Mapping Forest Height and Aboveground Biomass by Integrating ICESat‐2, Sentinel‐1 and Sentinel‐2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India

The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height information with Sentinel‐2 data‐derived spectral variables on the prediction of spatial distribution of forest aboveground biomass (AGB). Ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters Jg. 48; H. 14
Hauptverfasser: Nandy, Subrata, Srinet, Ritika, Padalia, Hitendra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 28.07.2021
Schlagworte:
ISSN:0094-8276, 1944-8007
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height information with Sentinel‐2 data‐derived spectral variables on the prediction of spatial distribution of forest aboveground biomass (AGB). Random forest (RF) algorithm was used to develop forest canopy height and AGB models. It was observed that ICESat‐2 and Sentinel‐1 based model was able to predict forest canopy height with R2 = 0.84 and %RMSE = 4.48%. Two forest AGB models were developed, with only spectral variables and by incorporating forest height information with spectral variables. The results reflected that incorporation of forest canopy height in the forest AGB model improved the accuracy of the AGB predictions (R2 = 0.83, %RMSE = 4.64%). The study presents a comprehensive methodology for mapping forest canopy height and AGB. Plain Language Summary Estimation and mapping of forest biomass are vital to understand the role of forests in the global carbon budget and climate. Forest canopy height is an important indicator of biomass, carbon stock, and forest productivity and hence, incorporation of accurate forest canopy height information can result in improved estimation of forest biomass. The present study aims to map the forest canopy height and analyses the effect of including the canopy height information on aboveground biomass prediction by the synergistic use of multi‐sensor earth observation data using a machine learning algorithm. It presents a comprehensive methodology for forest canopy height and biomass estimation using active and passive remote sensing data. The developed approach can be implemented for mapping as well as monitoring the forest biomass/carbon stock and has huge relevance to carbon budgeting, climate conventions, and sustainable management of forests. The study was conducted using freely available satellite data, algorithm/software, and platform which makes it easily replicable in a time and cost‐effective manner. Key Points Forest canopy height was mapped by integrating ICESat‐2 canopy height & Sentinel‐1 backscatter & texture values using Random Forest (RF) Forest canopy height and Sentinel‐2 derived variables were used to map spatial distribution of forest aboveground biomass (AGB) using RF The study presents a novel methodology for mapping AGB using ICESat‐2 data in combination with microwave and optical satellite data
AbstractList The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height information with Sentinel‐2 data‐derived spectral variables on the prediction of spatial distribution of forest aboveground biomass (AGB). Random forest (RF) algorithm was used to develop forest canopy height and AGB models. It was observed that ICESat‐2 and Sentinel‐1 based model was able to predict forest canopy height with R 2  = 0.84 and %RMSE = 4.48%. Two forest AGB models were developed, with only spectral variables and by incorporating forest height information with spectral variables. The results reflected that incorporation of forest canopy height in the forest AGB model improved the accuracy of the AGB predictions ( R 2  = 0.83, %RMSE = 4.64%). The study presents a comprehensive methodology for mapping forest canopy height and AGB. Estimation and mapping of forest biomass are vital to understand the role of forests in the global carbon budget and climate. Forest canopy height is an important indicator of biomass, carbon stock, and forest productivity and hence, incorporation of accurate forest canopy height information can result in improved estimation of forest biomass. The present study aims to map the forest canopy height and analyses the effect of including the canopy height information on aboveground biomass prediction by the synergistic use of multi‐sensor earth observation data using a machine learning algorithm. It presents a comprehensive methodology for forest canopy height and biomass estimation using active and passive remote sensing data. The developed approach can be implemented for mapping as well as monitoring the forest biomass/carbon stock and has huge relevance to carbon budgeting, climate conventions, and sustainable management of forests. The study was conducted using freely available satellite data, algorithm/software, and platform which makes it easily replicable in a time and cost‐effective manner. Forest canopy height was mapped by integrating ICESat‐2 canopy height & Sentinel‐1 backscatter & texture values using Random Forest (RF) Forest canopy height and Sentinel‐2 derived variables were used to map spatial distribution of forest aboveground biomass (AGB) using RF The study presents a novel methodology for mapping AGB using ICESat‐2 data in combination with microwave and optical satellite data
The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height information with Sentinel‐2 data‐derived spectral variables on the prediction of spatial distribution of forest aboveground biomass (AGB). Random forest (RF) algorithm was used to develop forest canopy height and AGB models. It was observed that ICESat‐2 and Sentinel‐1 based model was able to predict forest canopy height with R2 = 0.84 and %RMSE = 4.48%. Two forest AGB models were developed, with only spectral variables and by incorporating forest height information with spectral variables. The results reflected that incorporation of forest canopy height in the forest AGB model improved the accuracy of the AGB predictions (R2 = 0.83, %RMSE = 4.64%). The study presents a comprehensive methodology for mapping forest canopy height and AGB. Plain Language Summary Estimation and mapping of forest biomass are vital to understand the role of forests in the global carbon budget and climate. Forest canopy height is an important indicator of biomass, carbon stock, and forest productivity and hence, incorporation of accurate forest canopy height information can result in improved estimation of forest biomass. The present study aims to map the forest canopy height and analyses the effect of including the canopy height information on aboveground biomass prediction by the synergistic use of multi‐sensor earth observation data using a machine learning algorithm. It presents a comprehensive methodology for forest canopy height and biomass estimation using active and passive remote sensing data. The developed approach can be implemented for mapping as well as monitoring the forest biomass/carbon stock and has huge relevance to carbon budgeting, climate conventions, and sustainable management of forests. The study was conducted using freely available satellite data, algorithm/software, and platform which makes it easily replicable in a time and cost‐effective manner. Key Points Forest canopy height was mapped by integrating ICESat‐2 canopy height & Sentinel‐1 backscatter & texture values using Random Forest (RF) Forest canopy height and Sentinel‐2 derived variables were used to map spatial distribution of forest aboveground biomass (AGB) using RF The study presents a novel methodology for mapping AGB using ICESat‐2 data in combination with microwave and optical satellite data
Author Padalia, Hitendra
Srinet, Ritika
Nandy, Subrata
Author_xml – sequence: 1
  givenname: Subrata
  orcidid: 0000-0003-4127-4035
  surname: Nandy
  fullname: Nandy, Subrata
  email: subrato.nandy@gmail.com
  organization: Government of India
– sequence: 2
  givenname: Ritika
  orcidid: 0000-0002-2957-7626
  surname: Srinet
  fullname: Srinet, Ritika
  organization: Government of India
– sequence: 3
  givenname: Hitendra
  surname: Padalia
  fullname: Padalia, Hitendra
  organization: Government of India
BookMark eNqFUF1OAjEYbAwmAvrmAXoA0La77NJHRP4S1ATkefN16ULNbkvaKuHNI3gXb-RJLKgJ8UGTJp1OZ775Mg1U00ZLhC4puaKE8WtGGB1NCY9Szk9QnfI4bncJSWuoTggPmKXJGWo490QIiUhE6-j9DjYbpVd4aKx0Ho-lWq09Br3EPWFe5Mqa54BvlKnAOSx2eKJ9YMHvTZP-YA7-4_WNtfBc6sDJMrzowX9EMHwLHvDC7U2z8Gmqn8BeuTJW-XWFlcb3xvr19rCHqqCEHeigM36tytJhU4TwpYJzdFpA6eTF991Ei-HgsT9uTx9Gk35v2s5Z2mXtVFJY5sASiGNRCNFlQKkEKWLRCVy6h6JDSRTTRHBWRMWSdRkvknASSYqoiVpfc3NrnLOyyDY2rGV3GSXZvvDsuPAgZ7_kufKhJ6O9BVX-Y9qqUu7-DMhGs2nCEs6iT6gdmWI
CitedBy_id crossref_primary_10_1007_s10457_022_00776_1
crossref_primary_10_3390_rs14020364
crossref_primary_10_1038_s43247_024_01984_6
crossref_primary_10_1016_j_rse_2025_114957
crossref_primary_10_1080_10095020_2025_2516609
crossref_primary_10_3390_f16091430
crossref_primary_10_1080_10095020_2023_2249037
crossref_primary_10_1109_JSTARS_2024_3459957
crossref_primary_10_3390_rs15071806
crossref_primary_10_1080_10106049_2025_2465446
crossref_primary_10_1007_s12524_022_01600_0
crossref_primary_10_3390_rs15235436
crossref_primary_10_1371_journal_pone_0330831
crossref_primary_10_1016_j_jag_2024_104348
crossref_primary_10_1080_01431161_2025_2549131
crossref_primary_10_1016_j_asr_2022_02_002
crossref_primary_10_1080_01431161_2025_2492412
crossref_primary_10_3390_rs16010110
crossref_primary_10_1016_j_dib_2025_111902
crossref_primary_10_3390_rs15215162
crossref_primary_10_1038_s41598_024_78615_9
crossref_primary_10_1038_s41598_025_15585_6
crossref_primary_10_3390_rs15061548
crossref_primary_10_1007_s11356_024_34415_2
crossref_primary_10_1088_1748_9326_ad560a
crossref_primary_10_3389_fpls_2022_920086
crossref_primary_10_3390_rs16091481
crossref_primary_10_3390_rs14164083
crossref_primary_10_3390_rs16162913
crossref_primary_10_1007_s12524_023_01741_w
crossref_primary_10_3390_rs14225727
crossref_primary_10_1016_j_jenvman_2024_122101
crossref_primary_10_1080_02827581_2023_2215545
crossref_primary_10_1007_s10661_022_10657_w
crossref_primary_10_1016_j_ecolind_2025_113610
crossref_primary_10_1016_j_rse_2022_113112
crossref_primary_10_1016_j_rse_2024_114322
crossref_primary_10_1109_TGRS_2022_3218750
crossref_primary_10_1007_s41748_025_00713_z
crossref_primary_10_1109_JSTARS_2024_3522389
crossref_primary_10_1016_j_jag_2024_104234
crossref_primary_10_1016_j_ecoinf_2025_103194
crossref_primary_10_1109_LGRS_2024_3399050
crossref_primary_10_3390_f14071414
crossref_primary_10_3390_rs17142340
crossref_primary_10_3390_f14081615
crossref_primary_10_3390_rs15061575
crossref_primary_10_3390_rs16203798
crossref_primary_10_1007_s12524_024_01812_6
crossref_primary_10_3390_rs15245686
crossref_primary_10_3390_s23073394
crossref_primary_10_3390_rs15051410
crossref_primary_10_1016_j_ecoinf_2023_102234
crossref_primary_10_1007_s12524_023_01740_x
crossref_primary_10_1088_1748_9326_ac77a2
crossref_primary_10_1088_2752_664X_ad7f5a
crossref_primary_10_3390_f15071132
crossref_primary_10_1016_j_foreco_2023_121189
crossref_primary_10_1016_j_foreco_2025_123040
crossref_primary_10_3389_ffgc_2025_1662546
crossref_primary_10_1016_j_scitotenv_2024_173940
crossref_primary_10_1080_01431161_2025_2557583
crossref_primary_10_1016_j_ufug_2022_127728
crossref_primary_10_1080_15230430_2024_2309686
crossref_primary_10_1016_j_jag_2025_104814
crossref_primary_10_3390_f15122139
crossref_primary_10_1080_01431161_2024_2343429
crossref_primary_10_3390_land11020240
crossref_primary_10_1016_j_ecoinf_2024_102732
crossref_primary_10_1007_s12145_025_01744_w
crossref_primary_10_1016_j_jag_2022_102872
crossref_primary_10_1109_JSTARS_2023_3268558
crossref_primary_10_3389_ffgc_2022_822704
crossref_primary_10_1016_j_pce_2024_103605
crossref_primary_10_1007_s12524_023_01792_z
crossref_primary_10_1007_s10661_021_09356_9
crossref_primary_10_3390_rs15020405
crossref_primary_10_3390_rs15092275
crossref_primary_10_1007_s12524_023_01791_0
crossref_primary_10_3390_agriculture15111164
crossref_primary_10_1016_j_jclepro_2024_143220
crossref_primary_10_1080_01431161_2024_2326534
crossref_primary_10_1080_17538947_2024_2310730
crossref_primary_10_1007_s12524_023_01687_z
crossref_primary_10_1016_j_ecoinf_2022_101900
crossref_primary_10_1007_s12524_023_01693_1
crossref_primary_10_1016_j_rse_2024_114005
crossref_primary_10_3390_f14030454
crossref_primary_10_3390_s24113488
crossref_primary_10_1186_s13021_022_00212_y
crossref_primary_10_1016_j_rse_2023_113726
crossref_primary_10_1007_s12524_024_01822_4
crossref_primary_10_3390_rs16213927
crossref_primary_10_3390_rs16061074
crossref_primary_10_1109_TGRS_2022_3231926
crossref_primary_10_1016_j_scitotenv_2024_173487
crossref_primary_10_1080_01431161_2024_2307944
crossref_primary_10_1007_s00468_022_02378_x
crossref_primary_10_1016_j_ecoinf_2025_102997
crossref_primary_10_3390_rs15041096
crossref_primary_10_1016_j_ecoinf_2024_102712
crossref_primary_10_1007_s12524_024_01868_4
crossref_primary_10_3390_f15081356
crossref_primary_10_1080_27658511_2025_2469406
crossref_primary_10_3390_rs14225651
crossref_primary_10_1016_j_rse_2021_112791
crossref_primary_10_1016_j_rsase_2023_101017
crossref_primary_10_3390_rs17162898
crossref_primary_10_3390_rs17121968
crossref_primary_10_3390_rs15102625
crossref_primary_10_1007_s11273_025_10060_5
crossref_primary_10_3390_rs16071268
crossref_primary_10_3390_f14101953
crossref_primary_10_3390_rs17172958
crossref_primary_10_1016_j_asr_2024_04_048
crossref_primary_10_1186_s13007_024_01212_4
crossref_primary_10_1080_15481603_2024_2374150
crossref_primary_10_3390_rs15081997
crossref_primary_10_1007_s40808_025_02561_2
crossref_primary_10_1016_j_rse_2024_114024
crossref_primary_10_1111_2041_210X_14112
crossref_primary_10_3390_f13050677
crossref_primary_10_3390_rs16224271
Cites_doi 10.1016/j.rse.2020.111779
10.1034/j.1399-3054.1999.106119.x
10.1016/j.rse.2017.08.001
10.1080/17583004.2017.1357402
10.1016/j.ecoinf.2018.12.010
10.1016/j.rse.2012.11.016
10.1016/0034-4257(94)90134-1
10.1046/j.1466-822x.2002.00303.x
10.1080/01431161.2020.1766147
10.1177/0309133317693443
10.1109/TSMC.1973.4309314
10.1117/1.JRS.8.083638
10.1016/0034-4257(88)90106-X
10.3390/rs10020344
10.3390/rs11141721
10.1111/1365-2745.12510
10.1080/17583004.2015.1066638
10.1016/S0269-7491(01)00212-3
10.1078/0176-1617-00887
10.1016/j.jag.2020.102163
10.1038/s41598-020-67024-3
10.1016/0034-4257(89)90046-1
10.1016/0034-4257(94)00114-3
10.1016/S0273-1177(97)01133-2
10.1016/j.isprsjprs.2010.09.001
10.1080/01431160500142145
10.1038/ncomms3269
10.1016/j.ecoinf.2019.05.008
10.1016/j.isprsjprs.2019.03.016
10.1016/j.rse.2008.03.004
10.1038/nclimate1354
10.3390/rs10040601
10.1007/s10661-014-3828-0
10.1016/j.rse.2006.10.011
10.1080/01431161.2020.1823043
10.1016/j.rse.2018.11.005
10.1007/BF01136034
10.1023/a:1010933404324
10.1007/s10661-015-4551-1
10.1080/01431161.2013.870676
10.1016/j.jag.2017.10.009
10.3390/rs3050878
10.1088/1748-9326/2/4/045023
10.5194/bg-9-179-2012
10.1016/S0034-4257(02)00096-2
10.1007/978-981-13-2128-3_13
10.1029/2005GL023971
10.1080/02827580410019508
10.1016/j.isprsjprs.2016.01.011
10.1080/2150704X.2017.1295479
10.1016/S0961-9534(00)00040-4
10.3390/rs12111824
10.1016/0034-4257(79)90013-0
10.1016/j.isprsjprs.2013.04.007
10.1016/S0034-4257(96)00067-3
10.3390/rs12091519
ContentType Journal Article
Copyright 2021. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2021. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
DOI 10.1029/2021GL093799
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2021GL093799
GRL62692
Genre article
GrantInformation_xml – fundername: Indian Space Research Organisation (ISRO)
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c2782-7e1adca26a44bfbb82a11eaeb4b56a47eaebb5103416b92f3fd2829f69f66e0f3
IEDL.DBID WIN
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000711496700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Sat Nov 29 02:57:59 EST 2025
Tue Nov 18 21:44:59 EST 2025
Wed Jan 22 16:29:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2782-7e1adca26a44bfbb82a11eaeb4b56a47eaebb5103416b92f3fd2829f69f66e0f3
ORCID 0000-0003-4127-4035
0000-0002-2957-7626
PageCount 10
ParticipantIDs crossref_primary_10_1029_2021GL093799
crossref_citationtrail_10_1029_2021GL093799
wiley_primary_10_1029_2021GL093799_GRL62692
PublicationCentury 2000
PublicationDate 28 July 2021
2021-07-28
PublicationDateYYYYMMDD 2021-07-28
PublicationDate_xml – month: 07
  year: 2021
  text: 28 July 2021
  day: 28
PublicationDecade 2020
PublicationTitle Geophysical research letters
PublicationYear 2021
References 2017; 8
2017; 41
2007; 107
2013; 4
2019; 50
2019; 52
2020; 242
2019; 11
2002; 11
2015; 187
1974
2002; 116
2020; 12
2016; 104
2020; 10
2005; 26
2001; 45
1989; 30
2010; 65
2000; 19
2002; 83
2020; 92
2003; 160
2005; 32
1993; 80
1983
2007; 2
2016; 114
2019; 151
2008; 112
2014; 8
2017; 200
1979; 8
1995; 51
2015; 6
2021; 42
2012
2020; 41
1997
2002; 2
1996
1994; 48
2002
1996; 58
1999; 106
2011; 3
2018; 65
2019; 221
1998; 22
2012; 2
2004; 19
1988; 25
2019
2013; 82
2014; 35
2013; 130
1973; SMC‐3
2018; 10
2014; 186
1968
2012; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
FRI (e_1_2_8_16_1) 2002
Brogaard S. (e_1_2_8_7_1) 1997
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
FSI (e_1_2_8_17_1) 1996
Liaw A. (e_1_2_8_38_1) 2002; 2
e_1_2_8_32_1
e_1_2_8_55_1
Champion H. G. (e_1_2_8_10_1) 1968
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Rouse J. (e_1_2_8_57_1) 1974
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
Sentinel‐1 User Guide (e_1_2_8_58_1) 2012
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 116
  start-page: 363
  issue: 3
  year: 2002
  end-page: 372
  article-title: Measuring carbon in forests: Current status and future challenges
  publication-title: Environmental Pollution
– volume: 6
  start-page: 19
  issue: 1–2
  year: 2015
  end-page: 33
  article-title: Regional forest biomass estimation using ICESat/GLAS spaceborne LiDAR over Borneo
  publication-title: Carbon Management
– volume: 50
  start-page: 24
  year: 2019
  end-page: 32
  article-title: Forest aboveground biomass estimation using machine learning regression algorithm in Yok Don National Park, Vietnam
  publication-title: Ecological Informatics
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  article-title: Huete, AR A soil‐adjusted vegetation index (SAVI)
  publication-title: Remote Sensing of Environment
– volume: 65
  start-page: 581
  issue: 6
  year: 2010
  end-page: 590
  article-title: Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 83
  start-page: 195
  issue: 1–2
  year: 2002
  end-page: 213
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
– volume: 112
  start-page: 3079
  issue: 6
  year: 2008
  end-page: 3090
  article-title: Estimation of above‐and below‐ground biomass across regions of the boreal forest zone using airborne laser
  publication-title: Remote Sensing of Environment
– volume: 51
  start-page: 375
  issue: 3
  year: 1995
  end-page: 384
  article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements
  publication-title: Remote Sensing of Environment
– volume: 10
  issue: 2
  year: 2018
  article-title: Estimation of forest canopy height and aboveground biomass from spaceborne LiDAR and Landsat imageries in Maryland
  publication-title: Remote Sensing
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 12
  issue: 11
  year: 2020
  article-title: Using ICESat‐2 to estimate and map forest aboveground biomass: A first example
  publication-title: Remote Sensing
– volume: 8
  start-page: 127
  issue: 2
  year: 1979
  end-page: 150
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sensing of Environment
– volume: 106
  start-page: 135
  issue: 1
  year: 1999
  end-page: 141
  article-title: Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening
  publication-title: Physiologia Plantarum
– start-page: 285
  year: 2019
  end-page: 311
– volume: 11
  start-page: 393
  issue: 5
  year: 2002
  end-page: 399
  article-title: Lidar remote sensing of above‐ground biomass in three biomes
  publication-title: Global Ecology and Biogeography
– volume: 8
  start-page: 508
  issue: 6
  year: 2017
  end-page: 517
  article-title: Assessing the relationships between growing stock volume and Sentinel‐2 imagery in a Mediterranean forest ecosystem
  publication-title: Remote Sensing Letters
– volume: 19
  start-page: 500
  issue: 6
  year: 2004
  end-page: 511
  article-title: Measuring biomass and carbon in Delaware using an airborne profiling LIDAR
  publication-title: Scandinavian Journal of Forest Research
– volume: 3
  start-page: 878
  issue: 5
  year: 2011
  end-page: 928
  article-title: Remote sensing of mangrove ecosystems: A review
  publication-title: Remote Sensing
– volume: 4
  start-page: 1
  issue: 1
  year: 2013
  end-page: 8
  article-title: Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin
  publication-title: Nature Communications
– volume: 242
  year: 2020
  article-title: Biomass estimation from simulated GEDI, ICESat‐2 and NISAR across environmental gradients in Sonoma County, California
  publication-title: Remote Sensing of Environment
– volume: 2
  issue: 4
  year: 2007
  article-title: Monitoring and estimating tropical forest carbon stocks: Making REDD a reality
  publication-title: Environmental Research Letters
– year: 1997
– volume: 65
  start-page: 105
  year: 2018
  end-page: 113
  article-title: Influence of micro‐topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 30
  start-page: 43
  issue: 1
  year: 1989
  end-page: 54
  article-title: Detection of changes in leaf water content using near‐and middle‐infrared reflectances
  publication-title: Remote Sensing of Environment
– volume: 107
  start-page: 617
  issue: 4
  year: 2007
  end-page: 624
  article-title: Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories
  publication-title: Remote Sensing of Environment
– volume: 10
  issue: 4
  year: 2018
  article-title: Estimating above‐ground biomass in sub‐tropical buffer zone community forests, Nepal, using Sentinel 2 data
  publication-title: Remote Sensing
– volume: 200
  start-page: 140
  year: 2017
  end-page: 153
  article-title: Toward a general tropical forest biomass prediction model from very high resolution optical satellite images
  publication-title: Remote Sensing of Environment
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 151
  start-page: 277
  year: 2019
  end-page: 289
  article-title: Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel‐1B, multispectral Sentinel‐2A, and DEM imagery
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 19
  start-page: 245
  issue: 4
  year: 2000
  end-page: 258
  article-title: Estimates of biomass in Indian forests
  publication-title: Biomass and bioenergy
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Forest aboveground biomass estimation using Landsat 8 and Sentinel‐1A data with machine learning algorithms
  publication-title: Scientific Reports
– year: 1968
– volume: 32
  issue: 22
  year: 2005
  article-title: Estimates of forest canopy height and aboveground biomass using ICESat
  publication-title: Geophysical Research Letters
– volume: 9
  start-page: 179
  issue: 1
  year: 2012
  end-page: 191
  article-title: Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: Overcoming problems of high biomass and persistent cloud
  publication-title: Biogeosciences
– year: 1996
– volume: 48
  start-page: 119
  issue: 2
  year: 1994
  end-page: 126
  article-title: A modified soil adjusted vegetation index
  publication-title: Remote Sensing of Environment
– volume: 92
  year: 2020
  article-title: High‐resolution mapping of forest canopy height using machine learning by coupling ICESat‐2 LiDAR with Sentinel‐1, Sentinel‐2 and Landsat‐8 data
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 8
  issue: 1
  year: 2014
  article-title: Estimating aboveground biomass in Avicennia marina plantation in Indian Sundarbans using high‐resolution satellite data
  publication-title: Journal of Applied Remote Sensing
– volume: 187
  start-page: 308
  issue: 5
  year: 2015
  article-title: Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques
  publication-title: Environmental Monitoring and Assessment
– volume: 130
  start-page: 153
  year: 2013
  end-page: 170
  article-title: Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error
  publication-title: Remote Sensing of Environment
– volume: 80
  start-page: 439
  issue: 10
  year: 1993
  end-page: 453
  article-title: Fernerkundung von Pflanzen
  publication-title: Naturwissenschaften
– volume: 104
  start-page: 469
  issue: 2
  year: 2016
  end-page: 478
  article-title: Regional and historical factors supplement current climate in shaping global forest canopy height
  publication-title: Journal of Ecology
– year: 2012
– volume: 82
  start-page: 83
  year: 2013
  end-page: 92
  article-title: Evaluating the capabilities of Sentinel‐2 for quantitative estimation of biophysical variables in vegetation
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 52
  start-page: 94
  year: 2019
  end-page: 102
  article-title: Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India
  publication-title: Ecological Informatics
– volume: 11
  issue: 14
  year: 2019
  article-title: Canopy and terrain height retrievals with ICESat‐2: A first look
  publication-title: Remote Sensing
– volume: 186
  start-page: 5911
  issue: 9
  year: 2014
  end-page: 5920
  article-title: Growing stock and woody biomass assessment in Asola‐Bhatti Wildlife Sanctuary, Delhi, India
  publication-title: Environmental Monitoring and Assessment
– volume: 41
  start-page: 247
  issue: 3
  year: 2017
  end-page: 267
  article-title: Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms
  publication-title: Progress in Physical Geography
– volume: 12
  issue: 9
  year: 2020
  article-title: Canopy height estimation using sentinel series images through machine learning models in a Mangrove Forest
  publication-title: Remote Sensing
– year: 2002
– volume: 22
  start-page: 689
  issue: 5
  year: 1998
  end-page: 692
  article-title: Remote sensing of chlorophyll concentration in higher plant leaves
  publication-title: Advances in Space Research
– volume: SMC‐3
  start-page: 610
  issue: 6
  year: 1973
  end-page: 621
  article-title: Textural features for image classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 41
  start-page: 7296
  issue: 18
  year: 2020
  end-page: 7309
  article-title: Mapping plant functional types in Northwest Himalayan foothills of India using random forest algorithm in Google Earth Engine
  publication-title: International Journal of Remote Sensing
– volume: 58
  start-page: 257
  issue: 3
  year: 1996
  end-page: 266
  article-title: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sensing of Environment
– year: 1974
– year: 1983
  article-title: Techniques for remotely monitoring canopy development and estimating grain yield of moisture stressed corn
– volume: 8
  start-page: 305
  issue: 4
  year: 2017
  end-page: 317
  article-title: Neural network‐based modelling for forest biomass assessment
  publication-title: Carbon Management
– volume: 2
  start-page: 182
  issue: 3
  year: 2012
  end-page: 185
  article-title: Estimated carbon dioxide emissions from tropical deforestation improved by carbon‐density maps
  publication-title: Nature Climate Change
– volume: 221
  start-page: 247
  year: 2019
  end-page: 259
  article-title: The ATL08 land and vegetation product for the ICESat‐2 Mission
  publication-title: Remote Sensing of Environment
– volume: 26
  start-page: 2509
  issue: 12
  year: 2005
  end-page: 2525
  article-title: Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon
  publication-title: International Journal of Remote Sensing
– volume: 42
  start-page: 1139
  issue: 3
  year: 2021
  end-page: 1159
  article-title: Mapping spatial variability of foliar nitrogen and carbon in Indian tropical moist deciduous sal ( ) forest using machine learning algorithms and Sentinel‐2 data
  publication-title: International Journal of Remote Sensing
– volume: 35
  start-page: 693
  issue: 2
  year: 2014
  end-page: 714
  article-title: Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: Exploratory of in situ hyperspectral indices and random forest regression
  publication-title: International Journal of Remote Sensing
– volume: 160
  start-page: 271
  issue: 3
  year: 2003
  end-page: 282
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non‐destructive chlorophyll assessment in higher plant leaves
  publication-title: Journal of Plant Physiology
– ident: e_1_2_8_14_1
  doi: 10.1016/j.rse.2020.111779
– ident: e_1_2_8_42_1
  doi: 10.1034/j.1399-3054.1999.106119.x
– ident: e_1_2_8_54_1
  doi: 10.1016/j.rse.2017.08.001
– ident: e_1_2_8_48_1
  doi: 10.1080/17583004.2017.1357402
– ident: e_1_2_8_12_1
  doi: 10.1016/j.ecoinf.2018.12.010
– ident: e_1_2_8_44_1
  doi: 10.1016/j.rse.2012.11.016
– ident: e_1_2_8_55_1
  doi: 10.1016/0034-4257(94)90134-1
– ident: e_1_2_8_34_1
  doi: 10.1046/j.1466-822x.2002.00303.x
– ident: e_1_2_8_59_1
  doi: 10.1080/01431161.2020.1766147
– ident: e_1_2_8_13_1
  doi: 10.1177/0309133317693443
– volume-title: Indian Woods: Their Identification, Properties and Uses, Vol. I‐VI (Revised Edition)
  year: 2002
  ident: e_1_2_8_16_1
– ident: e_1_2_8_24_1
  doi: 10.1109/TSMC.1973.4309314
– ident: e_1_2_8_41_1
  doi: 10.1117/1.JRS.8.083638
– ident: e_1_2_8_27_1
  doi: 10.1016/0034-4257(88)90106-X
– ident: e_1_2_8_63_1
  doi: 10.3390/rs10020344
– ident: e_1_2_8_52_1
  doi: 10.3390/rs11141721
– ident: e_1_2_8_65_1
  doi: 10.1111/1365-2745.12510
– ident: e_1_2_8_26_1
  doi: 10.1080/17583004.2015.1066638
– ident: e_1_2_8_8_1
  doi: 10.1016/S0269-7491(01)00212-3
– volume-title: Volume Equations for Forests of India, Nepal and Bhutan
  year: 1996
  ident: e_1_2_8_17_1
– ident: e_1_2_8_22_1
  doi: 10.1078/0176-1617-00887
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jag.2020.102163
– ident: e_1_2_8_37_1
  doi: 10.1038/s41598-020-67024-3
– ident: e_1_2_8_29_1
  doi: 10.1016/0034-4257(89)90046-1
– ident: e_1_2_8_56_1
  doi: 10.1016/0034-4257(94)00114-3
– volume-title: Ground‐truths or Ground‐lies? Environmental sampling for remote sensing application exemplified by vegetation cover data (Lund electronic reports in physical geography; Vol. 1)
  year: 1997
  ident: e_1_2_8_7_1
– ident: e_1_2_8_23_1
  doi: 10.1016/S0273-1177(97)01133-2
– ident: e_1_2_8_31_1
  doi: 10.1016/j.isprsjprs.2010.09.001
– ident: e_1_2_8_40_1
  doi: 10.1080/01431160500142145
– ident: e_1_2_8_30_1
  doi: 10.1038/ncomms3269
– ident: e_1_2_8_60_1
  doi: 10.1016/j.ecoinf.2019.05.008
– ident: e_1_2_8_39_1
  doi: 10.1016/j.isprsjprs.2019.03.016
– ident: e_1_2_8_46_1
  doi: 10.1016/j.rse.2008.03.004
– ident: e_1_2_8_4_1
  doi: 10.1038/nclimate1354
– ident: e_1_2_8_53_1
  doi: 10.3390/rs10040601
– ident: e_1_2_8_33_1
  doi: 10.1007/s10661-014-3828-0
– ident: e_1_2_8_45_1
  doi: 10.1016/j.rse.2006.10.011
– ident: e_1_2_8_62_1
  doi: 10.1080/01431161.2020.1823043
– ident: e_1_2_8_51_1
  doi: 10.1016/j.rse.2018.11.005
– ident: e_1_2_8_9_1
  doi: 10.1007/BF01136034
– ident: e_1_2_8_6_1
  doi: 10.1023/a:1010933404324
– ident: e_1_2_8_64_1
  doi: 10.1007/s10661-015-4551-1
– ident: e_1_2_8_2_1
  doi: 10.1080/01431161.2013.870676
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jag.2017.10.009
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: e_1_2_8_38_1
  article-title: Classification and regression by randomForest
  publication-title: R News
– ident: e_1_2_8_32_1
  doi: 10.3390/rs3050878
– ident: e_1_2_8_21_1
  doi: 10.1088/1748-9326/2/4/045023
– ident: e_1_2_8_43_1
  doi: 10.5194/bg-9-179-2012
– ident: e_1_2_8_28_1
  doi: 10.1016/S0034-4257(02)00096-2
– ident: e_1_2_8_47_1
  doi: 10.1007/978-981-13-2128-3_13
– ident: e_1_2_8_35_1
  doi: 10.1029/2005GL023971
– ident: e_1_2_8_50_1
  doi: 10.1080/02827580410019508
– ident: e_1_2_8_5_1
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume-title: Monitoring Vegetation Systems in the Great Plains with ERTS
  year: 1974
  ident: e_1_2_8_57_1
– ident: e_1_2_8_11_1
  doi: 10.1080/2150704X.2017.1295479
– ident: e_1_2_8_19_1
– ident: e_1_2_8_25_1
  doi: 10.1016/S0961-9534(00)00040-4
– volume-title: A revised survey of the forest types of India
  year: 1968
  ident: e_1_2_8_10_1
– volume-title: Sentinel‐1: ESA's Radar Observatory Mission for GMES Operational Services
  year: 2012
  ident: e_1_2_8_58_1
– ident: e_1_2_8_49_1
  doi: 10.3390/rs12111824
– ident: e_1_2_8_61_1
  doi: 10.1016/0034-4257(79)90013-0
– ident: e_1_2_8_15_1
  doi: 10.1016/j.isprsjprs.2013.04.007
– ident: e_1_2_8_18_1
  doi: 10.1016/S0034-4257(96)00067-3
– ident: e_1_2_8_20_1
  doi: 10.3390/rs12091519
SSID ssj0003031
Score 2.6589592
Snippet The present study aims to map forest canopy height by integrating ICESat‐2 and Sentinel‐1 data and investigate the effect of integrating forest canopy height...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms C‐band SAR
machine learning algorithm
multi‐spectral optical data
Spaceborne LiDAR
spectral variables
Title Mapping Forest Height and Aboveground Biomass by Integrating ICESat‐2, Sentinel‐1 and Sentinel‐2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL093799
Volume 48
WOSCitedRecordID wos000711496700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqWiQu9AEI-kA-0BONWDsmj-MW2GWl7apayuO2GjvOEimboE1Ktbf-hP4X_hG_pDPesNoeqISQcnCcGdmKx_Z4ZvwNY3uhBYgS5XvK15GnEnOIc06AJ8BEyrRCUA5M56IfDgbR1VX8vTG40V2YOT7EwuBGM8Ot1zTBQVcN2ABhZOKpXXT7eCAPY7q_J5SgBAaXvcFiIcbVeZ4wL1ZeJMOgiXtH9oNl5n92pGUN1W0xndfP7dwbtt4ol7w9l4a37IUt3rHVrkveO8OSC_c01Qa7-waEyzDmlJmzqvmpM5ByKBLe1uWtpbseWP6aUfRQxfWM9xpYCWLqHZ2cQX3_-4_8ws8o2gh7i2_C8S9VSH4MNXAXlcCH-LGcPDTYzsflNKuvJzwruPMd_XL9yCaQwwwKpEMRyvK84mWKjaMUb7LzzsmPo1OvSd_gGRmS3m4FJAZkAErpVOtIghAWrFb6EOtCKmoC9EOdUMcy9dOE3LppgE9gW6m_xVaKsrDbjANB5pAPN0D9Dqwfa2NSQqbD_5u2Athh-w9DODINtjml2MhHzscu49HygOywzwvqmzmmxyN0-26M_0s06g77eCiM5fsnUX9ga1RPVmIZfWQr9fSn_cRemds6q6a77OXxsHPe33Xy_Bed7PZL
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELb6K7gAhVYtlOIDPZWoG8fNz3Hpz-6KdFW1pfQWjR2nRMom1SYU7Y1H4F14I56EGW-62h6KhJBycJwZ2YrH9nhm_A1j7wMDEKbSc6SnQkem-gDnnAuOCzqUuhOAtGA6V3EwHIbX19FZm-eU7sJM8SFmBjeaGXa9pglOBukWbYBAMvHY7vZiPJEHUbTIliXqGpS74ctgOFuKcX2epsyLpBOKwG8j35F_f577wZ40r6PaTebk-X937wV71uqXvDsViDW2YMqXbLVn8_dOsGQjPnX9iv06BYJmuOGUnLNueN_aSDmUKe-q6s7QdQ8sf8wpgKjmasIHLbIEMQ0Ojy-g-f3jp_jALyjgCLuLb67ln6sQ_Aga4DYwgZ_jx2p032C3uKnGefN1xPOSW_fRd9uPfAQFTKBEOpSivChqXmXYOAryOvt8cnx52HfaDA6OFgGp7saFVIPwQUqVKRUKcF0DRkl1gHUBFRVh-qFaqCKReVlKnt3Mx8c3nczbYEtlVZpNxoFQc8iN66OKB8aLlNYZgdPh_806PmyxvfsxTHQLb05ZNorEutlFlMwPyBbbnVHfTmE9HqHbs4P8V6Kkdx7juTASr_-J-h170r88jZN4MPz0hj0lGjIai3CbLTXjb-YtW9F3TV6Pd6xQ_wFCJvjJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgC6gX_lHLrw9wKlE3jpuf49LtbleEVbWlqLdo7NglUjapNqFobzwC78Ib8STMeNPVcgAJIeXgOOPYisf22DP5PsZeRwYgzmXgyUDFnsz1AY45HzwfdCx1PwLpwHQ-pdF0Gp-fJycdzyn9C7PCh1gfuNHIcPM1DXBzmdsObYBAMnHb7o9T3JFHSXKTbUnikemxreFsdJauJ2OcoVekeYn0YhGFXew7vmF_s_xvq9KmleqWmdG9_27gfXa3szD5YKUSD9gNUz1kt8eOwXeJKRfzqZtH7McHIHCGC070nE3Lj90pKYcq5wNVXxn64QPT7woKIWq4WvJJhy1BhSaHR6fQ_vz2XbzlpxRyhM3FO9-V38gQfAgtcBeawGf4sJ5fVzgoL-pF0X6e86LizoH01bWjmEMJS6hQDvWoKMuG1xYrR1V-zM5GRx8Pj72Ow8HTIiLj3fiQaxAhSKmsUrEA3zdglFQHmBdRUhGqHxqGKhE2sDn5dm2IV2j6NnjCelVdmR3GgXBzyJEbopEHJkiU1pbg6fD72n4Iu2zvug8z3QGcE89GmTlHu0iyzQ7ZZW_W0pcrYI8_yO25Tv6rUDaepbgzTMTTf5J-xe6cDEdZOpm-f8a2SYROjUX8nPXaxRfzgt3SV23RLF52Wv0Ly9_5cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Forest+Height+and+Aboveground+Biomass+by+Integrating+ICESat%E2%80%902%2C+Sentinel%E2%80%901+and+Sentinel%E2%80%902+Data+Using+Random+Forest+Algorithm+in+Northwest+Himalayan+Foothills+of+India&rft.jtitle=Geophysical+research+letters&rft.au=Nandy%2C+Subrata&rft.au=Srinet%2C+Ritika&rft.au=Padalia%2C+Hitendra&rft.date=2021-07-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=14&rft_id=info:doi/10.1029%2F2021GL093799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2021GL093799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon