on prediction of mental stress
  publication-title: IEEE Trans Nanobiosci
– ident: CR91
– ident: CR47
– volume: 58
  start-page: 1081
  issue: 4
  year: 2011
  end-page: 1089
  ident: CR43
  article-title: Psychosocial stress is associated with in vivo dopamine release in human ventromedial prefrontal cortex: a positron emission tomography study using [18F] fallypride
  publication-title: Neuroimage
– year: 2020
  ident: CR59
  article-title: An introductory review of deep learning for prediction models with big data
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2020.00004
– ident: CR117
– volume: 30
  start-page: 1384
  year: 2022
  end-page: 1400
  ident: CR110
  article-title: Symmetric convolutional and adversarial neural network enables improved mental stress classification from EEG
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 2
  start-page: 502
  issue: 2
  year: 2018
  end-page: 509
  ident: CR23
  article-title: Syrian case study: Behçet’s disease clinical symptomatologies, ocular manifestations, and treatment
  publication-title: Chron Pharm Sci
– volume: 69
  start-page: 69
  year: 2017
  end-page: 89
  ident: CR64
  article-title: Review of artifact rejection methods for electroencephalographic systems
  publication-title: Electroencephalography
– volume: 2021
  start-page: 4620487
  year: 2021
  ident: CR74
  article-title: EEG based aptitude detection system for stress regulation in health care workers
  publication-title: Sci Program
  doi: 10.1155/2021/4620487
– volume: 37
  start-page: 193
  issue: 2
  year: 2019
  end-page: 205
  ident: CR21
  article-title: Stress and anxiety among mothers of premature infants in a Malaysian neonatal intensive care unit
  publication-title: J Reprod Infant Psychol
– volume: 20
  start-page: 2505
  issue: 9
  year: 2020
  ident: CR82
  article-title: EEG signal analysis for diagnosing neurological disorders using discrete wavelet transform and intelligent techniques
  publication-title: Sensors
– volume: 56
  start-page: 125
  issue: 1
  year: 2018
  end-page: 136
  ident: CR49
  article-title: Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach
  publication-title: Med Biol Eng Compu
  doi: 10.1007/s11517-017-1733-8
– ident: CR27
– volume: 20
  start-page: 1886
  issue: 7
  year: 2020
  ident: CR55
  article-title: EEG based classification of long-term stress using psychological labeling
  publication-title: Sensors
– volume: 30
  start-page: 220
  issue: 3
  year: 2014
  end-page: 236
  ident: CR24
  article-title: Automatic stress classification with pupil diameter analysis
  publication-title: Int J Human-Comp Interact
– volume: 7
  start-page: 68446
  year: 2019
  end-page: 68454
  ident: CR94
  article-title: Modeling mental stress using a deep learning framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917718
– volume: 125
  start-page: 35
  year: 2018
  end-page: 41
  ident: CR45
  article-title: Anticipatory stress associated with functional magnetic resonance imaging: Implications for psychosocial stress research
  publication-title: Int J Psychophysiol
– volume: 10
  start-page: 2840
  issue: 22
  year: 2021
  ident: CR77
  article-title: Detection of mental stress through EEG signal in virtual reality environment
  publication-title: Electronics
– ident: CR3
– volume: 18
  start-page: 1
  issue: 12
  year: 2016
  end-page: 7
  ident: CR14
  article-title: Mental stress and ventricular arrhythmias
  publication-title: Curr Cardiol Rep
– volume: 3
  start-page: 381
  issue: 14
  year: 2011
  end-page: 389
  ident: CR86
  article-title: Patterns of electroencephalography (EEG) change against stress through noise and memorization test
  publication-title: Int J Med Med Sci
– start-page: 83
  year: 2020
  end-page: 108
  ident: CR98
  article-title: Deep learning approaches in food recognition
  publication-title: Machine learning paradigms: advances in deep learning-based technological applications
– volume: 35
  start-page: 498
  issue: 4
  year: 2008
  end-page: 502
  ident: CR11
  article-title: Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress
  publication-title: Clin Exp Pharmacol Physiol
– volume: 9
  start-page: 376
  issue: 12
  year: 2019
  ident: CR81
  article-title: A hybrid feature pool-based emotional stress state detection algorithm using EEG signals
  publication-title: Brain Sci
– ident: CR120
– volume: 3
  start-page: 524
  issue: 3
  year: 2022
  end-page: 531
  ident: CR111
  article-title: Classification of mental stress on a sports person using EEG
  publication-title: Int J Innov Res Eng
– volume: 8
  start-page: 13
  issue: 1
  year: 2021
  ident: CR72
  article-title: Evaluating deep learning EEG-based mental stress classification in adolescents with autism for breathing entrainment BCI
  publication-title: Brain Inf
  doi: 10.1186/s40708-021-00133-5
– volume: 194
  start-page: 105596
  year: 2020
  ident: CR101
  article-title: A review of deep learning with special emphasis on architectures, applications and recent trends
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105596
– volume: 37
  start-page: 499
  issue: 8
  year: 1997
  end-page: 510
  ident: CR15
  article-title: Mental stress of long duration: EMG activity, perceived tension, fatigue, and pain development in pain-free subjects
  publication-title: Headache: J Head Face Pain
– volume: 152
  start-page: 225
  year: 2015
  end-page: 230
  ident: CR25
  article-title: Skin temperature reveals the intensity of acute stress
  publication-title: Physiol Behav
– volume: 10
  start-page: 56
  issue: 3
  year: 2012
  end-page: 59
  ident: CR16
  article-title: Depression among undergraduate medical students
  publication-title: Kathmandu Univ Med J
– volume: 39
  start-page: 94
  year: 2018
  end-page: 102
  ident: CR83
  article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.07.022
– ident: CR87
– volume: 9
  start-page: 107
  issue: 2
  year: 2018
  end-page: 120
  ident: CR10
  article-title: Stress and perception of emotional stimuli: long-term stress rewiring the brain
  publication-title: Basic Clin Neurosci
  doi: 10.29252/NIRP.BCN.9.2.107
– volume: 23
  start-page: 2257
  issue: 6
  year: 2019
  end-page: 2264
  ident: CR51
  article-title: Classification of perceived mental stress using a commercially available EEG headband
  publication-title: IEEE J Biomed Health Inform
– year: 2019
  ident: CR7
  article-title: Review on psychological stress detection using biosignals
  publication-title: IEEE Trans Affective Comp
  doi: 10.1109/TAFFC.2019.2927337
– volume: 130
  start-page: 9
  issue: 1
  year: 2018
  ident: CR6
  article-title: Beyond pain, fear, withdrawal-findings, and problems involving change-treatment and application for a chronic addiction on alcohol do not end 2 (1)
  publication-title: DDIPIJ MS ID
– start-page: 1
  year: 2022
  end-page: 18
  ident: CR5
  article-title: The physiology of stress and the human body’s response to stress
  publication-title: Epigenetics of stress and stress disorders
– ident: CR35
– year: 2016
  ident: CR61
  publication-title: EEG signal analysis and classification: techniques and applications (Health Information Science)
– ident: CR84
– year: 2022
  ident: CR115
  article-title: Stress classification using brain signals based on LSTM network
  publication-title: Comp Intell Neurosci
  doi: 10.1155/2022/7607592
– volume: 21
  start-page: 837
  issue: 4
  year: 2021
  end-page: 845
  ident: CR2
  article-title: Who is coming through the door? A national survey of self-reported problems among post-secondary school students who have attended campus mental health services in Canada
  publication-title: Couns Psychother Res
– volume: 3
  start-page: 249
  issue: 3
  year: 2001
  end-page: 254
  ident: CR13
  article-title: Mental stress as a causal factor in the development of hypertension and cardiovascular disease
  publication-title: Curr Hypertens Rep
– year: 2021
  ident: CR112
  article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review
  publication-title: Neural Comp Appl
  doi: 10.1007/s00521-021-06352-5
– ident: CR96
– ident: CR50
– volume: 50
  start-page: 265
  issue: 4
  year: 2016
  end-page: 270
  ident: CR12
  article-title: The emotional stress and risk of ischemic stroke
  publication-title: Neurol Neurochir Pol
– volume: 1
  start-page: 16
  issue: 1
  year: 2019
  end-page: 41
  ident: CR56
  article-title: Brain functional connectivity changes in long-term mental stress
  publication-title: J Neurodev Cognit
– volume: 49
  start-page: 1017
  issue: 8
  year: 2012
  end-page: 1034
  ident: CR32
  article-title: Publication recommendations for electrodermal measurements
  publication-title: Psychophysiology
– volume: 20
  start-page: 100412
  year: 2020
  ident: CR95
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images
  publication-title: Inf Med Unlocked
  doi: 10.1016/j.imu.2020.100412
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: CR100
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.10.013
– volume: 21
  start-page: 3050
  issue: 9
  year: 2021
  ident: CR73
  article-title: Detection of negative stress through spectral features of electroencephalographic recordings and a convolutional neural network
  publication-title: Sensors
– volume: 16
  start-page: 031001
  issue: 3
  year: 2019
  ident: CR58
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J Neural Eng
– volume: 7
  start-page: 100211
  year: 2023
  ident: CR57
  article-title: A deep learning approach for assessing stress levels in patients using electroencephalogram signals
  publication-title: Decis Anal J
– ident: CR26
– ident: CR99
– ident: CR122
– year: 2021
  ident: CR104
  article-title: Integration of deep learning for improved diagnosis of depression using EEG and facial features
  publication-title: Mater Today: Proc
  doi: 10.1016/j.matpr.2021.05.659
– volume: 35
  start-page: 1291
  issue: 5
  year: 2011
  end-page: 1301
  ident: CR4
  article-title: Stress revisited: a critical evaluation of the stress concept
  publication-title: Neurosci Biobehav Rev
– year: 2017
  ident: CR62
  article-title: A unique pattern of cortical connectivity characterizes patients with attention deficit disorders: a large electroencephalographic coherence study
  publication-title: BMC Med
  doi: 10.1186/s12916-017-0805-9
– volume: 7
  start-page: 3882
  issue: 10
  year: 2016
  end-page: 3898
  ident: CR36
  article-title: Mental stress assessment using simultaneous measurement of EEG and fNIRS
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.7.003882
– volume: 107
  start-page: 1845
  issue: 1
  year: 2022
  ident: CR53
  article-title: A Review on Mental Stress Detection Using PSS Method and EEG Signal Method
  publication-title: ECS Trans
– volume: 21
  start-page: 5043
  issue: 15
  year: 2021
  ident: CR31
  article-title: A review on mental stress assessment methods using EEG signals
  publication-title: Sensors
– volume: 61
  start-page: 214
  issue: 2
  year: 1999
  end-page: 224
  ident: CR34
  article-title: Increased salivary cortisol reliably induced by a protein-rich midday meal
  publication-title: Psychosom Med
– volume: 8
  start-page: 2583
  issue: 5
  year: 2017
  end-page: 2598
  ident: CR37
  article-title: Assessment of mental stress effects on prefrontal cortical activities using canonical correlation analysis: an fNIRS-EEG study
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.002583
– year: 2016
  ident: CR17
  article-title: Negative stress beliefs predict somatic symptoms in students under academic stress
  publication-title: Int J Behav Med
  doi: 10.1007/s12529-016-9562-y
– volume: 11
  start-page: 259
  issue: 2
  year: 2023
  ident: CR121
  article-title: Water temperature prediction using improved deep learning methods through reptile search algorithm and weighted mean of vectors optimizer
  publication-title: J Mar Sci Eng
– volume: 11
  start-page: 1387
  year: 2019
  ident: CR105
  article-title: Application of long short-term memory (LSTM) neural network for flood forecasting
  publication-title: Water
  doi: 10.3390/w11071387
– ident: CR113
– volume: 11
  start-page: 1759
  year: 2020
  ident: CR1
  article-title: Sources of stress and their associations with mental disorders among college students: results of the world health organization world mental health surveys international college student initiative
  publication-title: Front Psychol
– ident: CR79
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 18
  ident: CR108
  article-title: A neural network based intelligent support model for program code completion
  publication-title: Sci Program
  doi: 10.1155/2020/7426461
– volume: 41
  start-page: 1457
  issue: 9
  year: 2013
  end-page: 1468
  ident: CR19
  article-title: Perceived stress, stressors, and mental distress among doctor of pharmacy students
  publication-title: Soc Behav Personal Int J
– volume: 12
  start-page: 597
  issue: 6
  year: 2018
  end-page: 606
  ident: CR69
  article-title: EEG classification of driver mental states by deep learning
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-018-9496-y
– volume: 7
  start-page: 34
  year: 2013
  end-page: 38
  ident: CR63
  article-title: EEG based cognitive workload assessment for maximum efficiency
  publication-title: Int Organ Sci Res IOSR
– volume: 7
  start-page: 53040
  year: 2019
  end-page: 53065
  ident: CR103
  article-title: Review of deep learning algorithms and architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– ident: CR48
– ident: CR90
– volume: 44
  start-page: 645
  issue: 6
  year: 1998
  end-page: 656
  ident: CR30
  article-title: Heart rate and skin conductance reactivity to brief psychological stress in brain-injured patients
  publication-title: J Psychosom Res
– volume: 133
  start-page: 104377
  year: 2021
  ident: CR9
  article-title: Human stress classification during public speaking using physiological signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104377
– year: 2017
  ident: CR102
  article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0180944
– volume: 24
  start-page: 753
  issue: 10
  year: 2018
  end-page: 772
  ident: CR109
  article-title: Deep ECGNet: An optimal deep learning framework for monitoring mental stress using ultra short-term ECG signals
  publication-title: Telemed and e-HEALTH
– volume: 8
  start-page: 25
  issue: 1
  year: 2018
  end-page: 34
  ident: CR41
  article-title: EEG-metric based mental stress detection
  publication-title: Netw Biol
– volume: 2018
  start-page: 1049257
  year: 2018
  ident: CR46
  article-title: Selection of neural oscillatory features for human stress classification with single channel EEG headset
  publication-title: BioMed Res Int
  doi: 10.1155/2018/1049257
– volume: 15
  start-page: 2461
  issue: 11
  year: 2018
  ident: CR78
  article-title: Emotional stress state detection using genetic algorithm-based feature selection on EEG signals
  publication-title: Int J Environ Res Public Health
– ident: CR76
– volume: 8
  start-page: 355
  issue: 10
  year: 2017
  end-page: 358
  ident: CR114
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Emotion
– ident: CR107
– volume: 12
  start-page: 27
  issue: 1
  year: 2011
  end-page: 33
  ident: CR52
  article-title: Novel methods for stress features identification using EEG signals
  publication-title: Int J Simul Syst Sci Technol
– volume: 50
  start-page: 265
  issue: 4
  year: 2016
  ident: 9809_CR12
  publication-title: Neurol Neurochir Pol
  doi: 10.1016/j.pjnns.2016.03.006
– volume: 125
  start-page: 35
  year: 2018
  ident: 9809_CR45
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2018.02.005
– ident: 9809_CR79
  doi: 10.1109/IJCNN.2011.6033297
– volume: 20
  start-page: 1886
  issue: 7
  year: 2020
  ident: 9809_CR55
  publication-title: Sensors
  doi: 10.3390/s20071886
– ident: 9809_CR71
  doi: 10.1109/ICASSP.2018.8462243
– volume: 56
  start-page: 125
  issue: 1
  year: 2018
  ident: 9809_CR49
  publication-title: Med Biol Eng Compu
  doi: 10.1007/s11517-017-1733-8
– volume: 39
  start-page: 94
  year: 2018
  ident: 9809_CR83
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.07.022
– volume: 69
  start-page: 69
  year: 2017
  ident: 9809_CR64
  publication-title: Electroencephalography
– start-page: 15
  volume-title: International conference for innovation in biomedical engineering and life sciences
  year: 2016
  ident: 9809_CR38
  doi: 10.1007/978-981-10-0266-3_4
– ident: 9809_CR113
  doi: 10.1007/978-981-16-6887-6_3
– volume: 24
  start-page: 2825
  issue: 11
  year: 2004
  ident: 9809_CR42
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3422-03.2004
– volume: 18
  start-page: 370
  year: 2015
  ident: 9809_CR18
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.02.012
– volume: 107
  start-page: 1845
  issue: 1
  year: 2022
  ident: 9809_CR53
  publication-title: ECS Trans
  doi: 10.1149/10701.16459ecst
– volume: 41
  start-page: 1457
  issue: 9
  year: 2013
  ident: 9809_CR19
  publication-title: Soc Behav Personal Int J
  doi: 10.2224/sbp.2013.41.9.1457
– volume: 7
  start-page: 34
  year: 2013
  ident: 9809_CR63
  publication-title: Int Organ Sci Res IOSR
– ident: 9809_CR120
– volume: 35
  start-page: 1291
  issue: 5
  year: 2011
  ident: 9809_CR4
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2011.02.003
– volume: 23
  start-page: 2257
  issue: 6
  year: 2019
  ident: 9809_CR51
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2926407
– year: 2022
  ident: 9809_CR116
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07540-7
– ident: 9809_CR26
  doi: 10.1109/ICACCI.2018.8554715
– volume: 77
  start-page: 354
  year: 2018
  ident: 9809_CR100
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.10.013
– volume: 8
  start-page: 355
  issue: 10
  year: 2017
  ident: 9809_CR114
  publication-title: Emotion
– volume: 183
  start-page: 171
  issue: 2
  year: 2005
  ident: 9809_CR44
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-005-0147-8
– ident: 9809_CR96
– volume: 7
  start-page: 53040
  year: 2019
  ident: 9809_CR103
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– volume: 1
  start-page: 16
  issue: 1
  year: 2019
  ident: 9809_CR56
  publication-title: J Neurodev Cognit
  doi: 10.29252/jncog.1.1.16
– volume: 11
  start-page: 1387
  year: 2019
  ident: 9809_CR105
  publication-title: Water
  doi: 10.3390/w11071387
– ident: 9809_CR60
  doi: 10.1109/SSD54932.2022.9955724
– volume: 19
  start-page: 987
  issue: 5
  year: 2019
  ident: 9809_CR65
  publication-title: Sensors
  doi: 10.3390/s19050987
– ident: 9809_CR91
  doi: 10.31224/osf.io/kaqew
– volume: 14
  start-page: 553
  issue: 5
  year: 2015
  ident: 9809_CR40
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2015.2420576
– ident: 9809_CR84
  doi: 10.1109/ICCSCE.2011.6190573
– start-page: 83
  volume-title: Machine learning paradigms: advances in deep learning-based technological applications
  year: 2020
  ident: 9809_CR98
  doi: 10.1007/978-3-030-49724-8_4
– ident: 9809_CR68
  doi: 10.23919/ICACT.2018.8323716
– ident: 9809_CR76
  doi: 10.23919/ICACT.2019.8702048
– volume: 12
  start-page: 597
  issue: 6
  year: 2018
  ident: 9809_CR69
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-018-9496-y
– volume: 36
  start-page: 1351
  issue: 7
  year: 2015
  ident: 9809_CR80
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/36/7/1351
– volume: 7
  start-page: 100211
  year: 2023
  ident: 9809_CR57
  publication-title: Decis Anal J
  doi: 10.1016/j.dajour.2023.100211
– volume: 20
  start-page: 2505
  issue: 9
  year: 2020
  ident: 9809_CR82
  publication-title: Sensors
  doi: 10.3390/s20092505
– ident: 9809_CR35
  doi: 10.1109/EMBC.2016.7591884
– volume: 8
  start-page: 2583
  issue: 5
  year: 2017
  ident: 9809_CR37
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.002583
– volume: 7
  start-page: 68446
  year: 2019
  ident: 9809_CR94
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917718
– ident: 9809_CR99
– volume: 7
  start-page: 93711
  year: 2019
  ident: 9809_CR118
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927768
– volume: 35
  start-page: 498
  issue: 4
  year: 2008
  ident: 9809_CR11
  publication-title: Clin Exp Pharmacol Physiol
  doi: 10.1111/j.1440-1681.2008.04904.x
– volume: 3
  start-page: 524
  issue: 3
  year: 2022
  ident: 9809_CR111
  publication-title: Int J Innov Res Eng
– year: 2016
  ident: 9809_CR17
  publication-title: Int J Behav Med
  doi: 10.1007/s12529-016-9562-y
– volume: 41
  start-page: 57
  issue: 2
  year: 2004
  ident: 9809_CR28
  publication-title: Dyn Electrocardiogr
  doi: 10.1002/9780470987483.ch7
– volume: 10
  start-page: 2840
  issue: 22
  year: 2021
  ident: 9809_CR77
  publication-title: Electronics
  doi: 10.3390/electronics10222840
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 9809_CR93
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 7
  start-page: 3882
  issue: 10
  year: 2016
  ident: 9809_CR36
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.7.003882
– volume: 2018
  start-page: 1049257
  year: 2018
  ident: 9809_CR46
  publication-title: BioMed Res Int
  doi: 10.1155/2018/1049257
– ident: 9809_CR90
  doi: 10.1109/ICSGRC.2012.6287173
– ident: 9809_CR8
  doi: 10.1109/ICACCS.2013.6938735
– volume: 30
  start-page: 1384
  year: 2022
  ident: 9809_CR110
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2022.3174821
– volume: 60
  start-page: 101989
  year: 2020
  ident: 9809_CR75
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101989
– ident: 9809_CR48
  doi: 10.1109/CSNT51715.2021.9509713
– volume: 19
  start-page: 95
  issue: 2
  year: 2006
  ident: 9809_CR33
  publication-title: Appl Nurs Res
  doi: 10.1016/j.apnr.2006.02.001
– volume: 3
  start-page: 249
  issue: 3
  year: 2001
  ident: 9809_CR13
  publication-title: Curr Hypertens Rep
  doi: 10.1007/s11906-001-0047-1
– volume: 21
  start-page: 3050
  issue: 9
  year: 2021
  ident: 9809_CR73
  publication-title: Sensors
  doi: 10.3390/s21093050
– volume: 21
  start-page: 5043
  issue: 15
  year: 2021
  ident: 9809_CR31
  publication-title: Sensors
  doi: 10.3390/s21155043
– volume: 9
  start-page: 376
  issue: 12
  year: 2019
  ident: 9809_CR81
  publication-title: Brain Sci
  doi: 10.3390/brainsci9120376
– ident: 9809_CR97
– volume: 68
  start-page: 102741
  year: 2021
  ident: 9809_CR66
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102741
– volume: 145
  start-page: 151
  year: 2017
  ident: 9809_CR89
  publication-title: Res Comput Sci
  doi: 10.13053/rcs-145-1-12
– volume: 37
  start-page: 499
  issue: 8
  year: 1997
  ident: 9809_CR15
  publication-title: Headache: J Head Face Pain
  doi: 10.1046/j.1526-4610.1997.3708499.x
– start-page: 227
  volume-title: Brain Informatics: 13th international conference, BI 2020, Padua, Italy, September 19, 2020 proceedings
  year: 2020
  ident: 9809_CR70
  doi: 10.1007/978-3-030-59277-6_21
– year: 2022
  ident: 9809_CR115
  publication-title: Comp Intell Neurosci
  doi: 10.1155/2022/7607592
– year: 2021
  ident: 9809_CR112
  publication-title: Neural Comp Appl
  doi: 10.1007/s00521-021-06352-5
– year: 2017
  ident: 9809_CR62
  publication-title: BMC Med
  doi: 10.1186/s12916-017-0805-9
– volume: 39
  start-page: 585
  issue: 5
  year: 2002
  ident: 9809_CR29
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3950585
– ident: 9809_CR54
  doi: 10.1109/ICBDACI.2017.8070809
– volume: 15
  start-page: 2461
  issue: 11
  year: 2018
  ident: 9809_CR78
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15112461
– volume: 2020
  start-page: 1
  year: 2020
  ident: 9809_CR108
  publication-title: Sci Program
  doi: 10.1155/2020/7426461
– volume: 11
  start-page: 1759
  year: 2020
  ident: 9809_CR1
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2020.01759
– volume: 2
  start-page: 502
  issue: 2
  year: 2018
  ident: 9809_CR23
  publication-title: Chron Pharm Sci
– volume: 8
  start-page: 13
  issue: 1
  year: 2021
  ident: 9809_CR72
  publication-title: Brain Inf
  doi: 10.1186/s40708-021-00133-5
– ident: 9809_CR122
  doi: 10.1007/978-981-19-6004-8_52
– volume: 16
  start-page: 031001
  issue: 3
  year: 2019
  ident: 9809_CR58
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab0ab5
– volume: 21
  start-page: 837
  issue: 4
  year: 2021
  ident: 9809_CR2
  publication-title: Couns Psychother Res
  doi: 10.1002/capr.12439
– ident: 9809_CR92
– volume: 17
  start-page: 1341
  issue: 7
  year: 2013
  ident: 9809_CR85
  publication-title: Pers Ubiquit Comput
  doi: 10.1007/s00779-012-0593-3
– volume: 9
  start-page: 107
  issue: 2
  year: 2018
  ident: 9809_CR10
  publication-title: Basic Clin Neurosci
  doi: 10.29252/NIRP.BCN.9.2.107
– volume: 24
  start-page: 753
  issue: 10
  year: 2018
  ident: 9809_CR109
  publication-title: Telemed and e-HEALTH
  doi: 10.1089/tmj.2017.0250
– start-page: 173
  volume-title: Advances in informatics and computing in civil and construction engineering
  year: 2019
  ident: 9809_CR67
  doi: 10.1007/978-3-030-00220-6_21
– year: 2019
  ident: 9809_CR7
  publication-title: IEEE Trans Affective Comp
  doi: 10.1109/TAFFC.2019.2927337
– ident: 9809_CR47
  doi: 10.1007/978-1-4614-4984-3
– volume: 61
  start-page: 214
  issue: 2
  year: 1999
  ident: 9809_CR34
  publication-title: Psychosom Med
  doi: 10.1097/00006842-199903000-00014
– ident: 9809_CR106
  doi: 10.1007/978-1-4842-6150-7
– start-page: 1
  volume-title: Epigenetics of stress and stress disorders
  year: 2022
  ident: 9809_CR5
– volume: 12
  start-page: 27
  issue: 1
  year: 2011
  ident: 9809_CR52
  publication-title: Int J Simul Syst Sci Technol
– volume: 130
  start-page: 9
  issue: 1
  year: 2018
  ident: 9809_CR6
  publication-title: DDIPIJ MS ID
– ident: 9809_CR27
  doi: 10.1007/978-3-540-30120-2_57
– volume: 8
  start-page: 25
  issue: 1
  year: 2018
  ident: 9809_CR41
  publication-title: Netw Biol
– volume: 30
  start-page: 220
  issue: 3
  year: 2014
  ident: 9809_CR24
  publication-title: Int J Human-Comp Interact
  doi: 10.1080/10447318.2013.848320
– ident: 9809_CR107
  doi: 10.1109/ICMLA.2017.0-110
– ident: 9809_CR3
– volume: 133
  start-page: 104377
  year: 2021
  ident: 9809_CR9
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104377
– volume: 83
  start-page: 373
  issue: 4
  year: 2010
  ident: 9809_CR20
  publication-title: Int Arch Occup Environ Health
  doi: 10.1007/s00420-009-0467-9
– volume: 49
  start-page: 1017
  issue: 8
  year: 2012
  ident: 9809_CR32
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2012.01384.x
– ident: 9809_CR88
  doi: 10.1109/SMC.2016.7844738
– year: 2020
  ident: 9809_CR59
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2020.00004
– volume-title: EEG signal analysis and classification: techniques and applications (Health Information Science)
  year: 2016
  ident: 9809_CR61
  doi: 10.1007/978-3-319-47653-7
– ident: 9809_CR87
  doi: 10.1109/ICSIPA.2015.7412205
– volume: 11
  start-page: 259
  issue: 2
  year: 2023
  ident: 9809_CR121
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse11020259
– volume: 18
  start-page: 1
  issue: 12
  year: 2016
  ident: 9809_CR14
  publication-title: Curr Cardiol Rep
  doi: 10.1007/s11886-016-0798-6
– volume: 10
  start-page: 56
  issue: 3
  year: 2012
  ident: 9809_CR16
  publication-title: Kathmandu Univ Med J
  doi: 10.3126/kumj.v10i3.8021
– ident: 9809_CR50
  doi: 10.1109/I2MTC.2013.6555658
– volume: 3
  start-page: 381
  issue: 14
  year: 2011
  ident: 9809_CR86
  publication-title: Int J Med Med Sci
– volume: 37
  start-page: 193
  issue: 2
  year: 2019
  ident: 9809_CR21
  publication-title: J Reprod Infant Psychol
  doi: 10.1080/02646838.2018.1540861
– volume: 152
  start-page: 225
  year: 2015
  ident: 9809_CR25
  publication-title: Physiol Behav
  doi: 10.1016/j.physbeh.2015.09.032
– volume: 194
  start-page: 105596
  year: 2020
  ident: 9809_CR101
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.105596
– ident: 9809_CR39
  doi: 10.5772/9651
– volume: 20
  start-page: 100412
  year: 2020
  ident: 9809_CR95
  publication-title: Inf Med Unlocked
  doi: 10.1016/j.imu.2020.100412
– volume: 44
  start-page: 645
  issue: 6
  year: 1998
  ident: 9809_CR30
  publication-title: J Psychosom Res
  doi: 10.1016/S0022-3999(97)00305-X
– ident: 9809_CR117
  doi: 10.1109/TNNLS.2022.3159573
– year: 2021
  ident: 9809_CR104
  publication-title: Mater Today: Proc
  doi: 10.1016/j.matpr.2021.05.659
– ident: 9809_CR22
– volume: 2021
  start-page: 4620487
  year: 2021
  ident: 9809_CR74
  publication-title: Sci Program
  doi: 10.1155/2021/4620487
– volume: 100
  start-page: 106954
  year: 2021
  ident: 9809_CR119
  publication-title: Appl Soft Comp
  doi: 10.1016/j.asoc.2020.106954
– volume: 58
  start-page: 1081
  issue: 4
  year: 2011
  ident: 9809_CR43
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.030
– year: 2017
  ident: 9809_CR102
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0180944
SSID ssj0004685
Score 2.4947731
SecondaryResourceType review_article
Snippet Mental stress is a common problem that affects individuals all over the world. Stress reduces human functionality during routine work and may lead to severe...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12629
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Electroencephalography
Graph neural networks
Graphical representations
Image Processing and Computer Vision
Machine learning
Medical imaging
Neural networks
Probability and Statistics in Computer Science
Psychological stress
Review
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnU3LwpoEmadrkOGSbpyH-YreypskQpBvbFPzvTdJ0U1FBz01Dee8l70vzvvcBnAtquJaaYSKVxDbfSixUmmKTO3ljbcyI5F5sIh0MxHAobwIpbF5Xu9dXkn6nXpLd3B9Me_SlMY6kiCTm67Bh051wy_H27vEDG9ILcdpzi6vpiVmgynw_x-d0tMKYX65FfbbpNf_3nTuwHdAl6lThsAtrutyDZq3cgMJC3od-B1WcFTQpUd3wuxyjqtM_qggkKH9DhdZTFJQlxsgVyY9Rt9tHruzDBu4BPPS691fXOEgqYEVTwbHh1i8FF4YkmoykBQcJzS2k41RJmWsLRhjjEVURi4Wx4IZZgCKIKvIRlZHSCTuERjkp9RGgIi5ISnJhXWBiVahRpAxPckOZNoJFpgWktmymQr9xJ3vxnC07JXtLZdZSmbdUxltwsXxnWnXb-HV0u3ZYFlbePLN7lkx4KilpwWXtoNXjn2c7_tvwE9ii3seucrcNjcXsRZ_CpnpdPM1nZz4i3wGmpNdx
  priority: 102
  providerName: Springer Nature
Title A review on evaluating mental stress by deep learning using EEG signals
URI https://link.springer.com/article/10.1007/s00521-024-09809-5
https://www.proquest.com/docview/3079657921
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYWDhjSgU5IENLGI7TuwJFZTCVFXlIcQSJY5dIaG0tIDEv8dOHApIsLBkyMOK8p19X8539wEcCWq4lpphIpXE1t9KLFQcY5M7eWNtTEbySmwi7vfF_b0c-IDbzKdVNmtitVAXY-Vi5KfWFmXEY0nJ2eQZO9Uot7vqJTQWYcl1KgtbsHSe9AfDL5WRlSin_Ydx-T0h82UzVfGci4jaszTEgRSBxPy7a5rzzR9bpJXn6a39953XYdVzTtStjWQDFnS5CWuNngPy03sLLruormRB4xI1bcDLEar7_6O6rATl76jQeoK83sQIudT5EUqSS-SSQaw5b8NtL7m5uMJeaAErGguODbdoFVwYEmmSSUsZIppbosepkjLXlqIwxgOqAhYKYykPs7RFEFXkGZWB0hHbgVY5LvUuoCIsSExyYXmICVWhskAZHuWGMm0EC0wbSPONU-W7kDsxjKf0s39yhUtqcUkrXFLehuPPZyZ1D44_7-40YKR-Ps7SORJtOGngnF_-fbS9v0fbhxVaWZDL3-1A62X6qg9gWb29PM6mh94aD2FxwB_scXh99wGLFOTz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61oVK5tPQlAoX6ACdqdW2vd-1DVUWQJlVL1EOQIi5L1mtHldAmNKUof4rfyNi72wASveXAdR_Wruebh-2Z-QDeKO6k1VZQpo2m6G81VSZNqcs9vbF1bszyQDaRDgZqNNLXa_CzqYXxaZWNTQyGupgav0d-gljUiUw1Z2ezb9SzRvnT1YZCo4LFpV38wCXb_PTiA8r3Lefn3eH7Pq1ZBajhqZLUSfy0QirHEsvGGv1jwnOMaiQ3WucW_bEQMuImErFy6N8F-mjFTJGPuY6MTQSOuw5P4hgXS6g_1_Lzb3WYgQIUV0w-mygWdZFOKNXz-694lcc00irSVP7pCJfR7V8HssHPnW__bzP0DLbqiJp0KhXYgTVb7sJ2w1ZBauO1B70Oqep0yLQkTZPzckIqdgNSFc2QfEEKa2ekZtOYEF8YMCHdbo_4VBdU1n34tJLfOYBWOS3tcyBFXLCU5QqjLBebwowj42SSOy6sUyJybWCNTDNT91j3VB9fs4fu0AEHGeIgCzjIZBvePbwzqzqMPPr0YSP8rLY282wp-TYcN_BZ3v73aC8eH-0INvvDj1fZ1cXg8iU85QG9PlP5EFp3t9_tK9gw93c389vXQQ8IfFk1rH4BxoA6Zw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNQdvGtwkm93kWLStopSCD3pbutmkCLItbRX89yb7aKuoIJ43G5aZSebLZr75AE4FNVxLzTCRSmKbbyUWKgyxiZ28sTamT-JMbCLsdESvJ7sLLP6s2r28ksw5Da5LUzq9GCXmYkZ8c38z7TGY-tiTwpOYL8OK70SD3Hn9_mmBGZmJctozjKvv8VlBm_l-js-paY43v1yRZpmnVf3_N2_CRoE6USMPky1Y0uk2VEtFB1Qs8B1oN1DOZUHDFJWNwNMByhUAUE4sQfE7SrQeoUJxYoBc8fwANZtt5MpBbEDvwmOr-XB5jQupBaxoKDg23Por4cKQQJO-tKAhoLGFepwqKWNtQQpj3KPKY74wFvQwC1wEUUncp9JTOmB7UEmHqd4HlPgJCUksLBIxvkpU31OGB7GhTBvBPFMDUlo5UkUfcieH8RLNOihnloqspaLMUhGvwdnsnVHehePX0fXSeVGxIieR3ctkwENJSQ3OS2fNH_8828Hfhp_AWveqFd3ddG4PYZ1m7nbFvXWoTMev-ghW1dv0eTI-zgL1A-fB4zk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+evaluating+mental+stress+by+deep+learning+using+EEG+signals&rft.jtitle=Neural+computing+%26+applications&rft.au=Badr%2C+Yara&rft.au=Tariq%2C+Usman&rft.au=Al-Shargie%2C+Fares&rft.au=Babiloni%2C+Fabio&rft.date=2024-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=21&rft.spage=12629&rft.epage=12654&rft_id=info:doi/10.1007%2Fs00521-024-09809-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_024_09809_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon