Mapping Forest Height and Aboveground Biomass by Integrating ICESat‐2, Sentinel‐1 and Sentinel‐2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India
The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height information with Sentinel‐2 data‐derived spectral variables on the prediction of spatial distribution of forest aboveground biomass (AGB). Ran...
Gespeichert in:
| Veröffentlicht in: | Geophysical research letters Jg. 48; H. 14 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
28.07.2021
|
| Schlagworte: | |
| ISSN: | 0094-8276, 1944-8007 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height information with Sentinel‐2 data‐derived spectral variables on the prediction of spatial distribution of forest aboveground biomass (AGB). Random forest (RF) algorithm was used to develop forest canopy height and AGB models. It was observed that ICESat‐2 and Sentinel‐1 based model was able to predict forest canopy height with R2 = 0.84 and %RMSE = 4.48%. Two forest AGB models were developed, with only spectral variables and by incorporating forest height information with spectral variables. The results reflected that incorporation of forest canopy height in the forest AGB model improved the accuracy of the AGB predictions (R2 = 0.83, %RMSE = 4.64%). The study presents a comprehensive methodology for mapping forest canopy height and AGB.
Plain Language Summary
Estimation and mapping of forest biomass are vital to understand the role of forests in the global carbon budget and climate. Forest canopy height is an important indicator of biomass, carbon stock, and forest productivity and hence, incorporation of accurate forest canopy height information can result in improved estimation of forest biomass. The present study aims to map the forest canopy height and analyses the effect of including the canopy height information on aboveground biomass prediction by the synergistic use of multi‐sensor earth observation data using a machine learning algorithm. It presents a comprehensive methodology for forest canopy height and biomass estimation using active and passive remote sensing data. The developed approach can be implemented for mapping as well as monitoring the forest biomass/carbon stock and has huge relevance to carbon budgeting, climate conventions, and sustainable management of forests. The study was conducted using freely available satellite data, algorithm/software, and platform which makes it easily replicable in a time and cost‐effective manner.
Key Points
Forest canopy height was mapped by integrating ICESat‐2 canopy height & Sentinel‐1 backscatter & texture values using Random Forest (RF)
Forest canopy height and Sentinel‐2 derived variables were used to map spatial distribution of forest aboveground biomass (AGB) using RF
The study presents a novel methodology for mapping AGB using ICESat‐2 data in combination with microwave and optical satellite data |
|---|---|
| AbstractList | The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height information with Sentinel‐2 data‐derived spectral variables on the prediction of spatial distribution of forest aboveground biomass (AGB). Random forest (RF) algorithm was used to develop forest canopy height and AGB models. It was observed that ICESat‐2 and Sentinel‐1 based model was able to predict forest canopy height with
R
2
= 0.84 and %RMSE = 4.48%. Two forest AGB models were developed, with only spectral variables and by incorporating forest height information with spectral variables. The results reflected that incorporation of forest canopy height in the forest AGB model improved the accuracy of the AGB predictions (
R
2
= 0.83, %RMSE = 4.64%). The study presents a comprehensive methodology for mapping forest canopy height and AGB.
Estimation and mapping of forest biomass are vital to understand the role of forests in the global carbon budget and climate. Forest canopy height is an important indicator of biomass, carbon stock, and forest productivity and hence, incorporation of accurate forest canopy height information can result in improved estimation of forest biomass. The present study aims to map the forest canopy height and analyses the effect of including the canopy height information on aboveground biomass prediction by the synergistic use of multi‐sensor earth observation data using a machine learning algorithm. It presents a comprehensive methodology for forest canopy height and biomass estimation using active and passive remote sensing data. The developed approach can be implemented for mapping as well as monitoring the forest biomass/carbon stock and has huge relevance to carbon budgeting, climate conventions, and sustainable management of forests. The study was conducted using freely available satellite data, algorithm/software, and platform which makes it easily replicable in a time and cost‐effective manner.
Forest canopy height was mapped by integrating ICESat‐2 canopy height & Sentinel‐1 backscatter & texture values using Random Forest (RF)
Forest canopy height and Sentinel‐2 derived variables were used to map spatial distribution of forest aboveground biomass (AGB) using RF
The study presents a novel methodology for mapping AGB using ICESat‐2 data in combination with microwave and optical satellite data The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height information with Sentinel‐2 data‐derived spectral variables on the prediction of spatial distribution of forest aboveground biomass (AGB). Random forest (RF) algorithm was used to develop forest canopy height and AGB models. It was observed that ICESat‐2 and Sentinel‐1 based model was able to predict forest canopy height with R2 = 0.84 and %RMSE = 4.48%. Two forest AGB models were developed, with only spectral variables and by incorporating forest height information with spectral variables. The results reflected that incorporation of forest canopy height in the forest AGB model improved the accuracy of the AGB predictions (R2 = 0.83, %RMSE = 4.64%). The study presents a comprehensive methodology for mapping forest canopy height and AGB. Plain Language Summary Estimation and mapping of forest biomass are vital to understand the role of forests in the global carbon budget and climate. Forest canopy height is an important indicator of biomass, carbon stock, and forest productivity and hence, incorporation of accurate forest canopy height information can result in improved estimation of forest biomass. The present study aims to map the forest canopy height and analyses the effect of including the canopy height information on aboveground biomass prediction by the synergistic use of multi‐sensor earth observation data using a machine learning algorithm. It presents a comprehensive methodology for forest canopy height and biomass estimation using active and passive remote sensing data. The developed approach can be implemented for mapping as well as monitoring the forest biomass/carbon stock and has huge relevance to carbon budgeting, climate conventions, and sustainable management of forests. The study was conducted using freely available satellite data, algorithm/software, and platform which makes it easily replicable in a time and cost‐effective manner. Key Points Forest canopy height was mapped by integrating ICESat‐2 canopy height & Sentinel‐1 backscatter & texture values using Random Forest (RF) Forest canopy height and Sentinel‐2 derived variables were used to map spatial distribution of forest aboveground biomass (AGB) using RF The study presents a novel methodology for mapping AGB using ICESat‐2 data in combination with microwave and optical satellite data |
| Author | Padalia, Hitendra Srinet, Ritika Nandy, Subrata |
| Author_xml | – sequence: 1 givenname: Subrata orcidid: 0000-0003-4127-4035 surname: Nandy fullname: Nandy, Subrata email: subrato.nandy@gmail.com organization: Government of India – sequence: 2 givenname: Ritika orcidid: 0000-0002-2957-7626 surname: Srinet fullname: Srinet, Ritika organization: Government of India – sequence: 3 givenname: Hitendra surname: Padalia fullname: Padalia, Hitendra organization: Government of India |
| BookMark | eNqFUF1OAjEYbAwmAvrmAXoA0La77NJHRP4S1ATkefN16ULNbkvaKuHNI3gXb-RJLKgJ8UGTJp1OZ775Mg1U00ZLhC4puaKE8WtGGB1NCY9Szk9QnfI4bncJSWuoTggPmKXJGWo490QIiUhE6-j9DjYbpVd4aKx0Ho-lWq09Br3EPWFe5Mqa54BvlKnAOSx2eKJ9YMHvTZP-YA7-4_WNtfBc6sDJMrzowX9EMHwLHvDC7U2z8Gmqn8BeuTJW-XWFlcb3xvr19rCHqqCEHeigM36tytJhU4TwpYJzdFpA6eTF991Ei-HgsT9uTx9Gk35v2s5Z2mXtVFJY5sASiGNRCNFlQKkEKWLRCVy6h6JDSRTTRHBWRMWSdRkvknASSYqoiVpfc3NrnLOyyDY2rGV3GSXZvvDsuPAgZ7_kufKhJ6O9BVX-Y9qqUu7-DMhGs2nCEs6iT6gdmWI |
| CitedBy_id | crossref_primary_10_1007_s10457_022_00776_1 crossref_primary_10_3390_rs14020364 crossref_primary_10_1038_s43247_024_01984_6 crossref_primary_10_1016_j_rse_2025_114957 crossref_primary_10_1080_10095020_2025_2516609 crossref_primary_10_3390_f16091430 crossref_primary_10_1080_10095020_2023_2249037 crossref_primary_10_1109_JSTARS_2024_3459957 crossref_primary_10_3390_rs15071806 crossref_primary_10_1080_10106049_2025_2465446 crossref_primary_10_1007_s12524_022_01600_0 crossref_primary_10_3390_rs15235436 crossref_primary_10_1371_journal_pone_0330831 crossref_primary_10_1016_j_jag_2024_104348 crossref_primary_10_1080_01431161_2025_2549131 crossref_primary_10_1016_j_asr_2022_02_002 crossref_primary_10_1080_01431161_2025_2492412 crossref_primary_10_3390_rs16010110 crossref_primary_10_1016_j_dib_2025_111902 crossref_primary_10_3390_rs15215162 crossref_primary_10_1038_s41598_024_78615_9 crossref_primary_10_1038_s41598_025_15585_6 crossref_primary_10_3390_rs15061548 crossref_primary_10_1007_s11356_024_34415_2 crossref_primary_10_1088_1748_9326_ad560a crossref_primary_10_3389_fpls_2022_920086 crossref_primary_10_3390_rs16091481 crossref_primary_10_3390_rs14164083 crossref_primary_10_3390_rs16162913 crossref_primary_10_1007_s12524_023_01741_w crossref_primary_10_3390_rs14225727 crossref_primary_10_1016_j_jenvman_2024_122101 crossref_primary_10_1080_02827581_2023_2215545 crossref_primary_10_1007_s10661_022_10657_w crossref_primary_10_1016_j_ecolind_2025_113610 crossref_primary_10_1016_j_rse_2022_113112 crossref_primary_10_1016_j_rse_2024_114322 crossref_primary_10_1109_TGRS_2022_3218750 crossref_primary_10_1007_s41748_025_00713_z crossref_primary_10_1109_JSTARS_2024_3522389 crossref_primary_10_1016_j_jag_2024_104234 crossref_primary_10_1016_j_ecoinf_2025_103194 crossref_primary_10_1109_LGRS_2024_3399050 crossref_primary_10_3390_f14071414 crossref_primary_10_3390_rs17142340 crossref_primary_10_3390_f14081615 crossref_primary_10_3390_rs15061575 crossref_primary_10_3390_rs16203798 crossref_primary_10_1007_s12524_024_01812_6 crossref_primary_10_3390_rs15245686 crossref_primary_10_3390_s23073394 crossref_primary_10_3390_rs15051410 crossref_primary_10_1016_j_ecoinf_2023_102234 crossref_primary_10_1007_s12524_023_01740_x crossref_primary_10_1088_1748_9326_ac77a2 crossref_primary_10_1088_2752_664X_ad7f5a crossref_primary_10_3390_f15071132 crossref_primary_10_1016_j_foreco_2023_121189 crossref_primary_10_1016_j_foreco_2025_123040 crossref_primary_10_3389_ffgc_2025_1662546 crossref_primary_10_1016_j_scitotenv_2024_173940 crossref_primary_10_1080_01431161_2025_2557583 crossref_primary_10_1016_j_ufug_2022_127728 crossref_primary_10_1080_15230430_2024_2309686 crossref_primary_10_1016_j_jag_2025_104814 crossref_primary_10_3390_f15122139 crossref_primary_10_1080_01431161_2024_2343429 crossref_primary_10_3390_land11020240 crossref_primary_10_1016_j_ecoinf_2024_102732 crossref_primary_10_1007_s12145_025_01744_w crossref_primary_10_1016_j_jag_2022_102872 crossref_primary_10_1109_JSTARS_2023_3268558 crossref_primary_10_3389_ffgc_2022_822704 crossref_primary_10_1016_j_pce_2024_103605 crossref_primary_10_1007_s12524_023_01792_z crossref_primary_10_1007_s10661_021_09356_9 crossref_primary_10_3390_rs15020405 crossref_primary_10_3390_rs15092275 crossref_primary_10_1007_s12524_023_01791_0 crossref_primary_10_3390_agriculture15111164 crossref_primary_10_1016_j_jclepro_2024_143220 crossref_primary_10_1080_01431161_2024_2326534 crossref_primary_10_1080_17538947_2024_2310730 crossref_primary_10_1007_s12524_023_01687_z crossref_primary_10_1016_j_ecoinf_2022_101900 crossref_primary_10_1007_s12524_023_01693_1 crossref_primary_10_1016_j_rse_2024_114005 crossref_primary_10_3390_f14030454 crossref_primary_10_3390_s24113488 crossref_primary_10_1186_s13021_022_00212_y crossref_primary_10_1016_j_rse_2023_113726 crossref_primary_10_1007_s12524_024_01822_4 crossref_primary_10_3390_rs16213927 crossref_primary_10_3390_rs16061074 crossref_primary_10_1109_TGRS_2022_3231926 crossref_primary_10_1016_j_scitotenv_2024_173487 crossref_primary_10_1080_01431161_2024_2307944 crossref_primary_10_1007_s00468_022_02378_x crossref_primary_10_1016_j_ecoinf_2025_102997 crossref_primary_10_3390_rs15041096 crossref_primary_10_1016_j_ecoinf_2024_102712 crossref_primary_10_1007_s12524_024_01868_4 crossref_primary_10_3390_f15081356 crossref_primary_10_1080_27658511_2025_2469406 crossref_primary_10_3390_rs14225651 crossref_primary_10_1016_j_rse_2021_112791 crossref_primary_10_1016_j_rsase_2023_101017 crossref_primary_10_3390_rs17162898 crossref_primary_10_3390_rs17121968 crossref_primary_10_3390_rs15102625 crossref_primary_10_1007_s11273_025_10060_5 crossref_primary_10_3390_rs16071268 crossref_primary_10_3390_f14101953 crossref_primary_10_3390_rs17172958 crossref_primary_10_1016_j_asr_2024_04_048 crossref_primary_10_1186_s13007_024_01212_4 crossref_primary_10_1080_15481603_2024_2374150 crossref_primary_10_3390_rs15081997 crossref_primary_10_1007_s40808_025_02561_2 crossref_primary_10_1016_j_rse_2024_114024 crossref_primary_10_1111_2041_210X_14112 crossref_primary_10_3390_f13050677 crossref_primary_10_3390_rs16224271 |
| Cites_doi | 10.1016/j.rse.2020.111779 10.1034/j.1399-3054.1999.106119.x 10.1016/j.rse.2017.08.001 10.1080/17583004.2017.1357402 10.1016/j.ecoinf.2018.12.010 10.1016/j.rse.2012.11.016 10.1016/0034-4257(94)90134-1 10.1046/j.1466-822x.2002.00303.x 10.1080/01431161.2020.1766147 10.1177/0309133317693443 10.1109/TSMC.1973.4309314 10.1117/1.JRS.8.083638 10.1016/0034-4257(88)90106-X 10.3390/rs10020344 10.3390/rs11141721 10.1111/1365-2745.12510 10.1080/17583004.2015.1066638 10.1016/S0269-7491(01)00212-3 10.1078/0176-1617-00887 10.1016/j.jag.2020.102163 10.1038/s41598-020-67024-3 10.1016/0034-4257(89)90046-1 10.1016/0034-4257(94)00114-3 10.1016/S0273-1177(97)01133-2 10.1016/j.isprsjprs.2010.09.001 10.1080/01431160500142145 10.1038/ncomms3269 10.1016/j.ecoinf.2019.05.008 10.1016/j.isprsjprs.2019.03.016 10.1016/j.rse.2008.03.004 10.1038/nclimate1354 10.3390/rs10040601 10.1007/s10661-014-3828-0 10.1016/j.rse.2006.10.011 10.1080/01431161.2020.1823043 10.1016/j.rse.2018.11.005 10.1007/BF01136034 10.1023/a:1010933404324 10.1007/s10661-015-4551-1 10.1080/01431161.2013.870676 10.1016/j.jag.2017.10.009 10.3390/rs3050878 10.1088/1748-9326/2/4/045023 10.5194/bg-9-179-2012 10.1016/S0034-4257(02)00096-2 10.1007/978-981-13-2128-3_13 10.1029/2005GL023971 10.1080/02827580410019508 10.1016/j.isprsjprs.2016.01.011 10.1080/2150704X.2017.1295479 10.1016/S0961-9534(00)00040-4 10.3390/rs12111824 10.1016/0034-4257(79)90013-0 10.1016/j.isprsjprs.2013.04.007 10.1016/S0034-4257(96)00067-3 10.3390/rs12091519 |
| ContentType | Journal Article |
| Copyright | 2021. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2021. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION |
| DOI | 10.1029/2021GL093799 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2021GL093799 GRL62692 |
| Genre | article |
| GrantInformation_xml | – fundername: Indian Space Research Organisation (ISRO) |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c2782-7e1adca26a44bfbb82a11eaeb4b56a47eaebb5103416b92f3fd2829f69f66e0f3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 149 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711496700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Sat Nov 29 02:57:59 EST 2025 Tue Nov 18 21:44:59 EST 2025 Wed Jan 22 16:29:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2782-7e1adca26a44bfbb82a11eaeb4b56a47eaebb5103416b92f3fd2829f69f66e0f3 |
| ORCID | 0000-0003-4127-4035 0000-0002-2957-7626 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1029_2021GL093799 crossref_citationtrail_10_1029_2021GL093799 wiley_primary_10_1029_2021GL093799_GRL62692 |
| PublicationCentury | 2000 |
| PublicationDate | 28 July 2021 2021-07-28 |
| PublicationDateYYYYMMDD | 2021-07-28 |
| PublicationDate_xml | – month: 07 year: 2021 text: 28 July 2021 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2021 |
| References | 2017; 8 2017; 41 2007; 107 2013; 4 2019; 50 2019; 52 2020; 242 2019; 11 2002; 11 2015; 187 1974 2002; 116 2020; 12 2016; 104 2020; 10 2005; 26 2001; 45 1989; 30 2010; 65 2000; 19 2002; 83 2020; 92 2003; 160 2005; 32 1993; 80 1983 2007; 2 2016; 114 2019; 151 2008; 112 2014; 8 2017; 200 1979; 8 1995; 51 2015; 6 2021; 42 2012 2020; 41 1997 2002; 2 1996 1994; 48 2002 1996; 58 1999; 106 2011; 3 2018; 65 2019; 221 1998; 22 2012; 2 2004; 19 1988; 25 2019 2013; 82 2014; 35 2013; 130 1973; SMC‐3 2018; 10 2014; 186 1968 2012; 9 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 FRI (e_1_2_8_16_1) 2002 Brogaard S. (e_1_2_8_7_1) 1997 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 FSI (e_1_2_8_17_1) 1996 Liaw A. (e_1_2_8_38_1) 2002; 2 e_1_2_8_32_1 e_1_2_8_55_1 Champion H. G. (e_1_2_8_10_1) 1968 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Rouse J. (e_1_2_8_57_1) 1974 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 Sentinel‐1 User Guide (e_1_2_8_58_1) 2012 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 116 start-page: 363 issue: 3 year: 2002 end-page: 372 article-title: Measuring carbon in forests: Current status and future challenges publication-title: Environmental Pollution – volume: 6 start-page: 19 issue: 1–2 year: 2015 end-page: 33 article-title: Regional forest biomass estimation using ICESat/GLAS spaceborne LiDAR over Borneo publication-title: Carbon Management – volume: 50 start-page: 24 year: 2019 end-page: 32 article-title: Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam publication-title: Ecological Informatics – volume: 25 start-page: 295 year: 1988 end-page: 309 article-title: Huete, AR A soil‐adjusted vegetation index (SAVI) publication-title: Remote Sensing of Environment – volume: 65 start-page: 581 issue: 6 year: 2010 end-page: 590 article-title: Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 83 start-page: 195 issue: 1–2 year: 2002 end-page: 213 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sensing of Environment – volume: 112 start-page: 3079 issue: 6 year: 2008 end-page: 3090 article-title: Estimation of above‐and below‐ground biomass across regions of the boreal forest zone using airborne laser publication-title: Remote Sensing of Environment – volume: 51 start-page: 375 issue: 3 year: 1995 end-page: 384 article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements publication-title: Remote Sensing of Environment – volume: 10 issue: 2 year: 2018 article-title: Estimation of forest canopy height and aboveground biomass from spaceborne LiDAR and Landsat imageries in Maryland publication-title: Remote Sensing – volume: 2 start-page: 18 issue: 3 year: 2002 end-page: 22 article-title: Classification and regression by randomForest publication-title: R News – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 12 issue: 11 year: 2020 article-title: Using ICESat‐2 to estimate and map forest aboveground biomass: A first example publication-title: Remote Sensing – volume: 8 start-page: 127 issue: 2 year: 1979 end-page: 150 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sensing of Environment – volume: 106 start-page: 135 issue: 1 year: 1999 end-page: 141 article-title: Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening publication-title: Physiologia Plantarum – start-page: 285 year: 2019 end-page: 311 – volume: 11 start-page: 393 issue: 5 year: 2002 end-page: 399 article-title: Lidar remote sensing of above‐ground biomass in three biomes publication-title: Global Ecology and Biogeography – volume: 8 start-page: 508 issue: 6 year: 2017 end-page: 517 article-title: Assessing the relationships between growing stock volume and Sentinel‐2 imagery in a Mediterranean forest ecosystem publication-title: Remote Sensing Letters – volume: 19 start-page: 500 issue: 6 year: 2004 end-page: 511 article-title: Measuring biomass and carbon in Delaware using an airborne profiling LIDAR publication-title: Scandinavian Journal of Forest Research – volume: 3 start-page: 878 issue: 5 year: 2011 end-page: 928 article-title: Remote sensing of mangrove ecosystems: A review publication-title: Remote Sensing – volume: 4 start-page: 1 issue: 1 year: 2013 end-page: 8 article-title: Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin publication-title: Nature Communications – volume: 242 year: 2020 article-title: Biomass estimation from simulated GEDI, ICESat‐2 and NISAR across environmental gradients in Sonoma County, California publication-title: Remote Sensing of Environment – volume: 2 issue: 4 year: 2007 article-title: Monitoring and estimating tropical forest carbon stocks: Making REDD a reality publication-title: Environmental Research Letters – year: 1997 – volume: 65 start-page: 105 year: 2018 end-page: 113 article-title: Influence of micro‐topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 30 start-page: 43 issue: 1 year: 1989 end-page: 54 article-title: Detection of changes in leaf water content using near‐and middle‐infrared reflectances publication-title: Remote Sensing of Environment – volume: 107 start-page: 617 issue: 4 year: 2007 end-page: 624 article-title: Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories publication-title: Remote Sensing of Environment – volume: 10 issue: 4 year: 2018 article-title: Estimating above‐ground biomass in sub‐tropical buffer zone community forests, Nepal, using Sentinel 2 data publication-title: Remote Sensing – volume: 200 start-page: 140 year: 2017 end-page: 153 article-title: Toward a general tropical forest biomass prediction model from very high resolution optical satellite images publication-title: Remote Sensing of Environment – volume: 114 start-page: 24 year: 2016 end-page: 31 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 151 start-page: 277 year: 2019 end-page: 289 article-title: Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel‐1B, multispectral Sentinel‐2A, and DEM imagery publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 19 start-page: 245 issue: 4 year: 2000 end-page: 258 article-title: Estimates of biomass in Indian forests publication-title: Biomass and bioenergy – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Forest aboveground biomass estimation using Landsat 8 and Sentinel‐1A data with machine learning algorithms publication-title: Scientific Reports – year: 1968 – volume: 32 issue: 22 year: 2005 article-title: Estimates of forest canopy height and aboveground biomass using ICESat publication-title: Geophysical Research Letters – volume: 9 start-page: 179 issue: 1 year: 2012 end-page: 191 article-title: Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud publication-title: Biogeosciences – year: 1996 – volume: 48 start-page: 119 issue: 2 year: 1994 end-page: 126 article-title: A modified soil adjusted vegetation index publication-title: Remote Sensing of Environment – volume: 92 year: 2020 article-title: High‐resolution mapping of forest canopy height using machine learning by coupling ICESat‐2 LiDAR with Sentinel‐1, Sentinel‐2 and Landsat‐8 data publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 8 issue: 1 year: 2014 article-title: Estimating aboveground biomass in Avicennia marina plantation in Indian Sundarbans using high‐resolution satellite data publication-title: Journal of Applied Remote Sensing – volume: 187 start-page: 308 issue: 5 year: 2015 article-title: Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques publication-title: Environmental Monitoring and Assessment – volume: 130 start-page: 153 year: 2013 end-page: 170 article-title: Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error publication-title: Remote Sensing of Environment – volume: 80 start-page: 439 issue: 10 year: 1993 end-page: 453 article-title: Fernerkundung von Pflanzen publication-title: Naturwissenschaften – volume: 104 start-page: 469 issue: 2 year: 2016 end-page: 478 article-title: Regional and historical factors supplement current climate in shaping global forest canopy height publication-title: Journal of Ecology – year: 2012 – volume: 82 start-page: 83 year: 2013 end-page: 92 article-title: Evaluating the capabilities of Sentinel‐2 for quantitative estimation of biophysical variables in vegetation publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 52 start-page: 94 year: 2019 end-page: 102 article-title: Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India publication-title: Ecological Informatics – volume: 11 issue: 14 year: 2019 article-title: Canopy and terrain height retrievals with ICESat‐2: A first look publication-title: Remote Sensing – volume: 186 start-page: 5911 issue: 9 year: 2014 end-page: 5920 article-title: Growing stock and woody biomass assessment in Asola‐Bhatti Wildlife Sanctuary, Delhi, India publication-title: Environmental Monitoring and Assessment – volume: 41 start-page: 247 issue: 3 year: 2017 end-page: 267 article-title: Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms publication-title: Progress in Physical Geography – volume: 12 issue: 9 year: 2020 article-title: Canopy height estimation using sentinel series images through machine learning models in a Mangrove Forest publication-title: Remote Sensing – year: 2002 – volume: 22 start-page: 689 issue: 5 year: 1998 end-page: 692 article-title: Remote sensing of chlorophyll concentration in higher plant leaves publication-title: Advances in Space Research – volume: SMC‐3 start-page: 610 issue: 6 year: 1973 end-page: 621 article-title: Textural features for image classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 41 start-page: 7296 issue: 18 year: 2020 end-page: 7309 article-title: Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine publication-title: International Journal of Remote Sensing – volume: 58 start-page: 257 issue: 3 year: 1996 end-page: 266 article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sensing of Environment – year: 1974 – year: 1983 article-title: Techniques for remotely monitoring canopy development and estimating grain yield of moisture stressed corn – volume: 8 start-page: 305 issue: 4 year: 2017 end-page: 317 article-title: Neural network‐based modelling for forest biomass assessment publication-title: Carbon Management – volume: 2 start-page: 182 issue: 3 year: 2012 end-page: 185 article-title: Estimated carbon dioxide emissions from tropical deforestation improved by carbon‐density maps publication-title: Nature Climate Change – volume: 221 start-page: 247 year: 2019 end-page: 259 article-title: The ATL08 land and vegetation product for the ICESat‐2 Mission publication-title: Remote Sensing of Environment – volume: 26 start-page: 2509 issue: 12 year: 2005 end-page: 2525 article-title: Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon publication-title: International Journal of Remote Sensing – volume: 42 start-page: 1139 issue: 3 year: 2021 end-page: 1159 article-title: Mapping spatial variability of foliar nitrogen and carbon in Indian tropical moist deciduous sal ( ) forest using machine learning algorithms and Sentinel‐2 data publication-title: International Journal of Remote Sensing – volume: 35 start-page: 693 issue: 2 year: 2014 end-page: 714 article-title: Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: Exploratory of in situ hyperspectral indices and random forest regression publication-title: International Journal of Remote Sensing – volume: 160 start-page: 271 issue: 3 year: 2003 end-page: 282 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non‐destructive chlorophyll assessment in higher plant leaves publication-title: Journal of Plant Physiology – ident: e_1_2_8_14_1 doi: 10.1016/j.rse.2020.111779 – ident: e_1_2_8_42_1 doi: 10.1034/j.1399-3054.1999.106119.x – ident: e_1_2_8_54_1 doi: 10.1016/j.rse.2017.08.001 – ident: e_1_2_8_48_1 doi: 10.1080/17583004.2017.1357402 – ident: e_1_2_8_12_1 doi: 10.1016/j.ecoinf.2018.12.010 – ident: e_1_2_8_44_1 doi: 10.1016/j.rse.2012.11.016 – ident: e_1_2_8_55_1 doi: 10.1016/0034-4257(94)90134-1 – ident: e_1_2_8_34_1 doi: 10.1046/j.1466-822x.2002.00303.x – ident: e_1_2_8_59_1 doi: 10.1080/01431161.2020.1766147 – ident: e_1_2_8_13_1 doi: 10.1177/0309133317693443 – volume-title: Indian Woods: Their Identification, Properties and Uses, Vol. I‐VI (Revised Edition) year: 2002 ident: e_1_2_8_16_1 – ident: e_1_2_8_24_1 doi: 10.1109/TSMC.1973.4309314 – ident: e_1_2_8_41_1 doi: 10.1117/1.JRS.8.083638 – ident: e_1_2_8_27_1 doi: 10.1016/0034-4257(88)90106-X – ident: e_1_2_8_63_1 doi: 10.3390/rs10020344 – ident: e_1_2_8_52_1 doi: 10.3390/rs11141721 – ident: e_1_2_8_65_1 doi: 10.1111/1365-2745.12510 – ident: e_1_2_8_26_1 doi: 10.1080/17583004.2015.1066638 – ident: e_1_2_8_8_1 doi: 10.1016/S0269-7491(01)00212-3 – volume-title: Volume Equations for Forests of India, Nepal and Bhutan year: 1996 ident: e_1_2_8_17_1 – ident: e_1_2_8_22_1 doi: 10.1078/0176-1617-00887 – ident: e_1_2_8_36_1 doi: 10.1016/j.jag.2020.102163 – ident: e_1_2_8_37_1 doi: 10.1038/s41598-020-67024-3 – ident: e_1_2_8_29_1 doi: 10.1016/0034-4257(89)90046-1 – ident: e_1_2_8_56_1 doi: 10.1016/0034-4257(94)00114-3 – volume-title: Ground‐truths or Ground‐lies? Environmental sampling for remote sensing application exemplified by vegetation cover data (Lund electronic reports in physical geography; Vol. 1) year: 1997 ident: e_1_2_8_7_1 – ident: e_1_2_8_23_1 doi: 10.1016/S0273-1177(97)01133-2 – ident: e_1_2_8_31_1 doi: 10.1016/j.isprsjprs.2010.09.001 – ident: e_1_2_8_40_1 doi: 10.1080/01431160500142145 – ident: e_1_2_8_30_1 doi: 10.1038/ncomms3269 – ident: e_1_2_8_60_1 doi: 10.1016/j.ecoinf.2019.05.008 – ident: e_1_2_8_39_1 doi: 10.1016/j.isprsjprs.2019.03.016 – ident: e_1_2_8_46_1 doi: 10.1016/j.rse.2008.03.004 – ident: e_1_2_8_4_1 doi: 10.1038/nclimate1354 – ident: e_1_2_8_53_1 doi: 10.3390/rs10040601 – ident: e_1_2_8_33_1 doi: 10.1007/s10661-014-3828-0 – ident: e_1_2_8_45_1 doi: 10.1016/j.rse.2006.10.011 – ident: e_1_2_8_62_1 doi: 10.1080/01431161.2020.1823043 – ident: e_1_2_8_51_1 doi: 10.1016/j.rse.2018.11.005 – ident: e_1_2_8_9_1 doi: 10.1007/BF01136034 – ident: e_1_2_8_6_1 doi: 10.1023/a:1010933404324 – ident: e_1_2_8_64_1 doi: 10.1007/s10661-015-4551-1 – ident: e_1_2_8_2_1 doi: 10.1080/01431161.2013.870676 – ident: e_1_2_8_3_1 doi: 10.1016/j.jag.2017.10.009 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: e_1_2_8_38_1 article-title: Classification and regression by randomForest publication-title: R News – ident: e_1_2_8_32_1 doi: 10.3390/rs3050878 – ident: e_1_2_8_21_1 doi: 10.1088/1748-9326/2/4/045023 – ident: e_1_2_8_43_1 doi: 10.5194/bg-9-179-2012 – ident: e_1_2_8_28_1 doi: 10.1016/S0034-4257(02)00096-2 – ident: e_1_2_8_47_1 doi: 10.1007/978-981-13-2128-3_13 – ident: e_1_2_8_35_1 doi: 10.1029/2005GL023971 – ident: e_1_2_8_50_1 doi: 10.1080/02827580410019508 – ident: e_1_2_8_5_1 doi: 10.1016/j.isprsjprs.2016.01.011 – volume-title: Monitoring Vegetation Systems in the Great Plains with ERTS year: 1974 ident: e_1_2_8_57_1 – ident: e_1_2_8_11_1 doi: 10.1080/2150704X.2017.1295479 – ident: e_1_2_8_19_1 – ident: e_1_2_8_25_1 doi: 10.1016/S0961-9534(00)00040-4 – volume-title: A revised survey of the forest types of India year: 1968 ident: e_1_2_8_10_1 – volume-title: Sentinel‐1: ESA's Radar Observatory Mission for GMES Operational Services year: 2012 ident: e_1_2_8_58_1 – ident: e_1_2_8_49_1 doi: 10.3390/rs12111824 – ident: e_1_2_8_61_1 doi: 10.1016/0034-4257(79)90013-0 – ident: e_1_2_8_15_1 doi: 10.1016/j.isprsjprs.2013.04.007 – ident: e_1_2_8_18_1 doi: 10.1016/S0034-4257(96)00067-3 – ident: e_1_2_8_20_1 doi: 10.3390/rs12091519 |
| SSID | ssj0003031 |
| Score | 2.6589592 |
| Snippet | The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | C‐band SAR machine learning algorithm multi‐spectral optical data Spaceborne LiDAR spectral variables |
| Title | Mapping Forest Height and Aboveground Biomass by Integrating ICESat‐2, Sentinel‐1 and Sentinel‐2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL093799 |
| Volume | 48 |
| WOSCitedRecordID | wos000711496700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqWiQu9AEI-kA-0BONWDsmj-MW2GWl7apayuO2GjvOEimboE1Ktbf-hP4X_hG_pDPesNoeqISQcnCcGdmKx_Z4ZvwNY3uhBYgS5XvK15GnEnOIc06AJ8BEyrRCUA5M56IfDgbR1VX8vTG40V2YOT7EwuBGM8Ot1zTBQVcN2ABhZOKpXXT7eCAPY7q_J5SgBAaXvcFiIcbVeZ4wL1ZeJMOgiXtH9oNl5n92pGUN1W0xndfP7dwbtt4ol7w9l4a37IUt3rHVrkveO8OSC_c01Qa7-waEyzDmlJmzqvmpM5ByKBLe1uWtpbseWP6aUfRQxfWM9xpYCWLqHZ2cQX3_-4_8ws8o2gh7i2_C8S9VSH4MNXAXlcCH-LGcPDTYzsflNKuvJzwruPMd_XL9yCaQwwwKpEMRyvK84mWKjaMUb7LzzsmPo1OvSd_gGRmS3m4FJAZkAErpVOtIghAWrFb6EOtCKmoC9EOdUMcy9dOE3LppgE9gW6m_xVaKsrDbjANB5pAPN0D9Dqwfa2NSQqbD_5u2Athh-w9DODINtjml2MhHzscu49HygOywzwvqmzmmxyN0-26M_0s06g77eCiM5fsnUX9ga1RPVmIZfWQr9fSn_cRemds6q6a77OXxsHPe33Xy_Bed7PZL |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELb6K7gAhVYtlOIDPZWoG8fNz3Hpz-6KdFW1pfQWjR2nRMom1SYU7Y1H4F14I56EGW-62h6KhJBycJwZ2YrH9nhm_A1j7wMDEKbSc6SnQkem-gDnnAuOCzqUuhOAtGA6V3EwHIbX19FZm-eU7sJM8SFmBjeaGXa9pglOBukWbYBAMvHY7vZiPJEHUbTIliXqGpS74ctgOFuKcX2epsyLpBOKwG8j35F_f577wZ40r6PaTebk-X937wV71uqXvDsViDW2YMqXbLVn8_dOsGQjPnX9iv06BYJmuOGUnLNueN_aSDmUKe-q6s7QdQ8sf8wpgKjmasIHLbIEMQ0Ojy-g-f3jp_jALyjgCLuLb67ln6sQ_Aga4DYwgZ_jx2p032C3uKnGefN1xPOSW_fRd9uPfAQFTKBEOpSivChqXmXYOAryOvt8cnx52HfaDA6OFgGp7saFVIPwQUqVKRUKcF0DRkl1gHUBFRVh-qFaqCKReVlKnt3Mx8c3nczbYEtlVZpNxoFQc8iN66OKB8aLlNYZgdPh_806PmyxvfsxTHQLb05ZNorEutlFlMwPyBbbnVHfTmE9HqHbs4P8V6Kkdx7juTASr_-J-h170r88jZN4MPz0hj0lGjIai3CbLTXjb-YtW9F3TV6Pd6xQ_wFCJvjJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgC6gX_lHLrw9wKlE3jpuf49LtbleEVbWlqLdo7NglUjapNqFobzwC78Ib8STMeNPVcgAJIeXgOOPYisf22DP5PsZeRwYgzmXgyUDFnsz1AY45HzwfdCx1PwLpwHQ-pdF0Gp-fJycdzyn9C7PCh1gfuNHIcPM1DXBzmdsObYBAMnHb7o9T3JFHSXKTbUnikemxreFsdJauJ2OcoVekeYn0YhGFXew7vmF_s_xvq9KmleqWmdG9_27gfXa3szD5YKUSD9gNUz1kt8eOwXeJKRfzqZtH7McHIHCGC070nE3Lj90pKYcq5wNVXxn64QPT7woKIWq4WvJJhy1BhSaHR6fQ_vz2XbzlpxRyhM3FO9-V38gQfAgtcBeawGf4sJ5fVzgoL-pF0X6e86LizoH01bWjmEMJS6hQDvWoKMuG1xYrR1V-zM5GRx8Pj72Ow8HTIiLj3fiQaxAhSKmsUrEA3zdglFQHmBdRUhGqHxqGKhE2sDn5dm2IV2j6NnjCelVdmR3GgXBzyJEbopEHJkiU1pbg6fD72n4Iu2zvug8z3QGcE89GmTlHu0iyzQ7ZZW_W0pcrYI8_yO25Tv6rUDaepbgzTMTTf5J-xe6cDEdZOpm-f8a2SYROjUX8nPXaxRfzgt3SV23RLF52Wv0Ly9_5cg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Forest+Height+and+Aboveground+Biomass+by+Integrating+ICESat%E2%80%902%2C+Sentinel%E2%80%901+and+Sentinel%E2%80%902+Data+Using+Random+Forest+Algorithm+in+Northwest+Himalayan+Foothills+of+India&rft.jtitle=Geophysical+research+letters&rft.au=Nandy%2C+Subrata&rft.au=Srinet%2C+Ritika&rft.au=Padalia%2C+Hitendra&rft.date=2021-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=14&rft_id=info:doi/10.1029%2F2021GL093799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021GL093799 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |