Recognizing Bearings’ Degradation Stage Using Multimodal Autoencoder to Learn Features from Different Time Series
Utilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately recognizing the current health degradation stages of industrial assets requires a time-consuming manual feature extraction due to the wide range o...
Uloženo v:
| Vydáno v: | SN computer science Ročník 5; číslo 4; s. 371 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.04.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Utilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately recognizing the current health degradation stages of industrial assets requires a time-consuming manual feature extraction due to the wide range of observable measures (e.g., temperature, vibration) and behaviors characterizing assets’ degradation. To address this issue, feature learning technology can transform minimally processed time series into informative features, i.e., able to simplify the classification task (e.g., recognizing degradation stages) regardless of the specific machine learning classifier employed. In this work, minimally preprocessed time series of vibration and temperature of industrial bearings are exploited by an autoencoder-based architecture to extract degradation-representative features to be used for recognizing their degradation stages. Different autoencoder architectures are employed to compare their data fusion strategies. The effectiveness of the proposed approach is evaluated in terms of recognition performance and the quality of the learned features by using a publicly available real-world dataset and comparing the proposed approach against a state-of-the-art feature learning technology. We tested three different multimodal autoencoder-based feature learning approaches, i.e., shared-input autoencoder (SAE), multimodal autoencoder (MMAE), and partition-based autoencoder (PAE). All the AE-based architecture results in classification performances greater or comparable with the state-of-the-art feature learning technology, despite being trained in an unsupervised fashion. Also, the features provided via PAE correspond to the greatest performances in recognizing bearings’ degradation stage, providing high-quality features both from a classification and clustering perspective. Unsupervised feature learning methodologies based on multimodal autoencoders are capable of learning high-quality features. These result in greater degradation stages recognition performances when compared to supervised state-of-the-art feature learning technology. Also, this enables the correct representation of the expected progressive degradation of the bearing. |
|---|---|
| AbstractList | Utilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately recognizing the current health degradation stages of industrial assets requires a time-consuming manual feature extraction due to the wide range of observable measures (e.g., temperature, vibration) and behaviors characterizing assets’ degradation. To address this issue, feature learning technology can transform minimally processed time series into informative features, i.e., able to simplify the classification task (e.g., recognizing degradation stages) regardless of the specific machine learning classifier employed. In this work, minimally preprocessed time series of vibration and temperature of industrial bearings are exploited by an autoencoder-based architecture to extract degradation-representative features to be used for recognizing their degradation stages. Different autoencoder architectures are employed to compare their data fusion strategies. The effectiveness of the proposed approach is evaluated in terms of recognition performance and the quality of the learned features by using a publicly available real-world dataset and comparing the proposed approach against a state-of-the-art feature learning technology. We tested three different multimodal autoencoder-based feature learning approaches, i.e., shared-input autoencoder (SAE), multimodal autoencoder (MMAE), and partition-based autoencoder (PAE). All the AE-based architecture results in classification performances greater or comparable with the state-of-the-art feature learning technology, despite being trained in an unsupervised fashion. Also, the features provided via PAE correspond to the greatest performances in recognizing bearings’ degradation stage, providing high-quality features both from a classification and clustering perspective. Unsupervised feature learning methodologies based on multimodal autoencoders are capable of learning high-quality features. These result in greater degradation stages recognition performances when compared to supervised state-of-the-art feature learning technology. Also, this enables the correct representation of the expected progressive degradation of the bearing. |
| ArticleNumber | 371 |
| Author | Gagliardi, Guido Cimino, Mario G. C. A. Alfeo, Antonio Luca |
| Author_xml | – sequence: 1 givenname: Antonio Luca surname: Alfeo fullname: Alfeo, Antonio Luca organization: Dept. of Information Engineering, University of Pisa, Research Center E. Piaggio, University of Pisa – sequence: 2 givenname: Mario G. C. A. surname: Cimino fullname: Cimino, Mario G. C. A. organization: Dept. of Information Engineering, University of Pisa, Research Center E. Piaggio, University of Pisa – sequence: 3 givenname: Guido orcidid: 0000-0003-2020-6439 surname: Gagliardi fullname: Gagliardi, Guido email: guido.gagliardi@phd.unipi.it organization: Dept. of Information Engineering, University of Pisa, Dept. of Information Engineering, University of Florence, Dept. of Electrical Engineering, KU Leuven |
| BookMark | eNp9kL9OIzEQhy3ESQccL3CVJeqF2fV67S35F0AKOukSasvY48gosYPtLaDiNe717knYECQQBcVopvh9M6Nvn-yGGJCQ3zUc1wDiJLdNL_oKmnasjvGK75C9puvqSvYgdj_NP8lhzg8A0HBo247vkfwXTVwE_-zDgp6hTmPP_1_-0QtcJG118THQWdELpHd5k7kdlsWvotVLejqUiMFEi4mWSKcjHegEdRkSZupSXNEL7xwmDIXO_QrpDJPH_Iv8cHqZ8fC9H5C7yeX8_Lqa_rm6OT-dVqYRklcW2_peIHa96Y0R2gJywTtpHWMo0dWCoQAtdCeFvGegnbXSgmwbI1rjenZAjrZ71yk-DpiLeohDCuNJxaDmwIH1bEw125RJMeeETq2TX-n0pGpQG79q61eNftWbX8VHSH6BjC9vskrSfvk9yrZoXm9kY_r46hvqFUsWk70 |
| CitedBy_id | crossref_primary_10_1088_1361_6579_adaf73 crossref_primary_10_1109_ACCESS_2025_3578686 |
| Cites_doi | 10.1016/j.jmsy.2021.05.003 10.1145/3347711 10.1109/TIM.2019.2917735 10.1109/TMECH.2021.3053173 10.1016/j.eswa.2013.02.025 10.1016/j.jmsy.2020.07.008 10.1109/TII.2017.2670505 10.1109/TII.2018.2793246 10.1162/089976600300014980 10.1007/s10845-021-01797-w 10.1080/00207543.2020.1836419 10.1115/1.4052364 10.1145/3301282 10.1162/089976698300017467 10.1007/s41066-022-00357-8 10.1109/TPAMI.2013.50 10.1016/j.neucom.2020.11.048 10.1016/j.ymssp.2017.11.016 10.1109/ACCESS.2019.2963092 10.1162/neco_a_01273 10.1109/ACCESS.2023.3268233 10.1109/TIM.2012.2212508 10.1186/s40537-021-00508-9 10.1177/1475921719893594 10.1109/ECCE.2018.8557651 10.1007/978-3-030-43353-6_8 10.1109/SSCI52147.2023.10371895 10.1145/1553374.1553511 10.36001/phmconf.2015.v7i1.2655 10.5220/0011548000003329 10.1016/j.chemolab.2022.104711 10.1007/978-1-4842-3913-1_8 10.1007/978-3-030-67270-6_5 10.1007/978-3-031-18050-7_2 10.1109/NER52421.2023.10123758 10.1109/ICTAI.2011.171 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-024-02635-5 |
| DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_024_02635_5 |
| GrantInformation_xml | – fundername: The Italian Ministry of University and Research (MUR) in the framework of the FoReLab project (Departments of Excellence). – fundername: PNRR-M4C2-Investimento 1.3, Partenariato Esteso PE00000013-“FAIR—Future Artificial Intelligence Research”-Spoke 1 “Human-centered AI”, funded by the European Commission under the Next Generation EU programme. – fundername: Università di Pisa – fundername: National Center for Sustainable Mobility MOST/Spoke10, funded by the Italian Ministry of University and Research in the framework of the National Recovery and Resilience Plan. |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAPOH BSONS C6C DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- KOV PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2785-de41b7ee69c9cc7ad0e57568df33e8ef173e70a7a6878b30afdd8d0842c74cf93 |
| IEDL.DBID | P5Z |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Wed Nov 05 14:51:26 EST 2025 Tue Nov 18 20:58:49 EST 2025 Sat Nov 29 01:32:52 EST 2025 Fri Feb 21 02:44:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep feature learning Data fusion Multimodal autoencoder Contrastive learning Predictive maintenance Smart manufacturing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2785-de41b7ee69c9cc7ad0e57568df33e8ef173e70a7a6878b30afdd8d0842c74cf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2020-6439 |
| OpenAccessLink | https://link.springer.com/10.1007/s42979-024-02635-5 |
| PQID | 3015050393 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_3015050393 crossref_primary_10_1007_s42979_024_02635_5 crossref_citationtrail_10_1007_s42979_024_02635_5 springer_journals_10_1007_s42979_024_02635_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Traini, Bruno, Lombardi (CR45) 2021; 59 Gao, Li, Chen, Zhang (CR22) 2020; 32 Alfeo, Cimino, Vaglini (CR1) 2021; 32 Shin, Lee, Han, Park (CR30) 2021; 27 CR39 CR38 CR37 CR36 CR35 Shanbhag, Meyer, Caspers, Schlanbusch (CR42) 2021; 26 CR33 Baudat, Anouar (CR18) 2000; 12 CR32 Deng (CR23) 2014; 3 CR3 Lei, Li, Guo, Li, Yan, Lin (CR6) 2018; 104 Bengio, Courville, Vincent (CR12) 2013; 35 CR7 Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (CR13) 2010; 11 CR47 CR44 CR43 Hong, Hwang, Yoo, Yoon (CR25) 2019; 52 Wan, Tang, Li, Wang, Liu, Abbas (CR5) 2017; 13 Alfeo, Cimino, Gagliardi (CR2) 2023; 8 Jimenez, Schwartz, Vingerhoeds, Grabot, Salaün (CR4) 2020; 56 Ma, Sun, Chen (CR34) 2018; 14 Lorena, Garcia, Lehmann, Souto, Ho (CR46) 2019; 52 CR19 Alfeo, Cimino, Vaglini (CR31) 2022; 62 Nguyen (CR41) 2019; 100 CR15 CR14 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (CR24) 2014; 27 Yan, Liu, Jia (CR28) 2020; 19 CR11 CR10 Cano (CR48) 2013; 40 Gagliardi, Alfeo, Catrambone, Candia-Rivera, Cimino, Valenza (CR21) 2023; 11 Kimotho, Sondermann-Wölke, Meyer, Sextro (CR9) 2013; 33 Tang, Yuan, Zhu (CR20) 2019; 8 Suryawati, Pardede, Zilvan, Ramdan, Krisnandi, Heryana (CR27) 2021; 8 Schölkopf, Smola, Müller (CR17) 1998; 10 CR26 Scanlon, Kavanagh, Boland (CR8) 2012; 62 Gecgel, Ekwaro-Osire, Gulbulak, Morais (CR29) 2022; 144 Liu, Hu, Zhang (CR49) 2021; 428 Zhong, Ling, Wang (CR16) 2019; 9 Mao, He, Zuo (CR40) 2019; 69 Y Lei (2635_CR6) 2018; 104 2635_CR32 M Ma (2635_CR34) 2018; 14 L Deng (2635_CR23) 2014; 3 2635_CR39 2635_CR37 2635_CR38 Y Bengio (2635_CR12) 2013; 35 2635_CR35 2635_CR36 2635_CR33 G Gagliardi (2635_CR21) 2023; 11 O Gecgel (2635_CR29) 2022; 144 Y Hong (2635_CR25) 2019; 52 2635_CR43 2635_CR3 2635_CR7 B Schölkopf (2635_CR17) 1998; 10 P Scanlon (2635_CR8) 2012; 62 2635_CR47 2635_CR44 I Goodfellow (2635_CR24) 2014; 27 P Vincent (2635_CR13) 2010; 11 S Tang (2635_CR20) 2019; 8 J Gao (2635_CR22) 2020; 32 E Suryawati (2635_CR27) 2021; 8 2635_CR10 AL Alfeo (2635_CR2) 2023; 8 AC Lorena (2635_CR46) 2019; 52 J Wan (2635_CR5) 2017; 13 2635_CR15 2635_CR14 2635_CR11 X Yan (2635_CR28) 2020; 19 2635_CR19 B Shin (2635_CR30) 2021; 27 AL Alfeo (2635_CR31) 2022; 62 G Baudat (2635_CR18) 2000; 12 Y Liu (2635_CR49) 2021; 428 AL Alfeo (2635_CR1) 2021; 32 MH Nguyen (2635_CR41) 2019; 100 VV Shanbhag (2635_CR42) 2021; 26 G Zhong (2635_CR16) 2019; 9 2635_CR26 W Mao (2635_CR40) 2019; 69 JK Kimotho (2635_CR9) 2013; 33 JR Cano (2635_CR48) 2013; 40 E Traini (2635_CR45) 2021; 59 JJM Jimenez (2635_CR4) 2020; 56 |
| References_xml | – volume: 62 start-page: 972 year: 2022 end-page: 983 ident: CR31 article-title: Degradation stage classification via interpretable feature learning publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.05.003 – volume: 52 start-page: 1 issue: 5 year: 2019 end-page: 34 ident: CR46 article-title: How Complex is your classification problem? A survey on measuring classification complexity publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3347711 – ident: CR39 – volume: 69 start-page: 1594 issue: 4 year: 2019 end-page: 1608 ident: CR40 article-title: Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2917735 – ident: CR35 – volume: 26 start-page: 3087 issue: 6 year: 2021 end-page: 3103 ident: CR42 article-title: Failure monitoring and predictive maintenance of hydraulic cylinder-state-of-the-art review publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2021.3053173 – volume: 40 start-page: 4820 issue: 12 year: 2013 end-page: 4831 ident: CR48 article-title: Analysis of data complexity measures for classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.02.025 – volume: 56 start-page: 539 year: 2020 end-page: 557 ident: CR4 article-title: Towards multi-model approaches to predictive maintenance: a systematic literature survey on diagnostics and prognostics publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.07.008 – volume: 3 year: 2014 ident: CR23 article-title: A tutorial survey of architectures, algorithms, and applications for deep learning publication-title: APSIPA Trans Signal Inf Process – volume: 13 start-page: 2039 year: 2017 end-page: 2047 ident: CR5 article-title: A manufacturing big data solution for active preventive maintenance publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2017.2670505 – volume: 14 start-page: 1137 issue: 3 year: 2018 end-page: 1145 ident: CR34 article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2018.2793246 – volume: 12 start-page: 2385 issue: 10 year: 2000 end-page: 2404 ident: CR18 article-title: Generalized discriminant analysis using a kernel approach publication-title: Neural Comput doi: 10.1162/089976600300014980 – volume: 32 start-page: 1699 issue: 6 year: 2021 end-page: 1710 ident: CR1 article-title: Technological troubleshooting based on sentence embedding with deep transformers publication-title: J Intell Manuf doi: 10.1007/s10845-021-01797-w – volume: 9 year: 2019 ident: CR16 article-title: From shallow feature learning to deep learning: benefits from the width and depth of deep architectures publication-title: Wiley Interdiscip Rev: Data Min Knowl Discov – ident: CR19 – volume: 59 start-page: 7179 issue: 23 year: 2021 end-page: 7193 ident: CR45 article-title: Tool condition monitoring framework for predictive maintenance: a case study on milling process publication-title: Int J Prod Res doi: 10.1080/00207543.2020.1836419 – ident: CR15 – ident: CR11 – volume: 144 issue: 3 year: 2022 ident: CR29 article-title: Deep convolutional neural network framework for diagnostics of planetary gearboxes under dynamic loading with feature-level data fusion publication-title: J Vib Acoust doi: 10.1115/1.4052364 – ident: CR32 – volume: 52 start-page: 1 issue: 1 year: 2019 end-page: 43 ident: CR25 article-title: How generative adversarial networks and their variants work: an overview publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3301282 – ident: CR36 – volume: 10 start-page: 1299 issue: 5 year: 1998 end-page: 1319 ident: CR17 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput doi: 10.1162/089976698300017467 – volume: 8 start-page: 827 issue: 4 year: 2023 end-page: 838 ident: CR2 article-title: Concept-wise granular computing for explainable artificial intelligence publication-title: Granul Comput doi: 10.1007/s41066-022-00357-8 – ident: CR26 – ident: CR43 – ident: CR47 – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: CR12 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.50 – ident: CR14 – volume: 428 start-page: 280 year: 2021 end-page: 290 ident: CR49 article-title: Bearing feature extraction using multi-structure locally linear embedding publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.11.048 – ident: CR37 – ident: CR10 – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: CR13 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res. – ident: CR33 – volume: 27 start-page: 27 year: 2014 ident: CR24 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – volume: 27 start-page: 57 issue: 3 year: 2021 end-page: 73 ident: CR30 article-title: A study of anomaly detection for ICT infrastructure using conditional multimodal autoencoder publication-title: J Intell Inf Syst – ident: CR44 – ident: CR3 – volume: 104 start-page: 799 year: 2018 end-page: 834 ident: CR6 article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.016 – ident: CR38 – volume: 8 start-page: 9335 year: 2019 end-page: 9346 ident: CR20 article-title: Deep learning-based intelligent fault diagnosis methods toward rotating machinery publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963092 – volume: 32 start-page: 829 issue: 5 year: 2020 end-page: 864 ident: CR22 article-title: A survey on deep learning for multimodal data fusion publication-title: Neural Comput doi: 10.1162/neco_a_01273 – volume: 11 start-page: 39544 year: 2023 end-page: 39554 ident: CR21 article-title: Improving emotion recognition systems by exploiting the spatial information of EEG sensors publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3268233 – volume: 62 start-page: 95 year: 2012 end-page: 108 ident: CR8 article-title: Residual life prediction of rotating machines using acoustic noise signals publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2212508 – volume: 33 start-page: 619 year: 2013 end-page: 624 ident: CR9 article-title: Machinery prognostic method based on multi-class support vector machines and hybrid differential evolution–particle swarm optimization publication-title: Chem Eng Trans. – ident: CR7 – volume: 100 start-page: 90 year: 2019 end-page: 00 ident: CR41 article-title: Impacts of unbalanced test data on the evaluation of classification methods publication-title: ReCALL – volume: 8 start-page: 1 issue: 1 year: 2021 end-page: 17 ident: CR27 article-title: Unsupervised feature learning-based encoder and adversarial networks publication-title: J Big Data doi: 10.1186/s40537-021-00508-9 – volume: 19 start-page: 1602 year: 2020 end-page: 1626 ident: CR28 article-title: Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder publication-title: Struct Health Monit doi: 10.1177/1475921719893594 – ident: 2635_CR36 doi: 10.1109/ECCE.2018.8557651 – ident: 2635_CR10 – ident: 2635_CR15 doi: 10.1007/978-3-030-43353-6_8 – volume: 62 start-page: 95 year: 2012 ident: 2635_CR8 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2012.2212508 – volume: 8 start-page: 827 issue: 4 year: 2023 ident: 2635_CR2 publication-title: Granul Comput doi: 10.1007/s41066-022-00357-8 – volume: 428 start-page: 280 year: 2021 ident: 2635_CR49 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.11.048 – ident: 2635_CR14 doi: 10.1109/SSCI52147.2023.10371895 – volume: 59 start-page: 7179 issue: 23 year: 2021 ident: 2635_CR45 publication-title: Int J Prod Res doi: 10.1080/00207543.2020.1836419 – volume: 11 start-page: 39544 year: 2023 ident: 2635_CR21 publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3268233 – volume: 8 start-page: 9335 year: 2019 ident: 2635_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963092 – volume: 19 start-page: 1602 year: 2020 ident: 2635_CR28 publication-title: Struct Health Monit doi: 10.1177/1475921719893594 – volume: 33 start-page: 619 year: 2013 ident: 2635_CR9 publication-title: Chem Eng Trans. – volume: 11 start-page: 3371 year: 2010 ident: 2635_CR13 publication-title: J Mach Learn Res. – volume: 56 start-page: 539 year: 2020 ident: 2635_CR4 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.07.008 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 2635_CR27 publication-title: J Big Data doi: 10.1186/s40537-021-00508-9 – volume: 9 year: 2019 ident: 2635_CR16 publication-title: Wiley Interdiscip Rev: Data Min Knowl Discov – volume: 3 year: 2014 ident: 2635_CR23 publication-title: APSIPA Trans Signal Inf Process – volume: 12 start-page: 2385 issue: 10 year: 2000 ident: 2635_CR18 publication-title: Neural Comput doi: 10.1162/089976600300014980 – volume: 26 start-page: 3087 issue: 6 year: 2021 ident: 2635_CR42 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2021.3053173 – volume: 69 start-page: 1594 issue: 4 year: 2019 ident: 2635_CR40 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2019.2917735 – volume: 14 start-page: 1137 issue: 3 year: 2018 ident: 2635_CR34 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2018.2793246 – ident: 2635_CR7 doi: 10.1145/1553374.1553511 – volume: 100 start-page: 90 year: 2019 ident: 2635_CR41 publication-title: ReCALL – ident: 2635_CR35 – ident: 2635_CR11 doi: 10.36001/phmconf.2015.v7i1.2655 – volume: 40 start-page: 4820 issue: 12 year: 2013 ident: 2635_CR48 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.02.025 – ident: 2635_CR3 doi: 10.5220/0011548000003329 – volume: 13 start-page: 2039 year: 2017 ident: 2635_CR5 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2017.2670505 – ident: 2635_CR39 – ident: 2635_CR33 doi: 10.1016/j.chemolab.2022.104711 – volume: 52 start-page: 1 issue: 5 year: 2019 ident: 2635_CR46 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3347711 – ident: 2635_CR26 – ident: 2635_CR38 doi: 10.1007/978-1-4842-3913-1_8 – volume: 35 start-page: 1798 year: 2013 ident: 2635_CR12 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.50 – ident: 2635_CR44 doi: 10.1007/978-3-030-67270-6_5 – volume: 144 issue: 3 year: 2022 ident: 2635_CR29 publication-title: J Vib Acoust doi: 10.1115/1.4052364 – volume: 27 start-page: 27 year: 2014 ident: 2635_CR24 publication-title: Advances in neural information processing systems – volume: 10 start-page: 1299 issue: 5 year: 1998 ident: 2635_CR17 publication-title: Neural Comput doi: 10.1162/089976698300017467 – volume: 32 start-page: 1699 issue: 6 year: 2021 ident: 2635_CR1 publication-title: J Intell Manuf doi: 10.1007/s10845-021-01797-w – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 2635_CR25 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3301282 – ident: 2635_CR19 – ident: 2635_CR32 – volume: 27 start-page: 57 issue: 3 year: 2021 ident: 2635_CR30 publication-title: J Intell Inf Syst – ident: 2635_CR43 doi: 10.1007/978-3-031-18050-7_2 – volume: 104 start-page: 799 year: 2018 ident: 2635_CR6 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.11.016 – volume: 62 start-page: 972 year: 2022 ident: 2635_CR31 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2021.05.003 – ident: 2635_CR37 doi: 10.1109/NER52421.2023.10123758 – ident: 2635_CR47 doi: 10.1109/ICTAI.2011.171 – volume: 32 start-page: 829 issue: 5 year: 2020 ident: 2635_CR22 publication-title: Neural Comput doi: 10.1162/neco_a_01273 |
| SSID | ssj0002504465 |
| Score | 2.251549 |
| Snippet | Utilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 371 |
| SubjectTerms | Algorithms Classification Clustering Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data integration Data Structures and Information Theory Deep learning Degradation Design Discriminant analysis Effectiveness Feature extraction Information Systems and Communication Service Innovative Intelligent Industrial Production and Logistics 2022 Machine learning Neural networks Original Research Pattern Recognition and Graphics Preventive maintenance Software Engineering/Programming and Operating Systems State of the art Time series Vibration Vision |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary (1997 - Present) dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagMLBQfkWhIA9sYCm1E9sZgVIxIITKj7pFju0gJGhQkzIw8Rq8Hk_C2U1agQAJhky2T5F99n0-33eH0D7lWina0SSlLCRw4FkiM8YJ0wG3WsGZKT1R-FxcXMjBIL6sSGFFHe1eP0n6k3pKdgNBIiZgU-ADM0miebQA5k66gg39q9upZ8Ul5Qp5VDFkvh_62QrNoOWX11BvZHrN__3eClquQCU-mmjBKpqzwzXUrAs24Gr_rqOiPwkXegHB-Bh03LnJ31_fcNeljJhUV8IAP-8s9qEE2NNzH3PjhI_L3CW9NCCwzLHPy4odgBzDhR07lgruVsVWSuyIJdg53myxgW56p9cnZ6SqukA0FTIixoadVFjLYx1rLZQJLEA6Lk3GmJU26whmRaCE4lLIlAUqM0aaQIZUi1BnMdtEjWE-tFsIS8AiYcYM5wAyaZApmfI0TRlckailVrVQp16FRFcpyV1ljIdkmkzZz2oCs5r4WU2iFjqYjnmaJOT4tXe7Xtyk2pxFwpyXJ3Kk5BY6rBdz1vyztO2_dd9BS9Trg4vzaaNGORrbXbSon8v7YrTnlfYD2c_pIQ priority: 102 providerName: Springer Nature |
| Title | Recognizing Bearings’ Degradation Stage Using Multimodal Autoencoder to Learn Features from Different Time Series |
| URI | https://link.springer.com/article/10.1007/s42979-024-02635-5 https://www.proquest.com/docview/3015050393 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuxy48BAgCkvlAzewSO3Edk6rfQoJVFXloYpL5NgThLTbLE3KgdP-jf17_JL1uG4rkNgLh-SSxLEyk5nxeOb7AF4J5awVI8drIXMeDB5y00jFpcsUOhtspomNwh_0eGxms3KSEm5dKqtc28RoqH3rKEf-VtLSvKBO0oPLH5xYo2h3NVFo7MAeoSQQdcOk-LrJsRA8Vx7ZJIMbErwsi1nqm4ndc2FmuuTBSYUj-F1e_OmbtgHnX3uk0fWcPfjfST-E-ynoZIcrLXkEd3D-GLrpqnboV3gnOwoKTznz31fX7ITwI1ZUSyzEot-QxboCFnt1L1pPIy37lhAwPS5Y37II0soomlyG1TujlhV2kphXekZdJoyycNg9gc9np5-O3_FEwcCd0KbgHvNRrRFV6UrntPUZhvhOGd9IiQabkZaoM6utMtrUMrON98ZnJhdO564p5VPYnbdzfAbMhMAkb6RXKkScImusqVVd1zKslwQKtAMYrT9-5RI-OdFknFcbZOUosCoIrIoCq4oBvN48c7lC57j17v21lKr0p3bVVkQDeLOW8_byv0d7fvtoL-CeiKpFRT77sNsvlvgS7rqf_fduMYS9o9PxZDqEnfeaD6PWhvP045cbCZHyLg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwELZWCxJc-BEgCgv4ACewSO3Edg4IAWW1q5YKoUXqLTj2ZIUEzdKkIDjxGrwED8WTMOMkrUBib3vgkFMSK7E_z4zt-b5h7L7U3jk59qKUKhVo8EDYSmmhfKLBO7SZNhKFZ2Y-t4tF_nqH_Ry4MJRWOdjEaKhD7WmP_LGipXlGTNKnJ58EVY2i09WhhEYHiyl8_YJLtubJ4QTH94GU-y-PXhyIvqqA8NLYTARIx6UB0LnPvTcuJIAhi7ahUgosVGOjwCTOOG2NLVXiqhBsSGwqvUl9ReJLaPLPpcoamldTIzZ7OiQHlsbqlej2pMjzbNHzdCJbD3vC5AKdIl7o50X2py_cBrh_nclGV7d_-X_rpCvsUh9U82fdLLjKdmB5jTVvutyob_iP_Dl-FJ0J_Pr-g09IH6MrJcUx1j4GHvMmeOQif6wDtbRua1L4DLDibc2jCC2naHm9goYTJYdP-soyLScWDaddRmius7dn8p832O6yXsJNxi0GXmmlgtYYUcukcrbUZVkqXA9KkOBGbDwMduF7_XUqA_Kh2ChHR4AUCJAiAqTIRuzh5p2TTn3k1Kf3BlQUvSVqii0kRuzRgKvt7X-3duv01u6xCwdHr2bF7HA-vc0uyghrSmjaY7vtag132Hn_uX3frO7GOcLZu7PG228OFEzy |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgEJ74ivHi27i6KgdvSuxCC_SorhuNm43xFW8NBWpMdNe4XQ-e_Bv-PX-JQNv1ETUxHnoqTBsYmGGY7xuATcKUlKShcEpoiO2GZ7DIKMNUBcwoafdM4YHCbd7piKur-OQDit9nu1dXkgWmwbE0dfOde53tDIFvViiPsbUv9rEmE0ejMB66RHp3Xj-7HEZZHEFXyKISLfN9188W6d3N_HIz6g1Oa-b_vzoL06WziXYL7ZiDEdOdh5mqkAMq1_UC9E-LNKIn-xG0Z3Xfhc9fn19Q01FJFFWXkHVLrw3yKQbIw3bvetoJH-Q9R4aprcC8hzxfK3KO5cAe5JFDr6BmWYQlRw5wglxAzvQX4aJ1cL5_iMtqDFgRLiKsTdhIuTEsVrFSXOrAWFePCZ1RaoTJGpwaHkgumeAipYHMtBY6ECFRPFRZTJdgrNvrmmVAwvooYUY1Y9b5JEEmRcrSNKX26EQMMbIGjWpGElVSlbuKGbfJkGTZj2piRzXxo5pENdga9rkviDp-bV2vJjopF20_oS76Ezmwcg22q4l9f_2ztJW_Nd-AyZNmK2kfdY5XYYp41XCpQHUYyx8GZg0m1GN-039Y97r8Bjj39Ok |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognizing+Bearings%E2%80%99+Degradation+Stage+Using+Multimodal+Autoencoder+to+Learn+Features+from+Different+Time+Series&rft.jtitle=SN+computer+science&rft.au=Alfeo%2C+Antonio+Luca&rft.au=Cimino%2C+Mario+G.+C.+A.&rft.au=Gagliardi%2C+Guido&rft.date=2024-04-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-024-02635-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_024_02635_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |