Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network

In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of noise in the production environment cause abnormal data fluctuations that deviate from the real value. Coupled with the dynamic nonlinearity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Jg. 55; H. 7; S. 515
Hauptverfasser: Zhang, Yan, Cao, Jie, Zhao, Xiaoqiang, Hui, Yongyong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2025
Springer Nature B.V
Schlagworte:
ISSN:0924-669X, 1573-7497
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of noise in the production environment cause abnormal data fluctuations that deviate from the real value. Coupled with the dynamic nonlinearity of batch processing and the complex spatiotemporal relationship of variables, which greatly increase the difficulty of prediction and pose a severe challenge to prediction performance. Therefore, a denoising autoencoder-Spatial Temporal Convolution Attention Fusion Network (DAE-STCAFN) prediction method is proposed. Firstly, combining DAE and maximum information coefficient (MIC), multi-level data features are extracted to prepare high-quality input data for the quality prediction model. DAE is used to denoise the original data, and relevant variables are selected through MIC. Then, an augmented matrix is constructed to eliminate the autocorrelation of the selected variables in the time series. Secondly, a spatial temporal convolutional attention fusion mechanism is created to extract the spatial temporal fusion features between the input and output variable sequences. Thirdly, to further enhance the learning ability of the model, a batch attention module is constructed to automatically learn the relationship among sample in small batch. Finally, experiments were carried out on the simulation platform of penicillin fermentation and hot tandem rolling process. In the prediction process of penicillin concentration, RMSE and MAE of the proposed method were 0.0099 and 0.0077, respectively. In the prediction of strip thickness, the RMSE and MAE are 0.0008 and 0.0003 respectively. The results show that the proposed method is effective both in simulation experiment and in actual industrial production in terms of prediction accuracy, stability and generalization ability.
AbstractList In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of noise in the production environment cause abnormal data fluctuations that deviate from the real value. Coupled with the dynamic nonlinearity of batch processing and the complex spatiotemporal relationship of variables, which greatly increase the difficulty of prediction and pose a severe challenge to prediction performance. Therefore, a denoising autoencoder-Spatial Temporal Convolution Attention Fusion Network (DAE-STCAFN) prediction method is proposed. Firstly, combining DAE and maximum information coefficient (MIC), multi-level data features are extracted to prepare high-quality input data for the quality prediction model. DAE is used to denoise the original data, and relevant variables are selected through MIC. Then, an augmented matrix is constructed to eliminate the autocorrelation of the selected variables in the time series. Secondly, a spatial temporal convolutional attention fusion mechanism is created to extract the spatial temporal fusion features between the input and output variable sequences. Thirdly, to further enhance the learning ability of the model, a batch attention module is constructed to automatically learn the relationship among sample in small batch. Finally, experiments were carried out on the simulation platform of penicillin fermentation and hot tandem rolling process. In the prediction process of penicillin concentration, RMSE and MAE of the proposed method were 0.0099 and 0.0077, respectively. In the prediction of strip thickness, the RMSE and MAE are 0.0008 and 0.0003 respectively. The results show that the proposed method is effective both in simulation experiment and in actual industrial production in terms of prediction accuracy, stability and generalization ability.
ArticleNumber 515
Author Cao, Jie
Zhang, Yan
Zhao, Xiaoqiang
Hui, Yongyong
Author_xml – sequence: 1
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology
– sequence: 2
  givenname: Jie
  surname: Cao
  fullname: Cao, Jie
  email: zhyan0423@163.com
  organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Manufacturing Informatization Engineering Research Center of Gansu Province
– sequence: 3
  givenname: Xiaoqiang
  surname: Zhao
  fullname: Zhao, Xiaoqiang
  organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology
– sequence: 4
  givenname: Yongyong
  surname: Hui
  fullname: Hui, Yongyong
  organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology
BookMark eNp9kU1rHDEMhk1JoJuPP9DTQM9u_e2ZYxv6BYFeWujNKLYmcTprb2xPS4795_FmC4Ue9iTJvI8k6z0jJyknJOQVZ284Y_Zt5UyNE2VCU2akGal9QTZcW0mtmuwJ2bBJKGrM9OMlOav1njEmJeMb8uc9NH837Er2WOvwsMIS22OvMUTfYk7DDVQMQ08CphxrTLcDrC1j8jlgoXUHLcIyNNzucumJz-lXXtY92ytoDdNzny36O0ixbod5rfuHhO13Lj8vyOkMS8XLv_GcfP_44dvVZ3r99dOXq3fX1AtrGw0QDCKfBcoJuAalwohCGaVBYIDRay9wMlzLMEtjZzWZcZQj4zcgZuOZPCevD337Xx9WrM3d57X0HauTfOJSj1Lp4yqrhTRGqa4SB5UvudaCs9uVuIXy6Dhze0PcwRDXDXHPhjjbofE_yMcG-9u0AnE5jsoDWvucdIvl31ZHqCdbdaU9
CitedBy_id crossref_primary_10_1002_qre_70075
Cites_doi 10.1016/j.cjche.2018.09.022
10.1109/TII.2018.2880968
10.1109/TIM.2022.3216413
10.1109/TII.2018.2869899
10.1109/TIE.2016.2622668
10.1002/cjce.22824
10.1155/2021/9943153
10.1109/TIE.2020.2984443
10.1109/JIOT.2024.3412925
10.1007/s13369-021-05388-y
10.1109/TII.2018.2809730
10.1016/j.compchemeng.2022.108125
10.1080/00207543.2013.857056
10.1016/j.jprocont.2014.01.012
10.28991/ESJ-2024-08-01-025
10.1007/s10845-018-1418-7
10.1162/neco_a_01199
10.28991/HIJ-2024-05-02-03
10.1002/cjce.24940
10.1109/CVPR.2018.00572
10.1016/j.chemolab.2022.104528
10.1016/S0098-1354(02)00127-8
10.1016/j.psep.2024.08.023
10.1109/TNNLS.2020.3001602
10.1007/s10845-021-01752-9
10.1109/TIE.2019.2922941
10.1109/TCYB.2020.3010331
10.1016/j.jprocont.2019.02.005
10.28991/HIJ-2024-05-02-012
10.1002/cjce.23665
10.1002/cjce.23738
10.1016/j.chemolab.2016.08.007
10.3390/fractalfract7080598
10.1016/j.engappai.2021.104341
10.1109/TII.2019.2902129
10.1080/15715124.2019.1628030
10.1109/TII.2020.3001054
10.1016/j.engappai.2020.103587
10.3390/pr10101966
10.1016/j.conengprac.2017.07.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-025-06368-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_025_06368_7
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
77I
77K
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
8FE
8FG
AAAVM
AAOBN
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
AZQEC
BBWZM
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FRNLG
FSGXE
GNUQQ
H13
K6V
K7-
KOW
L6V
M0C
M7S
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PTHSS
Q2X
R4E
RNI
RZC
RZE
RZK
S26
S28
SCJ
SCLPG
T16
TEORI
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c277t-dad6ee1f2e39a15a44d8e24645a2eda8c5c2e96153df367f496883801ba2f6c03
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439610700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:53:22 EST 2025
Wed Nov 05 14:51:50 EST 2025
Tue Nov 18 22:36:13 EST 2025
Sat Nov 29 07:27:02 EST 2025
Sat Sep 20 01:12:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Quality prediction
Batch processes
Maximum Information Coefficient
Spatiotemporal convolutional attention
Denoising-Autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-dad6ee1f2e39a15a44d8e24645a2eda8c5c2e96153df367f496883801ba2f6c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3175236644
PQPubID 326365
ParticipantIDs proquest_journals_3191358345
proquest_journals_3175236644
crossref_primary_10_1007_s10489_025_06368_7
crossref_citationtrail_10_1007_s10489_025_06368_7
springer_journals_10_1007_s10489_025_06368_7
PublicationCentury 2000
PublicationDate 20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 20250501
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References C Ji (6368_CR35) 2023; 170
X Yuan (6368_CR20) 2018; 14
H Yao (6368_CR4) 2023; 101
AQ Md (6368_CR6) 2022; 10
V García (6368_CR13) 2019; 30
E Lughofer (6368_CR14) 2019; 76
Y Hui (6368_CR38) 2018; 26
S Xiang (6368_CR26) 2020; 91
C Liu (6368_CR21) 2021; 104
YB Özçelik (6368_CR29) 2023; 7
L Ren (6368_CR27) 2020; 31
X Yuan (6368_CR40) 2019; 16
M Zhang (6368_CR33) 2021; 46
X Yuan (6368_CR28) 2020; 68
6368_CR34
L Ren (6368_CR5) 2020; 17
SFA Razak (6368_CR31) 2024; 5
H Yao (6368_CR39) 2022; 223
X Yuan (6368_CR25) 2020; 98
B Tuo (6368_CR36) 2024; 191
Y Sun (6368_CR12) 2021; 32
H Chen (6368_CR32) 2024
Y Wang (6368_CR10) 2014; 52
IS Lebedev (6368_CR30) 2024; 8
W Li (6368_CR1) 2017; 95
6368_CR9
C Shang (6368_CR18) 2014; 24
Y Yu (6368_CR24) 2019; 31
Q Jiang (6368_CR11) 2019; 67
WC Leong (6368_CR15) 2021; 19
W Yan (6368_CR19) 2016; 64
Q Sun (6368_CR22) 2020; 52
L Ma (6368_CR42) 2017; 67
W Yan (6368_CR7) 2016; 158
Z Wang (6368_CR17) 2024; 5
G Birol (6368_CR37) 2002; 26
X Gao (6368_CR2) 2020; 98
6368_CR23
S Li (6368_CR41) 2021; 2021
K Wang (6368_CR3) 2018; 16
Q Sun (6368_CR16) 2018; 15
Y Wang (6368_CR8) 2022; 71
References_xml – volume: 26
  start-page: 2549
  year: 2018
  ident: 6368_CR38
  publication-title: Chinese J Chem Eng
  doi: 10.1016/j.cjche.2018.09.022
– volume: 16
  start-page: 7233
  year: 2018
  ident: 6368_CR3
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2018.2880968
– volume: 71
  start-page: 1
  year: 2022
  ident: 6368_CR8
  publication-title: Ieee T Instrum Meas
  doi: 10.1109/TIM.2022.3216413
– volume: 15
  start-page: 2700
  year: 2018
  ident: 6368_CR16
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2018.2869899
– volume: 64
  start-page: 4237
  year: 2016
  ident: 6368_CR19
  publication-title: IEEE T Ind Electron
  doi: 10.1109/TIE.2016.2622668
– volume: 95
  start-page: 1817
  year: 2017
  ident: 6368_CR1
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.22824
– ident: 6368_CR34
– volume: 2021
  start-page: 9943153
  issue: 1
  year: 2021
  ident: 6368_CR41
  publication-title: J Sensors
  doi: 10.1155/2021/9943153
– volume: 68
  start-page: 4404
  year: 2020
  ident: 6368_CR28
  publication-title: IEEE T Ind Electron
  doi: 10.1109/TIE.2020.2984443
– year: 2024
  ident: 6368_CR32
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2024.3412925
– volume: 46
  start-page: 10125
  year: 2021
  ident: 6368_CR33
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-05388-y
– volume: 14
  start-page: 3235
  year: 2018
  ident: 6368_CR20
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2018.2809730
– volume: 170
  start-page: 108125
  year: 2023
  ident: 6368_CR35
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2022.108125
– volume: 52
  start-page: 2915
  year: 2014
  ident: 6368_CR10
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2013.857056
– volume: 24
  start-page: 223
  year: 2014
  ident: 6368_CR18
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2014.01.012
– volume: 8
  start-page: 355
  issue: 1
  year: 2024
  ident: 6368_CR30
  publication-title: Emerg Sci J
  doi: 10.28991/ESJ-2024-08-01-025
– volume: 30
  start-page: 2535
  year: 2019
  ident: 6368_CR13
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-018-1418-7
– volume: 31
  start-page: 1235
  year: 2019
  ident: 6368_CR24
  publication-title: Neural Comput
  doi: 10.1162/neco_a_01199
– volume: 5
  start-page: 259
  issue: 2
  year: 2024
  ident: 6368_CR17
  publication-title: HighTech Innov J
  doi: 10.28991/HIJ-2024-05-02-03
– volume: 101
  start-page: 6977
  year: 2023
  ident: 6368_CR4
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.24940
– ident: 6368_CR23
  doi: 10.1109/CVPR.2018.00572
– volume: 223
  start-page: 104528
  year: 2022
  ident: 6368_CR39
  publication-title: Chemometr Intell Lab
  doi: 10.1016/j.chemolab.2022.104528
– volume: 26
  start-page: 1553
  year: 2002
  ident: 6368_CR37
  publication-title: Comput Chem Eng
  doi: 10.1016/S0098-1354(02)00127-8
– volume: 191
  start-page: 1131
  year: 2024
  ident: 6368_CR36
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2024.08.023
– volume: 31
  start-page: 3721
  year: 2020
  ident: 6368_CR27
  publication-title: IEEE Trans Neural Netw Learning Syst
  doi: 10.1109/TNNLS.2020.3001602
– volume: 32
  start-page: 2007
  year: 2021
  ident: 6368_CR12
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-021-01752-9
– volume: 67
  start-page: 4098
  year: 2019
  ident: 6368_CR11
  publication-title: IEEE T Ind Electron
  doi: 10.1109/TIE.2019.2922941
– volume: 52
  start-page: 3457
  year: 2020
  ident: 6368_CR22
  publication-title: IEEE Trans Cybernetics
  doi: 10.1109/TCYB.2020.3010331
– volume: 76
  start-page: 27
  year: 2019
  ident: 6368_CR14
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2019.02.005
– volume: 5
  start-page: 400
  issue: 2
  year: 2024
  ident: 6368_CR31
  publication-title: HighTech Innov J
  doi: 10.28991/HIJ-2024-05-02-012
– volume: 98
  start-page: 1377
  year: 2020
  ident: 6368_CR25
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.23665
– volume: 98
  start-page: 1269
  year: 2020
  ident: 6368_CR2
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.23738
– volume: 158
  start-page: 31
  year: 2016
  ident: 6368_CR7
  publication-title: Chemometr Intell Lab
  doi: 10.1016/j.chemolab.2016.08.007
– volume: 7
  start-page: 598
  issue: 8
  year: 2023
  ident: 6368_CR29
  publication-title: Fractal Fract
  doi: 10.3390/fractalfract7080598
– volume: 104
  start-page: 104341
  year: 2021
  ident: 6368_CR21
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2021.104341
– volume: 16
  start-page: 3168
  year: 2019
  ident: 6368_CR40
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2019.2902129
– volume: 19
  start-page: 149
  year: 2021
  ident: 6368_CR15
  publication-title: Int J River Basin Manag
  doi: 10.1080/15715124.2019.1628030
– volume: 17
  start-page: 6457
  year: 2020
  ident: 6368_CR5
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2020.3001054
– volume: 91
  start-page: 103587
  year: 2020
  ident: 6368_CR26
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2020.103587
– volume: 10
  start-page: 1966
  issue: 10
  year: 2022
  ident: 6368_CR6
  publication-title: Processes
  doi: 10.3390/pr10101966
– volume: 67
  start-page: 43
  year: 2017
  ident: 6368_CR42
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2017.07.005
– ident: 6368_CR9
SSID ssj0003301
Score 2.3904293
Snippet In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 515
SubjectTerms Artificial Intelligence
Batch processes
Batch processing
Complex variables
Computer Science
Continuous rolling
Feature extraction
Machines
Manufacturing
Mechanical Engineering
Noise reduction
Penicillin
Prediction models
Processes
Quality control
Sequences
Variables
Subtitle Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network
Title Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network
URI https://link.springer.com/article/10.1007/s10489-025-06368-7
https://www.proquest.com/docview/3175236644
https://www.proquest.com/docview/3191358345
Volume 55
WOSCitedRecordID wos001439610700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwMPg6ePEtri9y8KYBm7RJelRRPMgivthbySYpLrgPtl3Bo3_uTJu6KirorSFpU2Ym88i8CDmQ0ip_bC3rJj5nYH_FzICWz0yqLRgcttt1VdeSK9Vu604nvQ5JYUUT7d64JCtO_SHZLcbwHp4wEKtSMzVL5kHcaTyON7cP7_wXLPSqTx5YFkzKtBNSZb7_xmdxNNUxv7hFK2lzsfy__1whS0G7pCc1OaySGT9YI8tN5wYaDvI6eT0FDvxIR3WWAK0zK19gjG4bRBVF6eYoPABfGvbwQoGaSTnEspfOj1mBgdiwU6hs9UQxej1QMYywaGcVRkn7HlOLe0Wf5hO8mKODOu58g9xfnN-dXbLQjIFZrlTJnHHS-yjnXqQmSkwcO-05-kUN985om1juU1QfXS6kyuNUai1A_nUNz6U9FptkbjAc-C1CtTKKS-68BrIQ3qSRs0aYxBpunTKyRaIGJ5kNlcqxYcZTNq2xjDDOAMZZBeNMtcjh-zujuk7Hr6t3G1Rn4cwWGWpSXEhQEH-YTiORaBEnLXLUYH46_fNm239bvkMWeUU8GFS5S-bK8cTvkQX7XPaK8X5F6m8oh_vv
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6NDgleYAwQZWzzw97AErET23ncpiGmdRXaAPUtcm1HVIK2alokHvfPd5c4dJsGErzFshNHvrPvzvfdHcAHpZwOx87xYRZKjvZXyi1q-dzmxqHB4YZDX1ct6el-3wwG-VkMCqtatHvrkqxP6j-C3VKC94iMo1hVhusVeJmixCIg34-fl_fnL1rodZ08tCy4Uvkghsr8_xt_i6OljvmPW7SWNiebz_vPV7ARtUv2sWGHLXgRxq9hs63cwOJG3oZfn_AEvmLTJkqANZGVd9gmtw2RipF08wwf8FyajOhCgdnFfEJpL32Y8YqA2DhTzGx1zQi9HrkYW5S0s4ZRsptAocWj6oaVC7qYY-MGd74DFydfzj-f8liMgTuh9Zx761UISSmCzG2S2TT1Jgjyi1oRvDUucyLkpD76UipdprkyRqL8G1pRKncsd6EznozDHjCjrRZK-GCQLWSweeKdlTZzVjivrepC0tKkcDFTORXMuC6WOZZpjQtc46Je40J34fD-nWmTp-PR0QctqYu4Z6uCNCkhFSqID3TnicyMTLMuHLWUX3Y_PNn-04a_h7XT8--9ove1_-0NrIuakQhgeQCd-WwR3sKqu52Pqtm7mu1_A_6f_tM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BQYiXFdgQHR34gTewutiJ7TyObRWIqqrEh_oWObajVWrTqkmR9rj_fL58tAVRJMRbLDtxdD777ny_uwN4J4SR7twYmkYuo97-Cqn2Wj7VsTLe4DBpaquqJSM5HqvpNJ7sRfFXaPfWJVnHNGCWprwcrGw22At8CxHqwyLqRaxQVD6ERyEWDUJ7_euP7VnsrfWqZp63MqgQ8bQJm_nzN34VTTt98zcXaSV5ht3__-dncNRoneSiZpPn8MDlL6DbVnQgzQY_hruP_mS-Ias6eoDUEZe3vo3uHFxCglLPEv_gz6vlDC8aiN6US0yHad2aFgjQ9jM1Ga_mBFHtDXf7FibzrOCVZOEw5HhWLEi2wQs7ktd49BP4Prz-dvmJNkUaqGFSltRqK5wLMuZ4rINIh6FVjqG_VDNntTKRYS5GtdJmXMgsjIVS3MvFVLNMmHP-Ejr5MnevgCipJRPMOuXZhTsdB9ZoriOjmbFSix4E7fokpslgjoU05sku9zLSOPE0TioaJ7IH77fvrOr8HX8d3W-XPWn2cpGghsW48Irjge444JHiYdSDDy0X7LoPT3b6b8PfwpPJ1TAZfR5_eQ1PWcVHiLvsQ6dcb9wZPDY_y1mxflPtgHs66gfG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Batch+process+quality+prediction+based+on+denoising+autoencoder-spatial+temporal+convolutional+attention+mechanism+fusion+network&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhang%2C+Yan&rft.au=Cao%2C+Jie&rft.au=Zhao%2C+Xiaoqiang&rft.au=Hui%2C+Yongyong&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=7&rft.spage=515&rft_id=info:doi/10.1007%2Fs10489-025-06368-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon