Nucleon axial, tensor, and scalar charges and σ -terms in lattice QCD

We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensem...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D Vol. 102; no. 5; p. 1
Main Authors: Alexandrou, C., Bacchio, S., Constantinou, M., Finkenrath, J., Hadjiyiannakou, K., Jansen, K., Koutsou, G., Aviles-Casco, A. Vaquero
Format: Journal Article
Language:English
Published: College Park American Physical Society 29.09.2020
Subjects:
ISSN:2470-0010, 2470-0029
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensembles are simulated with two dynamical light quarks and lattice spacing a = 0.094 fm and the third with a = 0.08 fm includes in addition the strange and charm quarks in the sea. After comparing the results among these three ensembles, we quote as final values our most accurate analysis using the latter ensemble. For the nucleon isovector axial charge we find 1.286(23) in agreement with the experimental value. We provide the flavor decomposition of the intrinsic spin 1/2 ΔΣq carried by quarks in the nucleon obtaining for the up, down, strange and charm quarks 1/2 ΔΣu = 0.431 (8), 1/2 ΔΣd = − 0.212 (8) , 1/2 ΔΣs = − 0.023 (4) and 1/2 ΔΣc = − 0.005 (2) , respectively. The corresponding values of the tensor and scalar charges for each quark flavor are also evaluated providing valuable input for experimental searches for beyond the standard model physics. In addition, we extract the nucleon σ -terms and find for the light quark content σπN = 41.6 (3.8) MeV and for the strange σs = 45.6 (6.2) MeV . The y-parameter that is used in phenomenological studies we find y = 0.078 (7) .
AbstractList We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensembles are simulated with two dynamical light quarks and lattice spacing a = 0.094 fm and the third with a = 0.08 fm includes in addition the strange and charm quarks in the sea. After comparing the results among these three ensembles, we quote as final values our most accurate analysis using the latter ensemble. For the nucleon isovector axial charge we find 1.286(23) in agreement with the experimental value. We provide the flavor decomposition of the intrinsic spin 1/2 ΔΣq carried by quarks in the nucleon obtaining for the up, down, strange and charm quarks 1/2 ΔΣu = 0.431 (8), 1/2 ΔΣd = − 0.212 (8) , 1/2 ΔΣs = − 0.023 (4) and 1/2 ΔΣc = − 0.005 (2) , respectively. The corresponding values of the tensor and scalar charges for each quark flavor are also evaluated providing valuable input for experimental searches for beyond the standard model physics. In addition, we extract the nucleon σ -terms and find for the light quark content σπN = 41.6 (3.8) MeV and for the strange σs = 45.6 (6.2) MeV . The y-parameter that is used in phenomenological studies we find y = 0.078 (7) .
ArticleNumber 054517
Author Aviles-Casco, A. Vaquero
Koutsou, G.
Bacchio, S.
Finkenrath, J.
Alexandrou, C.
Hadjiyiannakou, K.
Constantinou, M.
Jansen, K.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0001-9136-3621
  surname: Alexandrou
  fullname: Alexandrou, C.
– sequence: 2
  givenname: S.
  surname: Bacchio
  fullname: Bacchio, S.
– sequence: 3
  givenname: M.
  surname: Constantinou
  fullname: Constantinou, M.
– sequence: 4
  givenname: J.
  surname: Finkenrath
  fullname: Finkenrath, J.
– sequence: 5
  givenname: K.
  surname: Hadjiyiannakou
  fullname: Hadjiyiannakou, K.
– sequence: 6
  givenname: K.
  surname: Jansen
  fullname: Jansen, K.
– sequence: 7
  givenname: G.
  orcidid: 0000-0002-6199-0242
  surname: Koutsou
  fullname: Koutsou, G.
– sequence: 8
  givenname: A. Vaquero
  orcidid: 0000-0002-9626-5200
  surname: Aviles-Casco
  fullname: Aviles-Casco, A. Vaquero
BookMark eNp9kM1OwzAQhC1UJErpE3CxxLUp69iJkyNqKSBV_AnOluNsaKrUKbaL6JkH5JUIFDhw4LSjTzO7qzkkPdtaJOSYwZgx4Ke3i62_x5fpmEE8hkQkTO6RfiwkRABx3vvVDA7I0PsldDKFXDLWJ7PrjWmwtVS_1roZ0YDWt25EtS2pN7rRjpqFdk_ov9D7G40CupWntaWNDqE2SO8m0yOyX-nG4_B7Dsjj7PxhchnNby6uJmfzyMRShshUEgsNafdpaqpSGs3zpDSSYW50LMtSMo5ZgShLFLwwpioE58g7mgiRZnxATnZ716593qAPatlunO1OqlgkGWQMcuhc-c5lXOu9w0qZOuhQtzY4XTeKgfpsTv0014FY7ZrrsvxPdu3qlXbbf1MfyHx1Yw
CitedBy_id crossref_primary_10_1140_epjc_s10052_021_09712_6
crossref_primary_10_1007_JHEP10_2022_088
crossref_primary_10_1016_j_ppnp_2021_103888
crossref_primary_10_1007_JHEP03_2023_013
crossref_primary_10_1007_JHEP06_2022_072
crossref_primary_10_1016_j_nuclphysa_2024_122874
crossref_primary_10_1140_epjc_s10052_022_10536_1
crossref_primary_10_1007_JHEP05_2023_035
crossref_primary_10_1146_annurev_nucl_010622_120608
crossref_primary_10_1093_ptep_ptad031
crossref_primary_10_1016_j_physletb_2021_136447
crossref_primary_10_1103_PhysRevC_111_045802
crossref_primary_10_1007_JHEP02_2021_124
crossref_primary_10_1088_1475_7516_2024_12_052
crossref_primary_10_1016_j_nima_2023_168017
crossref_primary_10_1103_PhysRevD_111_054505
crossref_primary_10_1007_JHEP07_2024_089
crossref_primary_10_1007_JHEP05_2022_109
crossref_primary_10_1088_1361_6471_acda21
crossref_primary_10_1016_j_physletb_2021_136150
crossref_primary_10_1007_s11467_021_1065_x
crossref_primary_10_1103_PhysRevD_107_094041
crossref_primary_10_3390_sym16111481
crossref_primary_10_1007_JHEP09_2024_028
crossref_primary_10_1007_JHEP04_2023_063
crossref_primary_10_1007_s00601_022_01749_x
crossref_primary_10_1016_j_nuclphysa_2022_122447
crossref_primary_10_1016_j_nuclphysb_2023_116105
crossref_primary_10_1007_JHEP06_2025_041
crossref_primary_10_1007_JHEP12_2023_093
crossref_primary_10_1140_epja_s10050_022_00848_x
Cites_doi 10.1103/PhysRevD.98.034503
10.1016/0370-2693(79)90128-X
10.1126/science.aao0990
10.1103/PhysRevD.99.014510
10.1103/PhysRevD.94.114509
10.1142/S0217751X1950009X
10.1016/j.nuclphysa.2010.05.048
10.1103/PhysRevD.91.094503
10.1103/PhysRevD.100.034513
10.1016/0370-2693(87)91160-9
10.1103/PhysRevLett.116.172001
10.1103/PhysRevD.75.012001
10.1007/JHEP06(2012)063
10.1088/1126-6708/2004/08/007
10.1016/0550-3213(94)90262-3
10.1103/PhysRevD.83.045010
10.1103/PhysRevLett.119.132001
10.1103/PhysRevLett.110.172502
10.1103/PhysRevD.85.054502
10.1103/PhysRevLett.103.201802
10.1103/PhysRevD.99.036006
10.1016/0370-2693(96)00535-7
10.1103/PhysRevD.73.074506
10.1103/PhysRevD.100.014509
10.1103/PhysRevD.85.054512
10.1016/0920-5632(90)90273-W
10.1103/PhysRevD.98.091501
10.1103/PhysRevD.89.034501
10.1103/PhysRevD.88.054503
10.1103/PhysRevLett.20.224
10.1103/PhysRevLett.122.242501
10.1103/PhysRevLett.120.192001
10.1103/PhysRevD.99.054506
10.1103/PhysRevD.96.115002
10.1103/PhysRevD.79.094508
10.1016/j.cpc.2008.06.013
10.1103/PhysRevLett.119.142002
10.1016/j.ppnp.2018.01.007
10.1103/PhysRevD.80.034030
10.1016/j.nuclphysb.2014.08.008
10.1038/s41586-018-0161-8
10.1088/1361-6471/aa9422
10.1103/PhysRevD.91.074004
10.1016/0003-4916(78)90039-8
10.1155/2012/350150
10.1103/PhysRevD.95.094515
10.1016/0370-1573(82)90035-7
10.1103/PhysRevLett.112.042501
10.1007/978-3-319-73171-1
10.1103/PhysRevD.95.114514
10.1103/PhysRevD.96.034511
10.1103/PhysRevD.98.094512
10.1016/0550-3213(85)90002-1
10.1016/0370-2693(91)91393-A
10.1103/PhysRevD.92.014002
10.1016/j.physletb.2017.01.046
10.1137/130919507
10.1103/PhysRevLett.116.252001
10.1016/j.physletb.2019.03.036
10.1016/j.physletb.2014.06.080
10.1140/epjc/s10052-019-7354-7
10.1016/j.nuclphysb.2016.11.003
10.1088/0954-3899/43/1/013001
10.1103/PhysRevD.98.074505
10.1103/PhysRevD.98.054518
10.1140/epja/i2017-12237-2
10.1103/PhysRevD.96.054507
10.1103/PhysRevD.86.074502
10.1016/0550-3213(95)00126-D
10.1103/PhysRevLett.115.092301
10.1103/PhysRevD.88.014503
10.1103/PhysRevD.99.114505
10.1103/PhysRevD.95.034505
10.1103/PhysRevD.85.051503
10.1126/science.1257050
10.1016/j.physrep.2016.02.002
10.1016/S0550-3213(99)00036-X
10.1088/1126-6708/2001/08/058
10.1103/PhysRevD.93.074005
10.1103/PhysRevD.94.054503
10.1088/1126-6708/2009/10/064
10.1103/PhysRevD.86.014505
10.1103/PhysRevD.93.014009
10.1103/PhysRevD.93.094504
10.1103/PhysRevD.87.054019
10.1103/PhysRevD.94.054508
10.1088/1126-6708/2006/04/038
10.1103/PhysRevD.96.099906
10.1103/PhysRevC.87.032501
ContentType Journal Article
Copyright Copyright American Physical Society Sep 1, 2020
Copyright_xml – notice: Copyright American Physical Society Sep 1, 2020
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1103/PhysRevD.102.054517
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2470-0029
ExternalDocumentID 10_1103_PhysRevD_102_054517
GroupedDBID 3MX
5VS
AAYXX
ABSSX
AECSF
AEQTI
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CITATION
EBS
EJD
ER.
NPBMV
ROL
S7W
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c277t-cf7eba061026cfd7ca395dc71e9ca27dd713e8bee7de43bccfb433e313e544683
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573352100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-0010
IngestDate Sun Nov 09 07:51:47 EST 2025
Sat Nov 29 03:09:28 EST 2025
Tue Nov 18 21:53:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c277t-cf7eba061026cfd7ca395dc71e9ca27dd713e8bee7de43bccfb433e313e544683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9136-3621
0000-0002-6199-0242
0000-0002-9626-5200
PQID 2458081090
PQPubID 2048221
ParticipantIDs proquest_journals_2458081090
crossref_citationtrail_10_1103_PhysRevD_102_054517
crossref_primary_10_1103_PhysRevD_102_054517
PublicationCentury 2000
PublicationDate 2020-09-29
PublicationDateYYYYMMDD 2020-09-29
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-29
  day: 29
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. D
PublicationYear 2020
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevD.102.054517Cc30R1
PhysRevD.102.054517Cc55R1
PhysRevD.102.054517Cc76R1
PhysRevD.102.054517Cc57R1
PhysRevD.102.054517Cc78R1
PhysRevD.102.054517Cc59R1
PhysRevD.102.054517Cc29R1
PhysRevD.102.054517Cc27R1
PhysRevD.102.054517Cc25R1
PhysRevD.102.054517Cc60R1
H. Leutwyler (PhysRevD.102.054517Cc80R1)
PhysRevD.102.054517Cc81R1
PhysRevD.102.054517Cc23R1
PhysRevD.102.054517Cc62R1
PhysRevD.102.054517Cc83R1
PhysRevD.102.054517Cc41R1
PhysRevD.102.054517Cc21R1
PhysRevD.102.054517Cc64R1
PhysRevD.102.054517Cc85R1
PhysRevD.102.054517Cc43R1
PhysRevD.102.054517Cc87R1
PhysRevD.102.054517Cc40R1
PhysRevD.102.054517Cc68R1
PhysRevD.102.054517Cc1R1
PhysRevD.102.054517Cc89R1
C. Michael (PhysRevD.102.054517Cc46R1)
PhysRevD.102.054517Cc47R1
PhysRevD.102.054517Cc49R1
PhysRevD.102.054517Cc18R1
PhysRevD.102.054517Cc16R1
PhysRevD.102.054517Cc39R1
PhysRevD.102.054517Cc92R1
PhysRevD.102.054517Cc37R2
PhysRevD.102.054517Cc14R1
PhysRevD.102.054517Cc37R1
PhysRevD.102.054517Cc71R1
PhysRevD.102.054517Cc90R1
PhysRevD.102.054517Cc9R1
PhysRevD.102.054517Cc12R1
PhysRevD.102.054517Cc35R1
PhysRevD.102.054517Cc50R1
PhysRevD.102.054517Cc73R1
PhysRevD.102.054517Cc3R1
PhysRevD.102.054517Cc10R1
PhysRevD.102.054517Cc33R1
PhysRevD.102.054517Cc52R1
PhysRevD.102.054517Cc94R1
PhysRevD.102.054517Cc5R1
PhysRevD.102.054517Cc31R1
PhysRevD.102.054517Cc54R1
PhysRevD.102.054517Cc77R1
PhysRevD.102.054517Cc56R1
PhysRevD.102.054517Cc79R1
PhysRevD.102.054517Cc58R1
PhysRevD.102.054517Cc28R1
PhysRevD.102.054517Cc26R1
PhysRevD.102.054517Cc82R1
R. Crewther (PhysRevD.102.054517Cc22R2) 1980; 91
PhysRevD.102.054517Cc24R1
PhysRevD.102.054517Cc61R1
PhysRevD.102.054517Cc84R1
PhysRevD.102.054517Cc22R1
PhysRevD.102.054517Cc63R1
PhysRevD.102.054517Cc86R1
PhysRevD.102.054517Cc42R1
PhysRevD.102.054517Cc20R1
PhysRevD.102.054517Cc65R1
PhysRevD.102.054517Cc88R1
PhysRevD.102.054517Cc44R1
PhysRevD.102.054517Cc2R1
PhysRevD.102.054517Cc67R1
PhysRevD.102.054517Cc48R1
PhysRevD.102.054517Cc69R1
P. Cushman (PhysRevD.102.054517Cc75R1) 2013
PhysRevD.102.054517Cc19R1
PhysRevD.102.054517Cc17R1
PhysRevD.102.054517Cc38R1
PhysRevD.102.054517Cc93R1
PhysRevD.102.054517Cc15R1
PhysRevD.102.054517Cc36R1
PhysRevD.102.054517Cc70R1
PhysRevD.102.054517Cc91R1
PhysRevD.102.054517Cc4R1
PhysRevD.102.054517Cc13R1
PhysRevD.102.054517Cc34R1
PhysRevD.102.054517Cc51R1
PhysRevD.102.054517Cc72R1
PhysRevD.102.054517Cc6R1
PhysRevD.102.054517Cc11R1
PhysRevD.102.054517Cc32R1
PhysRevD.102.054517Cc53R1
PhysRevD.102.054517Cc74R1
PhysRevD.102.054517Cc95R1
References_xml – ident: PhysRevD.102.054517Cc58R1
  doi: 10.1103/PhysRevD.98.034503
– ident: PhysRevD.102.054517Cc22R1
  doi: 10.1016/0370-2693(79)90128-X
– ident: PhysRevD.102.054517Cc6R1
  doi: 10.1126/science.aao0990
– ident: PhysRevD.102.054517Cc60R1
  doi: 10.1103/PhysRevD.99.014510
– ident: PhysRevD.102.054517Cc43R1
  doi: 10.1103/PhysRevD.94.114509
– ident: PhysRevD.102.054517Cc62R1
  doi: 10.1142/S0217751X1950009X
– ident: PhysRevD.102.054517Cc81R1
  doi: 10.1016/j.nuclphysa.2010.05.048
– ident: PhysRevD.102.054517Cc85R1
  doi: 10.1103/PhysRevD.91.094503
– ident: PhysRevD.102.054517Cc61R1
  doi: 10.1103/PhysRevD.100.034513
– ident: PhysRevD.102.054517Cc41R1
  doi: 10.1016/0370-2693(87)91160-9
– ident: PhysRevD.102.054517Cc89R1
  doi: 10.1103/PhysRevLett.116.172001
– ident: PhysRevD.102.054517Cc10R1
  doi: 10.1103/PhysRevD.75.012001
– ident: PhysRevD.102.054517Cc78R1
  doi: 10.1007/JHEP06(2012)063
– ident: PhysRevD.102.054517Cc29R1
  doi: 10.1088/1126-6708/2004/08/007
– ident: PhysRevD.102.054517Cc39R1
  doi: 10.1016/0550-3213(94)90262-3
– ident: PhysRevD.102.054517Cc31R1
  doi: 10.1103/PhysRevD.83.045010
– ident: PhysRevD.102.054517Cc73R1
  doi: 10.1103/PhysRevLett.119.132001
– ident: PhysRevD.102.054517Cc2R1
  doi: 10.1103/PhysRevLett.110.172502
– ident: PhysRevD.102.054517Cc82R1
  doi: 10.1103/PhysRevD.85.054502
– ident: PhysRevD.102.054517Cc74R1
  doi: 10.1103/PhysRevLett.103.201802
– ident: PhysRevD.102.054517Cc5R1
  doi: 10.1103/PhysRevD.99.036006
– ident: PhysRevD.102.054517Cc14R1
  doi: 10.1016/0370-2693(96)00535-7
– ident: PhysRevD.102.054517Cc47R1
  doi: 10.1103/PhysRevD.73.074506
– ident: PhysRevD.102.054517Cc44R1
  doi: 10.1103/PhysRevD.100.014509
– ident: PhysRevD.102.054517Cc4R1
  doi: 10.1103/PhysRevD.85.054512
– ident: PhysRevD.102.054517Cc40R1
  doi: 10.1016/0920-5632(90)90273-W
– volume: 91
  start-page: 487
  issn: 0370-2693
  year: 1980
  ident: PhysRevD.102.054517Cc22R2
  publication-title: Phys. Lett. B
– ident: PhysRevD.102.054517Cc65R1
  doi: 10.1103/PhysRevD.98.091501
– ident: PhysRevD.102.054517Cc51R1
  doi: 10.1103/PhysRevD.89.034501
– ident: PhysRevD.102.054517Cc83R1
  doi: 10.1103/PhysRevD.88.054503
– ident: PhysRevD.102.054517Cc19R1
  doi: 10.1103/PhysRevLett.20.224
– ident: PhysRevD.102.054517Cc3R1
  doi: 10.1103/PhysRevLett.122.242501
– ident: PhysRevD.102.054517Cc69R1
  doi: 10.1103/PhysRevLett.120.192001
– ident: PhysRevD.102.054517Cc49R1
  doi: 10.1103/PhysRevD.99.054506
– ident: PhysRevD.102.054517Cc12R1
  doi: 10.1103/PhysRevD.96.115002
– ident: PhysRevD.102.054517Cc57R1
  doi: 10.1103/PhysRevD.79.094508
– ident: PhysRevD.102.054517Cc33R1
  doi: 10.1016/j.cpc.2008.06.013
– ident: PhysRevD.102.054517Cc38R1
  doi: 10.1103/PhysRevLett.119.142002
– ident: PhysRevD.102.054517Cc23R1
  doi: 10.1016/j.ppnp.2018.01.007
– ident: PhysRevD.102.054517Cc70R1
  doi: 10.1103/PhysRevD.80.034030
– ident: PhysRevD.102.054517Cc71R1
  doi: 10.1016/j.nuclphysb.2014.08.008
– ident: PhysRevD.102.054517Cc24R1
  doi: 10.1038/s41586-018-0161-8
– ident: PhysRevD.102.054517Cc92R1
  doi: 10.1088/1361-6471/aa9422
– ident: PhysRevD.102.054517Cc67R1
  doi: 10.1103/PhysRevD.91.074004
– ident: PhysRevD.102.054517Cc34R1
  doi: 10.1016/0003-4916(78)90039-8
– ident: PhysRevD.102.054517Cc9R1
  doi: 10.1155/2012/350150
– ident: PhysRevD.102.054517Cc26R1
  doi: 10.1103/PhysRevD.95.094515
– ident: PhysRevD.102.054517Cc21R1
  doi: 10.1016/0370-1573(82)90035-7
– ident: PhysRevD.102.054517Cc20R1
  doi: 10.1103/PhysRevLett.112.042501
– ident: PhysRevD.102.054517Cc15R1
  doi: 10.1007/978-3-319-73171-1
– ident: PhysRevD.102.054517Cc37R1
  doi: 10.1103/PhysRevD.95.114514
– ident: PhysRevD.102.054517Cc35R1
  doi: 10.1103/PhysRevD.96.034511
– ident: PhysRevD.102.054517Cc64R1
  doi: 10.1103/PhysRevD.98.094512
– ident: PhysRevD.102.054517Cc30R1
  doi: 10.1016/0550-3213(85)90002-1
– ident: PhysRevD.102.054517Cc76R1
  doi: 10.1016/0370-2693(91)91393-A
– ident: PhysRevD.102.054517Cc91R1
  doi: 10.1103/PhysRevD.92.014002
– ident: PhysRevD.102.054517Cc17R1
  doi: 10.1016/j.physletb.2017.01.046
– ident: PhysRevD.102.054517Cc42R1
  doi: 10.1137/130919507
– ident: PhysRevD.102.054517Cc88R1
  doi: 10.1103/PhysRevLett.116.252001
– ident: PhysRevD.102.054517Cc93R1
  doi: 10.1016/j.physletb.2019.03.036
– ident: PhysRevD.102.054517Cc16R1
  doi: 10.1016/j.physletb.2014.06.080
– ident: PhysRevD.102.054517Cc25R1
  doi: 10.1140/epjc/s10052-019-7354-7
– ident: PhysRevD.102.054517Cc48R1
  doi: 10.1016/j.nuclphysb.2016.11.003
– ident: PhysRevD.102.054517Cc13R1
  doi: 10.1088/0954-3899/43/1/013001
– volume-title: Proc. Sci.
  ident: PhysRevD.102.054517Cc46R1
– ident: PhysRevD.102.054517Cc63R1
  doi: 10.1103/PhysRevD.98.074505
– volume-title: Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA
  year: 2013
  ident: PhysRevD.102.054517Cc75R1
– ident: PhysRevD.102.054517Cc27R1
  doi: 10.1103/PhysRevD.98.054518
– ident: PhysRevD.102.054517Cc11R1
  doi: 10.1140/epja/i2017-12237-2
– ident: PhysRevD.102.054517Cc36R1
  doi: 10.1103/PhysRevD.96.054507
– ident: PhysRevD.102.054517Cc50R1
  doi: 10.1103/PhysRevD.86.074502
– ident: PhysRevD.102.054517Cc52R1
  doi: 10.1016/0550-3213(95)00126-D
– ident: PhysRevD.102.054517Cc79R1
  doi: 10.1103/PhysRevLett.115.092301
– ident: PhysRevD.102.054517Cc84R1
  doi: 10.1103/PhysRevD.88.014503
– ident: PhysRevD.102.054517Cc59R1
  doi: 10.1103/PhysRevD.99.114505
– ident: PhysRevD.102.054517Cc56R1
  doi: 10.1103/PhysRevD.95.034505
– ident: PhysRevD.102.054517Cc77R1
  doi: 10.1103/PhysRevD.85.051503
– ident: PhysRevD.102.054517Cc94R1
  doi: 10.1126/science.1257050
– ident: PhysRevD.102.054517Cc95R1
  doi: 10.1016/j.physrep.2016.02.002
– ident: PhysRevD.102.054517Cc53R1
  doi: 10.1016/S0550-3213(99)00036-X
– ident: PhysRevD.102.054517Cc28R1
  doi: 10.1088/1126-6708/2001/08/058
– ident: PhysRevD.102.054517Cc72R1
  doi: 10.1103/PhysRevD.93.074005
– ident: PhysRevD.102.054517Cc86R1
  doi: 10.1103/PhysRevD.94.054503
– volume-title: Proc. Sci.
  ident: PhysRevD.102.054517Cc80R1
– ident: PhysRevD.102.054517Cc55R1
  doi: 10.1088/1126-6708/2009/10/064
– ident: PhysRevD.102.054517Cc54R1
  doi: 10.1103/PhysRevD.86.014505
– ident: PhysRevD.102.054517Cc68R1
  doi: 10.1103/PhysRevD.93.014009
– ident: PhysRevD.102.054517Cc87R1
  doi: 10.1103/PhysRevD.93.094504
– ident: PhysRevD.102.054517Cc90R1
  doi: 10.1103/PhysRevD.87.054019
– ident: PhysRevD.102.054517Cc18R1
  doi: 10.1103/PhysRevD.94.054508
– ident: PhysRevD.102.054517Cc32R1
  doi: 10.1088/1126-6708/2006/04/038
– ident: PhysRevD.102.054517Cc37R2
  doi: 10.1103/PhysRevD.96.099906
– ident: PhysRevD.102.054517Cc1R1
  doi: 10.1103/PhysRevC.87.032501
SSID ssj0001609711
Score 2.6591985
Snippet We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics including all contributions from valence and sea quarks. We...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Charm (particle physics)
Flavor (particle physics)
Nucleons
Pions
Quantum chromodynamics
Quarks
Standard model (particle physics)
Tensors
Title Nucleon axial, tensor, and scalar charges and σ -terms in lattice QCD
URI https://www.proquest.com/docview/2458081090
Volume 102
WOSCitedRecordID wos000573352100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 2470-0029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001609711
  issn: 2470-0010
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZZt0EvZT9Zu27osJ4Se7YlWfaxpAtjbKHbOujNyJLCDMEpiRty7x_Yf2lPP2wno5T1sIsJivKI_H2R33t57xNCH1hcxiojEKmWqQ4oh5gVHiMsiGMjBkVzJYVtFP7Kp9Ps8jI_Hww2bS_Mes7rOtts8qv_CjWMAdimdfYBcHdGYQBeA-hwBdjh-k_AT41Csakx3lRWzH9oatQXXZnmCkARy6FVSNJOoPlkPDnJyDAwu7Qtj52LxtTEDb-Pz7ad1_MWU9fvEvbVwr5NZrm4tonXsM-PSvm7stnYn93g2LmkTVW76d-6dyYQGMOyhMv1fAm3UxIQf5p_afJ-50qoOc0m8vWqenvMT2u33ijZ4hi7e0uPjLSEWeEPvT4zUhMhuJnMdXzuCmj_9WDryg1toBORojVSgJHCGXmEHiec5ZkNnMM-O5cabS0TrXdr8ZJVYOfjHV9m163ZfapbV-XiGTrwMQY-ddx4jga6foGeOvRWL9HEMwRbhoyw48cIA4DYsQN7dtih2xvsmIGrGntmYGDGK_Rr8uli_Dnwx2kEMuG8CeSM61KA_wZht5wpLgXJmZI81rkUCVeKx0RnpdZcaUpKKWclJSZHTjSjNM3Ia7RXL2r9BmEZE65ywThXCZWCCQWB8UymVMH8SKaHKGnvRiG91rw58mRe3APFIRp1H7pyUiv3Tz9ub3Phf36rIqHMHCUT5dHRw6y9Rfs9k4_RXrO81u_QE7luqtXyvSXHH9GKfSg
linkProvider SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleon+axial%2C+tensor%2C+and+scalar+charges+and+%CF%83+-terms+in+lattice+QCD&rft.jtitle=Physical+review.+D&rft.au=Alexandrou%2C+C.&rft.au=Bacchio%2C+S.&rft.au=Constantinou%2C+M.&rft.au=Finkenrath%2C+J.&rft.date=2020-09-29&rft.issn=2470-0010&rft.eissn=2470-0029&rft.volume=102&rft.issue=5&rft_id=info:doi/10.1103%2FPhysRevD.102.054517&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevD_102_054517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0010&client=summon