Recognizing Bearings’ Degradation Stage Using Multimodal Autoencoder to Learn Features from Different Time Series

Utilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately recognizing the current health degradation stages of industrial assets requires a time-consuming manual feature extraction due to the wide range o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SN computer science Ročník 5; číslo 4; s. 371
Hlavní autoři: Alfeo, Antonio Luca, Cimino, Mario G. C. A., Gagliardi, Guido
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.04.2024
Springer Nature B.V
Témata:
ISSN:2661-8907, 2662-995X, 2661-8907
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Utilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately recognizing the current health degradation stages of industrial assets requires a time-consuming manual feature extraction due to the wide range of observable measures (e.g., temperature, vibration) and behaviors characterizing assets’ degradation. To address this issue, feature learning technology can transform minimally processed time series into informative features, i.e., able to simplify the classification task (e.g., recognizing degradation stages) regardless of the specific machine learning classifier employed. In this work, minimally preprocessed time series of vibration and temperature of industrial bearings are exploited by an autoencoder-based architecture to extract degradation-representative features to be used for recognizing their degradation stages. Different autoencoder architectures are employed to compare their data fusion strategies. The effectiveness of the proposed approach is evaluated in terms of recognition performance and the quality of the learned features by using a publicly available real-world dataset and comparing the proposed approach against a state-of-the-art feature learning technology. We tested three different multimodal autoencoder-based feature learning approaches, i.e., shared-input autoencoder (SAE), multimodal autoencoder (MMAE), and partition-based autoencoder (PAE). All the AE-based architecture results in classification performances greater or comparable with the state-of-the-art feature learning technology, despite being trained in an unsupervised fashion. Also, the features provided via PAE correspond to the greatest performances in recognizing bearings’ degradation stage, providing high-quality features both from a classification and clustering perspective. Unsupervised feature learning methodologies based on multimodal autoencoders are capable of learning high-quality features. These result in greater degradation stages recognition performances when compared to supervised state-of-the-art feature learning technology. Also, this enables the correct representation of the expected progressive degradation of the bearing.
AbstractList Utilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately recognizing the current health degradation stages of industrial assets requires a time-consuming manual feature extraction due to the wide range of observable measures (e.g., temperature, vibration) and behaviors characterizing assets’ degradation. To address this issue, feature learning technology can transform minimally processed time series into informative features, i.e., able to simplify the classification task (e.g., recognizing degradation stages) regardless of the specific machine learning classifier employed. In this work, minimally preprocessed time series of vibration and temperature of industrial bearings are exploited by an autoencoder-based architecture to extract degradation-representative features to be used for recognizing their degradation stages. Different autoencoder architectures are employed to compare their data fusion strategies. The effectiveness of the proposed approach is evaluated in terms of recognition performance and the quality of the learned features by using a publicly available real-world dataset and comparing the proposed approach against a state-of-the-art feature learning technology. We tested three different multimodal autoencoder-based feature learning approaches, i.e., shared-input autoencoder (SAE), multimodal autoencoder (MMAE), and partition-based autoencoder (PAE). All the AE-based architecture results in classification performances greater or comparable with the state-of-the-art feature learning technology, despite being trained in an unsupervised fashion. Also, the features provided via PAE correspond to the greatest performances in recognizing bearings’ degradation stage, providing high-quality features both from a classification and clustering perspective. Unsupervised feature learning methodologies based on multimodal autoencoders are capable of learning high-quality features. These result in greater degradation stages recognition performances when compared to supervised state-of-the-art feature learning technology. Also, this enables the correct representation of the expected progressive degradation of the bearing.
ArticleNumber 371
Author Gagliardi, Guido
Cimino, Mario G. C. A.
Alfeo, Antonio Luca
Author_xml – sequence: 1
  givenname: Antonio Luca
  surname: Alfeo
  fullname: Alfeo, Antonio Luca
  organization: Dept. of Information Engineering, University of Pisa, Research Center E. Piaggio, University of Pisa
– sequence: 2
  givenname: Mario G. C. A.
  surname: Cimino
  fullname: Cimino, Mario G. C. A.
  organization: Dept. of Information Engineering, University of Pisa, Research Center E. Piaggio, University of Pisa
– sequence: 3
  givenname: Guido
  orcidid: 0000-0003-2020-6439
  surname: Gagliardi
  fullname: Gagliardi, Guido
  email: guido.gagliardi@phd.unipi.it
  organization: Dept. of Information Engineering, University of Pisa, Dept. of Information Engineering, University of Florence, Dept. of Electrical Engineering, KU Leuven
BookMark eNp9kL9OIzEQhy3ESQccL3CVJeqF2fV67S35F0AKOukSasvY48gosYPtLaDiNe717knYECQQBcVopvh9M6Nvn-yGGJCQ3zUc1wDiJLdNL_oKmnasjvGK75C9puvqSvYgdj_NP8lhzg8A0HBo247vkfwXTVwE_-zDgp6hTmPP_1_-0QtcJG118THQWdELpHd5k7kdlsWvotVLejqUiMFEi4mWSKcjHegEdRkSZupSXNEL7xwmDIXO_QrpDJPH_Iv8cHqZ8fC9H5C7yeX8_Lqa_rm6OT-dVqYRklcW2_peIHa96Y0R2gJywTtpHWMo0dWCoQAtdCeFvGegnbXSgmwbI1rjenZAjrZ71yk-DpiLeohDCuNJxaDmwIH1bEw125RJMeeETq2TX-n0pGpQG79q61eNftWbX8VHSH6BjC9vskrSfvk9yrZoXm9kY_r46hvqFUsWk70
CitedBy_id crossref_primary_10_1088_1361_6579_adaf73
crossref_primary_10_1109_ACCESS_2025_3578686
Cites_doi 10.1016/j.jmsy.2021.05.003
10.1145/3347711
10.1109/TIM.2019.2917735
10.1109/TMECH.2021.3053173
10.1016/j.eswa.2013.02.025
10.1016/j.jmsy.2020.07.008
10.1109/TII.2017.2670505
10.1109/TII.2018.2793246
10.1162/089976600300014980
10.1007/s10845-021-01797-w
10.1080/00207543.2020.1836419
10.1115/1.4052364
10.1145/3301282
10.1162/089976698300017467
10.1007/s41066-022-00357-8
10.1109/TPAMI.2013.50
10.1016/j.neucom.2020.11.048
10.1016/j.ymssp.2017.11.016
10.1109/ACCESS.2019.2963092
10.1162/neco_a_01273
10.1109/ACCESS.2023.3268233
10.1109/TIM.2012.2212508
10.1186/s40537-021-00508-9
10.1177/1475921719893594
10.1109/ECCE.2018.8557651
10.1007/978-3-030-43353-6_8
10.1109/SSCI52147.2023.10371895
10.1145/1553374.1553511
10.36001/phmconf.2015.v7i1.2655
10.5220/0011548000003329
10.1016/j.chemolab.2022.104711
10.1007/978-1-4842-3913-1_8
10.1007/978-3-030-67270-6_5
10.1007/978-3-031-18050-7_2
10.1109/NER52421.2023.10123758
10.1109/ICTAI.2011.171
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-024-02635-5
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
CrossRef
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_024_02635_5
GrantInformation_xml – fundername: The Italian Ministry of University and Research (MUR) in the framework of the FoReLab project (Departments of Excellence).
– fundername: PNRR-M4C2-Investimento 1.3, Partenariato Esteso PE00000013-“FAIR—Future Artificial Intelligence Research”-Spoke 1 “Human-centered AI”, funded by the European Commission under the Next Generation EU programme.
– fundername: Università di Pisa
– fundername: National Center for Sustainable Mobility MOST/Spoke10, funded by the Italian Ministry of University and Research in the framework of the National Recovery and Resilience Plan.
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAPOH
BSONS
C6C
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
KOV
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2785-de41b7ee69c9cc7ad0e57568df33e8ef173e70a7a6878b30afdd8d0842c74cf93
IEDL.DBID P5Z
ISSN 2661-8907
2662-995X
IngestDate Wed Nov 05 14:51:26 EST 2025
Tue Nov 18 20:58:49 EST 2025
Sat Nov 29 01:32:52 EST 2025
Fri Feb 21 02:44:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep feature learning
Data fusion
Multimodal autoencoder
Contrastive learning
Predictive maintenance
Smart manufacturing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2785-de41b7ee69c9cc7ad0e57568df33e8ef173e70a7a6878b30afdd8d0842c74cf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2020-6439
OpenAccessLink https://link.springer.com/10.1007/s42979-024-02635-5
PQID 3015050393
PQPubID 6623307
ParticipantIDs proquest_journals_3015050393
crossref_primary_10_1007_s42979_024_02635_5
crossref_citationtrail_10_1007_s42979_024_02635_5
springer_journals_10_1007_s42979_024_02635_5
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Traini, Bruno, Lombardi (CR45) 2021; 59
Gao, Li, Chen, Zhang (CR22) 2020; 32
Alfeo, Cimino, Vaglini (CR1) 2021; 32
Shin, Lee, Han, Park (CR30) 2021; 27
CR39
CR38
CR37
CR36
CR35
Shanbhag, Meyer, Caspers, Schlanbusch (CR42) 2021; 26
CR33
Baudat, Anouar (CR18) 2000; 12
CR32
Deng (CR23) 2014; 3
CR3
Lei, Li, Guo, Li, Yan, Lin (CR6) 2018; 104
Bengio, Courville, Vincent (CR12) 2013; 35
CR7
Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (CR13) 2010; 11
CR47
CR44
CR43
Hong, Hwang, Yoo, Yoon (CR25) 2019; 52
Wan, Tang, Li, Wang, Liu, Abbas (CR5) 2017; 13
Alfeo, Cimino, Gagliardi (CR2) 2023; 8
Jimenez, Schwartz, Vingerhoeds, Grabot, Salaün (CR4) 2020; 56
Ma, Sun, Chen (CR34) 2018; 14
Lorena, Garcia, Lehmann, Souto, Ho (CR46) 2019; 52
CR19
Alfeo, Cimino, Vaglini (CR31) 2022; 62
Nguyen (CR41) 2019; 100
CR15
CR14
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (CR24) 2014; 27
Yan, Liu, Jia (CR28) 2020; 19
CR11
CR10
Cano (CR48) 2013; 40
Gagliardi, Alfeo, Catrambone, Candia-Rivera, Cimino, Valenza (CR21) 2023; 11
Kimotho, Sondermann-Wölke, Meyer, Sextro (CR9) 2013; 33
Tang, Yuan, Zhu (CR20) 2019; 8
Suryawati, Pardede, Zilvan, Ramdan, Krisnandi, Heryana (CR27) 2021; 8
Schölkopf, Smola, Müller (CR17) 1998; 10
CR26
Scanlon, Kavanagh, Boland (CR8) 2012; 62
Gecgel, Ekwaro-Osire, Gulbulak, Morais (CR29) 2022; 144
Liu, Hu, Zhang (CR49) 2021; 428
Zhong, Ling, Wang (CR16) 2019; 9
Mao, He, Zuo (CR40) 2019; 69
Y Lei (2635_CR6) 2018; 104
2635_CR32
M Ma (2635_CR34) 2018; 14
L Deng (2635_CR23) 2014; 3
2635_CR39
2635_CR37
2635_CR38
Y Bengio (2635_CR12) 2013; 35
2635_CR35
2635_CR36
2635_CR33
G Gagliardi (2635_CR21) 2023; 11
O Gecgel (2635_CR29) 2022; 144
Y Hong (2635_CR25) 2019; 52
2635_CR43
2635_CR3
2635_CR7
B Schölkopf (2635_CR17) 1998; 10
P Scanlon (2635_CR8) 2012; 62
2635_CR47
2635_CR44
I Goodfellow (2635_CR24) 2014; 27
P Vincent (2635_CR13) 2010; 11
S Tang (2635_CR20) 2019; 8
J Gao (2635_CR22) 2020; 32
E Suryawati (2635_CR27) 2021; 8
2635_CR10
AL Alfeo (2635_CR2) 2023; 8
AC Lorena (2635_CR46) 2019; 52
J Wan (2635_CR5) 2017; 13
2635_CR15
2635_CR14
2635_CR11
X Yan (2635_CR28) 2020; 19
2635_CR19
B Shin (2635_CR30) 2021; 27
AL Alfeo (2635_CR31) 2022; 62
G Baudat (2635_CR18) 2000; 12
Y Liu (2635_CR49) 2021; 428
AL Alfeo (2635_CR1) 2021; 32
MH Nguyen (2635_CR41) 2019; 100
VV Shanbhag (2635_CR42) 2021; 26
G Zhong (2635_CR16) 2019; 9
2635_CR26
W Mao (2635_CR40) 2019; 69
JK Kimotho (2635_CR9) 2013; 33
JR Cano (2635_CR48) 2013; 40
E Traini (2635_CR45) 2021; 59
JJM Jimenez (2635_CR4) 2020; 56
References_xml – volume: 62
  start-page: 972
  year: 2022
  end-page: 983
  ident: CR31
  article-title: Degradation stage classification via interpretable feature learning
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.05.003
– volume: 52
  start-page: 1
  issue: 5
  year: 2019
  end-page: 34
  ident: CR46
  article-title: How Complex is your classification problem? A survey on measuring classification complexity
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3347711
– ident: CR39
– volume: 69
  start-page: 1594
  issue: 4
  year: 2019
  end-page: 1608
  ident: CR40
  article-title: Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2917735
– ident: CR35
– volume: 26
  start-page: 3087
  issue: 6
  year: 2021
  end-page: 3103
  ident: CR42
  article-title: Failure monitoring and predictive maintenance of hydraulic cylinder-state-of-the-art review
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2021.3053173
– volume: 40
  start-page: 4820
  issue: 12
  year: 2013
  end-page: 4831
  ident: CR48
  article-title: Analysis of data complexity measures for classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.02.025
– volume: 56
  start-page: 539
  year: 2020
  end-page: 557
  ident: CR4
  article-title: Towards multi-model approaches to predictive maintenance: a systematic literature survey on diagnostics and prognostics
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.07.008
– volume: 3
  year: 2014
  ident: CR23
  article-title: A tutorial survey of architectures, algorithms, and applications for deep learning
  publication-title: APSIPA Trans Signal Inf Process
– volume: 13
  start-page: 2039
  year: 2017
  end-page: 2047
  ident: CR5
  article-title: A manufacturing big data solution for active preventive maintenance
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2017.2670505
– volume: 14
  start-page: 1137
  issue: 3
  year: 2018
  end-page: 1145
  ident: CR34
  article-title: Deep coupling autoencoder for fault diagnosis with multimodal sensory data
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2018.2793246
– volume: 12
  start-page: 2385
  issue: 10
  year: 2000
  end-page: 2404
  ident: CR18
  article-title: Generalized discriminant analysis using a kernel approach
  publication-title: Neural Comput
  doi: 10.1162/089976600300014980
– volume: 32
  start-page: 1699
  issue: 6
  year: 2021
  end-page: 1710
  ident: CR1
  article-title: Technological troubleshooting based on sentence embedding with deep transformers
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-021-01797-w
– volume: 9
  year: 2019
  ident: CR16
  article-title: From shallow feature learning to deep learning: benefits from the width and depth of deep architectures
  publication-title: Wiley Interdiscip Rev: Data Min Knowl Discov
– ident: CR19
– volume: 59
  start-page: 7179
  issue: 23
  year: 2021
  end-page: 7193
  ident: CR45
  article-title: Tool condition monitoring framework for predictive maintenance: a case study on milling process
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1836419
– ident: CR15
– ident: CR11
– volume: 144
  issue: 3
  year: 2022
  ident: CR29
  article-title: Deep convolutional neural network framework for diagnostics of planetary gearboxes under dynamic loading with feature-level data fusion
  publication-title: J Vib Acoust
  doi: 10.1115/1.4052364
– ident: CR32
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  end-page: 43
  ident: CR25
  article-title: How generative adversarial networks and their variants work: an overview
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3301282
– ident: CR36
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  end-page: 1319
  ident: CR17
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput
  doi: 10.1162/089976698300017467
– volume: 8
  start-page: 827
  issue: 4
  year: 2023
  end-page: 838
  ident: CR2
  article-title: Concept-wise granular computing for explainable artificial intelligence
  publication-title: Granul Comput
  doi: 10.1007/s41066-022-00357-8
– ident: CR26
– ident: CR43
– ident: CR47
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: CR12
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– ident: CR14
– volume: 428
  start-page: 280
  year: 2021
  end-page: 290
  ident: CR49
  article-title: Bearing feature extraction using multi-structure locally linear embedding
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.048
– ident: CR37
– ident: CR10
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: CR13
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res.
– ident: CR33
– volume: 27
  start-page: 27
  year: 2014
  ident: CR24
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– volume: 27
  start-page: 57
  issue: 3
  year: 2021
  end-page: 73
  ident: CR30
  article-title: A study of anomaly detection for ICT infrastructure using conditional multimodal autoencoder
  publication-title: J Intell Inf Syst
– ident: CR44
– ident: CR3
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: CR6
  article-title: Machinery health prognostics: a systematic review from data acquisition to RUL prediction
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.016
– ident: CR38
– volume: 8
  start-page: 9335
  year: 2019
  end-page: 9346
  ident: CR20
  article-title: Deep learning-based intelligent fault diagnosis methods toward rotating machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963092
– volume: 32
  start-page: 829
  issue: 5
  year: 2020
  end-page: 864
  ident: CR22
  article-title: A survey on deep learning for multimodal data fusion
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01273
– volume: 11
  start-page: 39544
  year: 2023
  end-page: 39554
  ident: CR21
  article-title: Improving emotion recognition systems by exploiting the spatial information of EEG sensors
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3268233
– volume: 62
  start-page: 95
  year: 2012
  end-page: 108
  ident: CR8
  article-title: Residual life prediction of rotating machines using acoustic noise signals
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2212508
– volume: 33
  start-page: 619
  year: 2013
  end-page: 624
  ident: CR9
  article-title: Machinery prognostic method based on multi-class support vector machines and hybrid differential evolution–particle swarm optimization
  publication-title: Chem Eng Trans.
– ident: CR7
– volume: 100
  start-page: 90
  year: 2019
  end-page: 00
  ident: CR41
  article-title: Impacts of unbalanced test data on the evaluation of classification methods
  publication-title: ReCALL
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  end-page: 17
  ident: CR27
  article-title: Unsupervised feature learning-based encoder and adversarial networks
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00508-9
– volume: 19
  start-page: 1602
  year: 2020
  end-page: 1626
  ident: CR28
  article-title: Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder
  publication-title: Struct Health Monit
  doi: 10.1177/1475921719893594
– ident: 2635_CR36
  doi: 10.1109/ECCE.2018.8557651
– ident: 2635_CR10
– ident: 2635_CR15
  doi: 10.1007/978-3-030-43353-6_8
– volume: 62
  start-page: 95
  year: 2012
  ident: 2635_CR8
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2012.2212508
– volume: 8
  start-page: 827
  issue: 4
  year: 2023
  ident: 2635_CR2
  publication-title: Granul Comput
  doi: 10.1007/s41066-022-00357-8
– volume: 428
  start-page: 280
  year: 2021
  ident: 2635_CR49
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.048
– ident: 2635_CR14
  doi: 10.1109/SSCI52147.2023.10371895
– volume: 59
  start-page: 7179
  issue: 23
  year: 2021
  ident: 2635_CR45
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2020.1836419
– volume: 11
  start-page: 39544
  year: 2023
  ident: 2635_CR21
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3268233
– volume: 8
  start-page: 9335
  year: 2019
  ident: 2635_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963092
– volume: 19
  start-page: 1602
  year: 2020
  ident: 2635_CR28
  publication-title: Struct Health Monit
  doi: 10.1177/1475921719893594
– volume: 33
  start-page: 619
  year: 2013
  ident: 2635_CR9
  publication-title: Chem Eng Trans.
– volume: 11
  start-page: 3371
  year: 2010
  ident: 2635_CR13
  publication-title: J Mach Learn Res.
– volume: 56
  start-page: 539
  year: 2020
  ident: 2635_CR4
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.07.008
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 2635_CR27
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00508-9
– volume: 9
  year: 2019
  ident: 2635_CR16
  publication-title: Wiley Interdiscip Rev: Data Min Knowl Discov
– volume: 3
  year: 2014
  ident: 2635_CR23
  publication-title: APSIPA Trans Signal Inf Process
– volume: 12
  start-page: 2385
  issue: 10
  year: 2000
  ident: 2635_CR18
  publication-title: Neural Comput
  doi: 10.1162/089976600300014980
– volume: 26
  start-page: 3087
  issue: 6
  year: 2021
  ident: 2635_CR42
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2021.3053173
– volume: 69
  start-page: 1594
  issue: 4
  year: 2019
  ident: 2635_CR40
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2917735
– volume: 14
  start-page: 1137
  issue: 3
  year: 2018
  ident: 2635_CR34
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2018.2793246
– ident: 2635_CR7
  doi: 10.1145/1553374.1553511
– volume: 100
  start-page: 90
  year: 2019
  ident: 2635_CR41
  publication-title: ReCALL
– ident: 2635_CR35
– ident: 2635_CR11
  doi: 10.36001/phmconf.2015.v7i1.2655
– volume: 40
  start-page: 4820
  issue: 12
  year: 2013
  ident: 2635_CR48
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.02.025
– ident: 2635_CR3
  doi: 10.5220/0011548000003329
– volume: 13
  start-page: 2039
  year: 2017
  ident: 2635_CR5
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2017.2670505
– ident: 2635_CR39
– ident: 2635_CR33
  doi: 10.1016/j.chemolab.2022.104711
– volume: 52
  start-page: 1
  issue: 5
  year: 2019
  ident: 2635_CR46
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3347711
– ident: 2635_CR26
– ident: 2635_CR38
  doi: 10.1007/978-1-4842-3913-1_8
– volume: 35
  start-page: 1798
  year: 2013
  ident: 2635_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– ident: 2635_CR44
  doi: 10.1007/978-3-030-67270-6_5
– volume: 144
  issue: 3
  year: 2022
  ident: 2635_CR29
  publication-title: J Vib Acoust
  doi: 10.1115/1.4052364
– volume: 27
  start-page: 27
  year: 2014
  ident: 2635_CR24
  publication-title: Advances in neural information processing systems
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 2635_CR17
  publication-title: Neural Comput
  doi: 10.1162/089976698300017467
– volume: 32
  start-page: 1699
  issue: 6
  year: 2021
  ident: 2635_CR1
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-021-01797-w
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 2635_CR25
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3301282
– ident: 2635_CR19
– ident: 2635_CR32
– volume: 27
  start-page: 57
  issue: 3
  year: 2021
  ident: 2635_CR30
  publication-title: J Intell Inf Syst
– ident: 2635_CR43
  doi: 10.1007/978-3-031-18050-7_2
– volume: 104
  start-page: 799
  year: 2018
  ident: 2635_CR6
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 62
  start-page: 972
  year: 2022
  ident: 2635_CR31
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.05.003
– ident: 2635_CR37
  doi: 10.1109/NER52421.2023.10123758
– ident: 2635_CR47
  doi: 10.1109/ICTAI.2011.171
– volume: 32
  start-page: 829
  issue: 5
  year: 2020
  ident: 2635_CR22
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01273
SSID ssj0002504465
Score 2.251549
Snippet Utilizing machine learning technologies to monitor assets’ health conditions can improve the effectiveness of maintenance activities. However, accurately...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 371
SubjectTerms Algorithms
Classification
Clustering
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data integration
Data Structures and Information Theory
Deep learning
Degradation
Design
Discriminant analysis
Effectiveness
Feature extraction
Information Systems and Communication Service
Innovative Intelligent Industrial Production and Logistics 2022
Machine learning
Neural networks
Original Research
Pattern Recognition and Graphics
Preventive maintenance
Software Engineering/Programming and Operating Systems
State of the art
Time series
Vibration
Vision
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagMLBQfkWhIA9sYCm1E9sZgVIxIITKj7pFju0gJGhQkzIw8Rq8Hk_C2U1agQAJhky2T5F99n0-33eH0D7lWina0SSlLCRw4FkiM8YJ0wG3WsGZKT1R-FxcXMjBIL6sSGFFHe1eP0n6k3pKdgNBIiZgU-ADM0miebQA5k66gg39q9upZ8Ul5Qp5VDFkvh_62QrNoOWX11BvZHrN__3eClquQCU-mmjBKpqzwzXUrAs24Gr_rqOiPwkXegHB-Bh03LnJ31_fcNeljJhUV8IAP-8s9qEE2NNzH3PjhI_L3CW9NCCwzLHPy4odgBzDhR07lgruVsVWSuyIJdg53myxgW56p9cnZ6SqukA0FTIixoadVFjLYx1rLZQJLEA6Lk3GmJU26whmRaCE4lLIlAUqM0aaQIZUi1BnMdtEjWE-tFsIS8AiYcYM5wAyaZApmfI0TRlckailVrVQp16FRFcpyV1ljIdkmkzZz2oCs5r4WU2iFjqYjnmaJOT4tXe7Xtyk2pxFwpyXJ3Kk5BY6rBdz1vyztO2_dd9BS9Trg4vzaaNGORrbXbSon8v7YrTnlfYD2c_pIQ
  priority: 102
  providerName: Springer Nature
Title Recognizing Bearings’ Degradation Stage Using Multimodal Autoencoder to Learn Features from Different Time Series
URI https://link.springer.com/article/10.1007/s42979-024-02635-5
https://www.proquest.com/docview/3015050393
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuxy48BAgCkvlAzewSO3Edk6rfQoJVFXloYpL5NgThLTbLE3KgdP-jf17_JL1uG4rkNgLh-SSxLEyk5nxeOb7AF4J5awVI8drIXMeDB5y00jFpcsUOhtspomNwh_0eGxms3KSEm5dKqtc28RoqH3rKEf-VtLSvKBO0oPLH5xYo2h3NVFo7MAeoSQQdcOk-LrJsRA8Vx7ZJIMbErwsi1nqm4ndc2FmuuTBSYUj-F1e_OmbtgHnX3uk0fWcPfjfST-E-ynoZIcrLXkEd3D-GLrpqnboV3gnOwoKTznz31fX7ITwI1ZUSyzEot-QxboCFnt1L1pPIy37lhAwPS5Y37II0soomlyG1TujlhV2kphXekZdJoyycNg9gc9np5-O3_FEwcCd0KbgHvNRrRFV6UrntPUZhvhOGd9IiQabkZaoM6utMtrUMrON98ZnJhdO564p5VPYnbdzfAbMhMAkb6RXKkScImusqVVd1zKslwQKtAMYrT9-5RI-OdFknFcbZOUosCoIrIoCq4oBvN48c7lC57j17v21lKr0p3bVVkQDeLOW8_byv0d7fvtoL-CeiKpFRT77sNsvlvgS7rqf_fduMYS9o9PxZDqEnfeaD6PWhvP045cbCZHyLg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwELZWCxJc-BEgCgv4ACewSO3Edg4IAWW1q5YKoUXqLTj2ZIUEzdKkIDjxGrwED8WTMOMkrUBib3vgkFMSK7E_z4zt-b5h7L7U3jk59qKUKhVo8EDYSmmhfKLBO7SZNhKFZ2Y-t4tF_nqH_Ry4MJRWOdjEaKhD7WmP_LGipXlGTNKnJ58EVY2i09WhhEYHiyl8_YJLtubJ4QTH94GU-y-PXhyIvqqA8NLYTARIx6UB0LnPvTcuJIAhi7ahUgosVGOjwCTOOG2NLVXiqhBsSGwqvUl9ReJLaPLPpcoamldTIzZ7OiQHlsbqlej2pMjzbNHzdCJbD3vC5AKdIl7o50X2py_cBrh_nclGV7d_-X_rpCvsUh9U82fdLLjKdmB5jTVvutyob_iP_Dl-FJ0J_Pr-g09IH6MrJcUx1j4GHvMmeOQif6wDtbRua1L4DLDibc2jCC2naHm9goYTJYdP-soyLScWDaddRmius7dn8p832O6yXsJNxi0GXmmlgtYYUcukcrbUZVkqXA9KkOBGbDwMduF7_XUqA_Kh2ChHR4AUCJAiAqTIRuzh5p2TTn3k1Kf3BlQUvSVqii0kRuzRgKvt7X-3duv01u6xCwdHr2bF7HA-vc0uyghrSmjaY7vtag132Hn_uX3frO7GOcLZu7PG228OFEzy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgEJ74ivHi27i6KgdvSuxCC_SorhuNm43xFW8NBWpMdNe4XQ-e_Bv-PX-JQNv1ETUxHnoqTBsYmGGY7xuATcKUlKShcEpoiO2GZ7DIKMNUBcwoafdM4YHCbd7piKur-OQDit9nu1dXkgWmwbE0dfOde53tDIFvViiPsbUv9rEmE0ejMB66RHp3Xj-7HEZZHEFXyKISLfN9188W6d3N_HIz6g1Oa-b_vzoL06WziXYL7ZiDEdOdh5mqkAMq1_UC9E-LNKIn-xG0Z3Xfhc9fn19Q01FJFFWXkHVLrw3yKQbIw3bvetoJH-Q9R4aprcC8hzxfK3KO5cAe5JFDr6BmWYQlRw5wglxAzvQX4aJ1cL5_iMtqDFgRLiKsTdhIuTEsVrFSXOrAWFePCZ1RaoTJGpwaHkgumeAipYHMtBY6ECFRPFRZTJdgrNvrmmVAwvooYUY1Y9b5JEEmRcrSNKX26EQMMbIGjWpGElVSlbuKGbfJkGTZj2piRzXxo5pENdga9rkviDp-bV2vJjopF20_oS76Ezmwcg22q4l9f_2ztJW_Nd-AyZNmK2kfdY5XYYp41XCpQHUYyx8GZg0m1GN-039Y97r8Bjj39Ok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognizing+Bearings%E2%80%99+Degradation+Stage+Using+Multimodal+Autoencoder+to+Learn+Features+from+Different+Time+Series&rft.jtitle=SN+computer+science&rft.au=Alfeo%2C+Antonio+Luca&rft.au=Cimino%2C+Mario+G.+C.+A.&rft.au=Gagliardi%2C+Guido&rft.date=2024-04-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1007%2Fs42979-024-02635-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_024_02635_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon