Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network
In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of noise in the production environment cause abnormal data fluctuations that deviate from the real value. Coupled with the dynamic nonlinearity of...
Gespeichert in:
| Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Jg. 55; H. 7; S. 515 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of noise in the production environment cause abnormal data fluctuations that deviate from the real value. Coupled with the dynamic nonlinearity of batch processing and the complex spatiotemporal relationship of variables, which greatly increase the difficulty of prediction and pose a severe challenge to prediction performance. Therefore, a denoising autoencoder-Spatial Temporal Convolution Attention Fusion Network (DAE-STCAFN) prediction method is proposed. Firstly, combining DAE and maximum information coefficient (MIC), multi-level data features are extracted to prepare high-quality input data for the quality prediction model. DAE is used to denoise the original data, and relevant variables are selected through MIC. Then, an augmented matrix is constructed to eliminate the autocorrelation of the selected variables in the time series. Secondly, a spatial temporal convolutional attention fusion mechanism is created to extract the spatial temporal fusion features between the input and output variable sequences. Thirdly, to further enhance the learning ability of the model, a batch attention module is constructed to automatically learn the relationship among sample in small batch. Finally, experiments were carried out on the simulation platform of penicillin fermentation and hot tandem rolling process. In the prediction process of penicillin concentration, RMSE and MAE of the proposed method were 0.0099 and 0.0077, respectively. In the prediction of strip thickness, the RMSE and MAE are 0.0008 and 0.0003 respectively. The results show that the proposed method is effective both in simulation experiment and in actual industrial production in terms of prediction accuracy, stability and generalization ability. |
|---|---|
| AbstractList | In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of noise in the production environment cause abnormal data fluctuations that deviate from the real value. Coupled with the dynamic nonlinearity of batch processing and the complex spatiotemporal relationship of variables, which greatly increase the difficulty of prediction and pose a severe challenge to prediction performance. Therefore, a denoising autoencoder-Spatial Temporal Convolution Attention Fusion Network (DAE-STCAFN) prediction method is proposed. Firstly, combining DAE and maximum information coefficient (MIC), multi-level data features are extracted to prepare high-quality input data for the quality prediction model. DAE is used to denoise the original data, and relevant variables are selected through MIC. Then, an augmented matrix is constructed to eliminate the autocorrelation of the selected variables in the time series. Secondly, a spatial temporal convolutional attention fusion mechanism is created to extract the spatial temporal fusion features between the input and output variable sequences. Thirdly, to further enhance the learning ability of the model, a batch attention module is constructed to automatically learn the relationship among sample in small batch. Finally, experiments were carried out on the simulation platform of penicillin fermentation and hot tandem rolling process. In the prediction process of penicillin concentration, RMSE and MAE of the proposed method were 0.0099 and 0.0077, respectively. In the prediction of strip thickness, the RMSE and MAE are 0.0008 and 0.0003 respectively. The results show that the proposed method is effective both in simulation experiment and in actual industrial production in terms of prediction accuracy, stability and generalization ability. |
| ArticleNumber | 515 |
| Author | Cao, Jie Zhang, Yan Zhao, Xiaoqiang Hui, Yongyong |
| Author_xml | – sequence: 1 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology – sequence: 2 givenname: Jie surname: Cao fullname: Cao, Jie email: zhyan0423@163.com organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Manufacturing Informatization Engineering Research Center of Gansu Province – sequence: 3 givenname: Xiaoqiang surname: Zhao fullname: Zhao, Xiaoqiang organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology – sequence: 4 givenname: Yongyong surname: Hui fullname: Hui, Yongyong organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology |
| BookMark | eNp9kU1rHDEMhk1JoJuPP9DTQM9u_e2ZYxv6BYFeWujNKLYmcTprb2xPS4795_FmC4Ue9iTJvI8k6z0jJyknJOQVZ284Y_Zt5UyNE2VCU2akGal9QTZcW0mtmuwJ2bBJKGrM9OMlOav1njEmJeMb8uc9NH837Er2WOvwsMIS22OvMUTfYk7DDVQMQ08CphxrTLcDrC1j8jlgoXUHLcIyNNzucumJz-lXXtY92ytoDdNzny36O0ixbod5rfuHhO13Lj8vyOkMS8XLv_GcfP_44dvVZ3r99dOXq3fX1AtrGw0QDCKfBcoJuAalwohCGaVBYIDRay9wMlzLMEtjZzWZcZQj4zcgZuOZPCevD337Xx9WrM3d57X0HauTfOJSj1Lp4yqrhTRGqa4SB5UvudaCs9uVuIXy6Dhze0PcwRDXDXHPhjjbofE_yMcG-9u0AnE5jsoDWvucdIvl31ZHqCdbdaU9 |
| CitedBy_id | crossref_primary_10_1002_qre_70075 |
| Cites_doi | 10.1016/j.cjche.2018.09.022 10.1109/TII.2018.2880968 10.1109/TIM.2022.3216413 10.1109/TII.2018.2869899 10.1109/TIE.2016.2622668 10.1002/cjce.22824 10.1155/2021/9943153 10.1109/TIE.2020.2984443 10.1109/JIOT.2024.3412925 10.1007/s13369-021-05388-y 10.1109/TII.2018.2809730 10.1016/j.compchemeng.2022.108125 10.1080/00207543.2013.857056 10.1016/j.jprocont.2014.01.012 10.28991/ESJ-2024-08-01-025 10.1007/s10845-018-1418-7 10.1162/neco_a_01199 10.28991/HIJ-2024-05-02-03 10.1002/cjce.24940 10.1109/CVPR.2018.00572 10.1016/j.chemolab.2022.104528 10.1016/S0098-1354(02)00127-8 10.1016/j.psep.2024.08.023 10.1109/TNNLS.2020.3001602 10.1007/s10845-021-01752-9 10.1109/TIE.2019.2922941 10.1109/TCYB.2020.3010331 10.1016/j.jprocont.2019.02.005 10.28991/HIJ-2024-05-02-012 10.1002/cjce.23665 10.1002/cjce.23738 10.1016/j.chemolab.2016.08.007 10.3390/fractalfract7080598 10.1016/j.engappai.2021.104341 10.1109/TII.2019.2902129 10.1080/15715124.2019.1628030 10.1109/TII.2020.3001054 10.1016/j.engappai.2020.103587 10.3390/pr10101966 10.1016/j.conengprac.2017.07.005 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10489-025-06368-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| ExternalDocumentID | 10_1007_s10489_025_06368_7 |
| GroupedDBID | -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 77I 77K 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 8FE 8FG AAAVM AAOBN AARHV AAYTO AAYXX ABJCF ABQSL ABULA ABUWG ACBXY ADHKG AEBTG AEFIE AEKMD AFEXP AFFHD AFGCZ AFKRA AGGDS AGQPQ AJBLW AZQEC BBWZM BDATZ BEZIV BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EJD FINBP FRNLG FSGXE GNUQQ H13 K6V K7- KOW L6V M0C M7S N2Q NDZJH O9- OVD P62 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PTHSS Q2X R4E RNI RZC RZE RZK S26 S28 SCJ SCLPG T16 TEORI ZY4 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c277t-dad6ee1f2e39a15a44d8e24645a2eda8c5c2e96153df367f496883801ba2f6c03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439610700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:53:22 EST 2025 Wed Nov 05 14:51:50 EST 2025 Tue Nov 18 22:36:13 EST 2025 Sat Nov 29 07:27:02 EST 2025 Sat Sep 20 01:12:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Quality prediction Batch processes Maximum Information Coefficient Spatiotemporal convolutional attention Denoising-Autoencoder |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c277t-dad6ee1f2e39a15a44d8e24645a2eda8c5c2e96153df367f496883801ba2f6c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3175236644 |
| PQPubID | 326365 |
| ParticipantIDs | proquest_journals_3191358345 proquest_journals_3175236644 crossref_primary_10_1007_s10489_025_06368_7 crossref_citationtrail_10_1007_s10489_025_06368_7 springer_journals_10_1007_s10489_025_06368_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20250501 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 20250501 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | C Ji (6368_CR35) 2023; 170 X Yuan (6368_CR20) 2018; 14 H Yao (6368_CR4) 2023; 101 AQ Md (6368_CR6) 2022; 10 V García (6368_CR13) 2019; 30 E Lughofer (6368_CR14) 2019; 76 Y Hui (6368_CR38) 2018; 26 S Xiang (6368_CR26) 2020; 91 C Liu (6368_CR21) 2021; 104 YB Özçelik (6368_CR29) 2023; 7 L Ren (6368_CR27) 2020; 31 X Yuan (6368_CR40) 2019; 16 M Zhang (6368_CR33) 2021; 46 X Yuan (6368_CR28) 2020; 68 6368_CR34 L Ren (6368_CR5) 2020; 17 SFA Razak (6368_CR31) 2024; 5 H Yao (6368_CR39) 2022; 223 X Yuan (6368_CR25) 2020; 98 B Tuo (6368_CR36) 2024; 191 Y Sun (6368_CR12) 2021; 32 H Chen (6368_CR32) 2024 Y Wang (6368_CR10) 2014; 52 IS Lebedev (6368_CR30) 2024; 8 W Li (6368_CR1) 2017; 95 6368_CR9 C Shang (6368_CR18) 2014; 24 Y Yu (6368_CR24) 2019; 31 Q Jiang (6368_CR11) 2019; 67 WC Leong (6368_CR15) 2021; 19 W Yan (6368_CR19) 2016; 64 Q Sun (6368_CR22) 2020; 52 L Ma (6368_CR42) 2017; 67 W Yan (6368_CR7) 2016; 158 Z Wang (6368_CR17) 2024; 5 G Birol (6368_CR37) 2002; 26 X Gao (6368_CR2) 2020; 98 6368_CR23 S Li (6368_CR41) 2021; 2021 K Wang (6368_CR3) 2018; 16 Q Sun (6368_CR16) 2018; 15 Y Wang (6368_CR8) 2022; 71 |
| References_xml | – volume: 26 start-page: 2549 year: 2018 ident: 6368_CR38 publication-title: Chinese J Chem Eng doi: 10.1016/j.cjche.2018.09.022 – volume: 16 start-page: 7233 year: 2018 ident: 6368_CR3 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2018.2880968 – volume: 71 start-page: 1 year: 2022 ident: 6368_CR8 publication-title: Ieee T Instrum Meas doi: 10.1109/TIM.2022.3216413 – volume: 15 start-page: 2700 year: 2018 ident: 6368_CR16 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2018.2869899 – volume: 64 start-page: 4237 year: 2016 ident: 6368_CR19 publication-title: IEEE T Ind Electron doi: 10.1109/TIE.2016.2622668 – volume: 95 start-page: 1817 year: 2017 ident: 6368_CR1 publication-title: Can J Chem Eng doi: 10.1002/cjce.22824 – ident: 6368_CR34 – volume: 2021 start-page: 9943153 issue: 1 year: 2021 ident: 6368_CR41 publication-title: J Sensors doi: 10.1155/2021/9943153 – volume: 68 start-page: 4404 year: 2020 ident: 6368_CR28 publication-title: IEEE T Ind Electron doi: 10.1109/TIE.2020.2984443 – year: 2024 ident: 6368_CR32 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2024.3412925 – volume: 46 start-page: 10125 year: 2021 ident: 6368_CR33 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-05388-y – volume: 14 start-page: 3235 year: 2018 ident: 6368_CR20 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2018.2809730 – volume: 170 start-page: 108125 year: 2023 ident: 6368_CR35 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2022.108125 – volume: 52 start-page: 2915 year: 2014 ident: 6368_CR10 publication-title: Int J Prod Res doi: 10.1080/00207543.2013.857056 – volume: 24 start-page: 223 year: 2014 ident: 6368_CR18 publication-title: J Process Control doi: 10.1016/j.jprocont.2014.01.012 – volume: 8 start-page: 355 issue: 1 year: 2024 ident: 6368_CR30 publication-title: Emerg Sci J doi: 10.28991/ESJ-2024-08-01-025 – volume: 30 start-page: 2535 year: 2019 ident: 6368_CR13 publication-title: J Intell Manuf doi: 10.1007/s10845-018-1418-7 – volume: 31 start-page: 1235 year: 2019 ident: 6368_CR24 publication-title: Neural Comput doi: 10.1162/neco_a_01199 – volume: 5 start-page: 259 issue: 2 year: 2024 ident: 6368_CR17 publication-title: HighTech Innov J doi: 10.28991/HIJ-2024-05-02-03 – volume: 101 start-page: 6977 year: 2023 ident: 6368_CR4 publication-title: Can J Chem Eng doi: 10.1002/cjce.24940 – ident: 6368_CR23 doi: 10.1109/CVPR.2018.00572 – volume: 223 start-page: 104528 year: 2022 ident: 6368_CR39 publication-title: Chemometr Intell Lab doi: 10.1016/j.chemolab.2022.104528 – volume: 26 start-page: 1553 year: 2002 ident: 6368_CR37 publication-title: Comput Chem Eng doi: 10.1016/S0098-1354(02)00127-8 – volume: 191 start-page: 1131 year: 2024 ident: 6368_CR36 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2024.08.023 – volume: 31 start-page: 3721 year: 2020 ident: 6368_CR27 publication-title: IEEE Trans Neural Netw Learning Syst doi: 10.1109/TNNLS.2020.3001602 – volume: 32 start-page: 2007 year: 2021 ident: 6368_CR12 publication-title: J Intell Manuf doi: 10.1007/s10845-021-01752-9 – volume: 67 start-page: 4098 year: 2019 ident: 6368_CR11 publication-title: IEEE T Ind Electron doi: 10.1109/TIE.2019.2922941 – volume: 52 start-page: 3457 year: 2020 ident: 6368_CR22 publication-title: IEEE Trans Cybernetics doi: 10.1109/TCYB.2020.3010331 – volume: 76 start-page: 27 year: 2019 ident: 6368_CR14 publication-title: J Process Control doi: 10.1016/j.jprocont.2019.02.005 – volume: 5 start-page: 400 issue: 2 year: 2024 ident: 6368_CR31 publication-title: HighTech Innov J doi: 10.28991/HIJ-2024-05-02-012 – volume: 98 start-page: 1377 year: 2020 ident: 6368_CR25 publication-title: Can J Chem Eng doi: 10.1002/cjce.23665 – volume: 98 start-page: 1269 year: 2020 ident: 6368_CR2 publication-title: Can J Chem Eng doi: 10.1002/cjce.23738 – volume: 158 start-page: 31 year: 2016 ident: 6368_CR7 publication-title: Chemometr Intell Lab doi: 10.1016/j.chemolab.2016.08.007 – volume: 7 start-page: 598 issue: 8 year: 2023 ident: 6368_CR29 publication-title: Fractal Fract doi: 10.3390/fractalfract7080598 – volume: 104 start-page: 104341 year: 2021 ident: 6368_CR21 publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2021.104341 – volume: 16 start-page: 3168 year: 2019 ident: 6368_CR40 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2019.2902129 – volume: 19 start-page: 149 year: 2021 ident: 6368_CR15 publication-title: Int J River Basin Manag doi: 10.1080/15715124.2019.1628030 – volume: 17 start-page: 6457 year: 2020 ident: 6368_CR5 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.3001054 – volume: 91 start-page: 103587 year: 2020 ident: 6368_CR26 publication-title: Eng Appl Artif Intel doi: 10.1016/j.engappai.2020.103587 – volume: 10 start-page: 1966 issue: 10 year: 2022 ident: 6368_CR6 publication-title: Processes doi: 10.3390/pr10101966 – volume: 67 start-page: 43 year: 2017 ident: 6368_CR42 publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2017.07.005 – ident: 6368_CR9 |
| SSID | ssj0003301 |
| Score | 2.3904293 |
| Snippet | In batch processes, the accurate prediction of quality variables plays a crucial role in smooth production and quality control. However, various sources of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 515 |
| SubjectTerms | Artificial Intelligence Batch processes Batch processing Complex variables Computer Science Continuous rolling Feature extraction Machines Manufacturing Mechanical Engineering Noise reduction Penicillin Prediction models Processes Quality control Sequences Variables |
| Subtitle | Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network |
| Title | Batch process quality prediction based on denoising autoencoder-spatial temporal convolutional attention mechanism fusion network |
| URI | https://link.springer.com/article/10.1007/s10489-025-06368-7 https://www.proquest.com/docview/3175236644 https://www.proquest.com/docview/3191358345 |
| Volume | 55 |
| WOSCitedRecordID | wos001439610700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsQwMPg6ePEtri9y8KYBm7RJelRRPMgivthbySYpLrgPtl3Bo3_uTJu6KirorSFpU2Ym88i8CDmQ0ip_bC3rJj5nYH_FzICWz0yqLRgcttt1VdeSK9Vu604nvQ5JYUUT7d64JCtO_SHZLcbwHp4wEKtSMzVL5kHcaTyON7cP7_wXLPSqTx5YFkzKtBNSZb7_xmdxNNUxv7hFK2lzsfy__1whS0G7pCc1OaySGT9YI8tN5wYaDvI6eT0FDvxIR3WWAK0zK19gjG4bRBVF6eYoPABfGvbwQoGaSTnEspfOj1mBgdiwU6hs9UQxej1QMYywaGcVRkn7HlOLe0Wf5hO8mKODOu58g9xfnN-dXbLQjIFZrlTJnHHS-yjnXqQmSkwcO-05-kUN985om1juU1QfXS6kyuNUai1A_nUNz6U9FptkbjAc-C1CtTKKS-68BrIQ3qSRs0aYxBpunTKyRaIGJ5kNlcqxYcZTNq2xjDDOAMZZBeNMtcjh-zujuk7Hr6t3G1Rn4cwWGWpSXEhQEH-YTiORaBEnLXLUYH46_fNm239bvkMWeUU8GFS5S-bK8cTvkQX7XPaK8X5F6m8oh_vv |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6NDgleYAwQZWzzw97AErET23ncpiGmdRXaAPUtcm1HVIK2alokHvfPd5c4dJsGErzFshNHvrPvzvfdHcAHpZwOx87xYRZKjvZXyi1q-dzmxqHB4YZDX1ct6el-3wwG-VkMCqtatHvrkqxP6j-C3VKC94iMo1hVhusVeJmixCIg34-fl_fnL1rodZ08tCy4Uvkghsr8_xt_i6OljvmPW7SWNiebz_vPV7ARtUv2sWGHLXgRxq9hs63cwOJG3oZfn_AEvmLTJkqANZGVd9gmtw2RipF08wwf8FyajOhCgdnFfEJpL32Y8YqA2DhTzGx1zQi9HrkYW5S0s4ZRsptAocWj6oaVC7qYY-MGd74DFydfzj-f8liMgTuh9Zx761UISSmCzG2S2TT1Jgjyi1oRvDUucyLkpD76UipdprkyRqL8G1pRKncsd6EznozDHjCjrRZK-GCQLWSweeKdlTZzVjivrepC0tKkcDFTORXMuC6WOZZpjQtc46Je40J34fD-nWmTp-PR0QctqYu4Z6uCNCkhFSqID3TnicyMTLMuHLWUX3Y_PNn-04a_h7XT8--9ove1_-0NrIuakQhgeQCd-WwR3sKqu52Pqtm7mu1_A_6f_tM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BQYiXFdgQHR34gTewutiJ7TyObRWIqqrEh_oWObajVWrTqkmR9rj_fL58tAVRJMRbLDtxdD777ny_uwN4J4SR7twYmkYuo97-Cqn2Wj7VsTLe4DBpaquqJSM5HqvpNJ7sRfFXaPfWJVnHNGCWprwcrGw22At8CxHqwyLqRaxQVD6ERyEWDUJ7_euP7VnsrfWqZp63MqgQ8bQJm_nzN34VTTt98zcXaSV5ht3__-dncNRoneSiZpPn8MDlL6DbVnQgzQY_hruP_mS-Ias6eoDUEZe3vo3uHFxCglLPEv_gz6vlDC8aiN6US0yHad2aFgjQ9jM1Ga_mBFHtDXf7FibzrOCVZOEw5HhWLEi2wQs7ktd49BP4Prz-dvmJNkUaqGFSltRqK5wLMuZ4rINIh6FVjqG_VDNntTKRYS5GtdJmXMgsjIVS3MvFVLNMmHP-Ejr5MnevgCipJRPMOuXZhTsdB9ZoriOjmbFSix4E7fokpslgjoU05sku9zLSOPE0TioaJ7IH77fvrOr8HX8d3W-XPWn2cpGghsW48Irjge444JHiYdSDDy0X7LoPT3b6b8PfwpPJ1TAZfR5_eQ1PWcVHiLvsQ6dcb9wZPDY_y1mxflPtgHs66gfG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Batch+process+quality+prediction+based+on+denoising+autoencoder-spatial+temporal+convolutional+attention+mechanism+fusion+network&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhang%2C+Yan&rft.au=Cao%2C+Jie&rft.au=Zhao%2C+Xiaoqiang&rft.au=Hui%2C+Yongyong&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=7&rft.spage=515&rft_id=info:doi/10.1007%2Fs10489-025-06368-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |