Nucleon axial, tensor, and scalar charges and σ -terms in lattice QCD
We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensem...
Uloženo v:
| Vydáno v: | Physical review. D Ročník 102; číslo 5; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
College Park
American Physical Society
29.09.2020
|
| Témata: | |
| ISSN: | 2470-0010, 2470-0029 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensembles are simulated with two dynamical light quarks and lattice spacing a = 0.094 fm and the third with a = 0.08 fm includes in addition the strange and charm quarks in the sea. After comparing the results among these three ensembles, we quote as final values our most accurate analysis using the latter ensemble. For the nucleon isovector axial charge we find 1.286(23) in agreement with the experimental value. We provide the flavor decomposition of the intrinsic spin 1/2 ΔΣq carried by quarks in the nucleon obtaining for the up, down, strange and charm quarks 1/2 ΔΣu = 0.431 (8), 1/2 ΔΣd = − 0.212 (8) , 1/2 ΔΣs = − 0.023 (4) and 1/2 ΔΣc = − 0.005 (2) , respectively. The corresponding values of the tensor and scalar charges for each quark flavor are also evaluated providing valuable input for experimental searches for beyond the standard model physics. In addition, we extract the nucleon σ -terms and find for the light quark content σπN = 41.6 (3.8) MeV and for the strange σs = 45.6 (6.2) MeV . The y-parameter that is used in phenomenological studies we find y = 0.078 (7) . |
|---|---|
| AbstractList | We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics including all contributions from valence and sea quarks. We analyze three gauge ensembles simulated within the twisted mass formulation at approximately physical value of the pion mass. Two of these ensembles are simulated with two dynamical light quarks and lattice spacing a = 0.094 fm and the third with a = 0.08 fm includes in addition the strange and charm quarks in the sea. After comparing the results among these three ensembles, we quote as final values our most accurate analysis using the latter ensemble. For the nucleon isovector axial charge we find 1.286(23) in agreement with the experimental value. We provide the flavor decomposition of the intrinsic spin 1/2 ΔΣq carried by quarks in the nucleon obtaining for the up, down, strange and charm quarks 1/2 ΔΣu = 0.431 (8), 1/2 ΔΣd = − 0.212 (8) , 1/2 ΔΣs = − 0.023 (4) and 1/2 ΔΣc = − 0.005 (2) , respectively. The corresponding values of the tensor and scalar charges for each quark flavor are also evaluated providing valuable input for experimental searches for beyond the standard model physics. In addition, we extract the nucleon σ -terms and find for the light quark content σπN = 41.6 (3.8) MeV and for the strange σs = 45.6 (6.2) MeV . The y-parameter that is used in phenomenological studies we find y = 0.078 (7) . |
| ArticleNumber | 054517 |
| Author | Aviles-Casco, A. Vaquero Koutsou, G. Bacchio, S. Finkenrath, J. Alexandrou, C. Hadjiyiannakou, K. Constantinou, M. Jansen, K. |
| Author_xml | – sequence: 1 givenname: C. orcidid: 0000-0001-9136-3621 surname: Alexandrou fullname: Alexandrou, C. – sequence: 2 givenname: S. surname: Bacchio fullname: Bacchio, S. – sequence: 3 givenname: M. surname: Constantinou fullname: Constantinou, M. – sequence: 4 givenname: J. surname: Finkenrath fullname: Finkenrath, J. – sequence: 5 givenname: K. surname: Hadjiyiannakou fullname: Hadjiyiannakou, K. – sequence: 6 givenname: K. surname: Jansen fullname: Jansen, K. – sequence: 7 givenname: G. orcidid: 0000-0002-6199-0242 surname: Koutsou fullname: Koutsou, G. – sequence: 8 givenname: A. Vaquero orcidid: 0000-0002-9626-5200 surname: Aviles-Casco fullname: Aviles-Casco, A. Vaquero |
| BookMark | eNp9kM1OwzAQhC1UJErpE3CxxLUp69iJkyNqKSBV_AnOluNsaKrUKbaL6JkH5JUIFDhw4LSjTzO7qzkkPdtaJOSYwZgx4Ke3i62_x5fpmEE8hkQkTO6RfiwkRABx3vvVDA7I0PsldDKFXDLWJ7PrjWmwtVS_1roZ0YDWt25EtS2pN7rRjpqFdk_ov9D7G40CupWntaWNDqE2SO8m0yOyX-nG4_B7Dsjj7PxhchnNby6uJmfzyMRShshUEgsNafdpaqpSGs3zpDSSYW50LMtSMo5ZgShLFLwwpioE58g7mgiRZnxATnZ716593qAPatlunO1OqlgkGWQMcuhc-c5lXOu9w0qZOuhQtzY4XTeKgfpsTv0014FY7ZrrsvxPdu3qlXbbf1MfyHx1Yw |
| CitedBy_id | crossref_primary_10_1140_epjc_s10052_021_09712_6 crossref_primary_10_1007_JHEP10_2022_088 crossref_primary_10_1016_j_ppnp_2021_103888 crossref_primary_10_1007_JHEP03_2023_013 crossref_primary_10_1007_JHEP06_2022_072 crossref_primary_10_1016_j_nuclphysa_2024_122874 crossref_primary_10_1140_epjc_s10052_022_10536_1 crossref_primary_10_1007_JHEP05_2023_035 crossref_primary_10_1146_annurev_nucl_010622_120608 crossref_primary_10_1093_ptep_ptad031 crossref_primary_10_1016_j_physletb_2021_136447 crossref_primary_10_1103_PhysRevC_111_045802 crossref_primary_10_1007_JHEP02_2021_124 crossref_primary_10_1088_1475_7516_2024_12_052 crossref_primary_10_1016_j_nima_2023_168017 crossref_primary_10_1103_PhysRevD_111_054505 crossref_primary_10_1007_JHEP07_2024_089 crossref_primary_10_1007_JHEP05_2022_109 crossref_primary_10_1088_1361_6471_acda21 crossref_primary_10_1016_j_physletb_2021_136150 crossref_primary_10_1007_s11467_021_1065_x crossref_primary_10_1103_PhysRevD_107_094041 crossref_primary_10_3390_sym16111481 crossref_primary_10_1007_JHEP09_2024_028 crossref_primary_10_1007_JHEP04_2023_063 crossref_primary_10_1007_s00601_022_01749_x crossref_primary_10_1016_j_nuclphysa_2022_122447 crossref_primary_10_1016_j_nuclphysb_2023_116105 crossref_primary_10_1007_JHEP06_2025_041 crossref_primary_10_1007_JHEP12_2023_093 crossref_primary_10_1140_epja_s10050_022_00848_x |
| Cites_doi | 10.1103/PhysRevD.98.034503 10.1016/0370-2693(79)90128-X 10.1126/science.aao0990 10.1103/PhysRevD.99.014510 10.1103/PhysRevD.94.114509 10.1142/S0217751X1950009X 10.1016/j.nuclphysa.2010.05.048 10.1103/PhysRevD.91.094503 10.1103/PhysRevD.100.034513 10.1016/0370-2693(87)91160-9 10.1103/PhysRevLett.116.172001 10.1103/PhysRevD.75.012001 10.1007/JHEP06(2012)063 10.1088/1126-6708/2004/08/007 10.1016/0550-3213(94)90262-3 10.1103/PhysRevD.83.045010 10.1103/PhysRevLett.119.132001 10.1103/PhysRevLett.110.172502 10.1103/PhysRevD.85.054502 10.1103/PhysRevLett.103.201802 10.1103/PhysRevD.99.036006 10.1016/0370-2693(96)00535-7 10.1103/PhysRevD.73.074506 10.1103/PhysRevD.100.014509 10.1103/PhysRevD.85.054512 10.1016/0920-5632(90)90273-W 10.1103/PhysRevD.98.091501 10.1103/PhysRevD.89.034501 10.1103/PhysRevD.88.054503 10.1103/PhysRevLett.20.224 10.1103/PhysRevLett.122.242501 10.1103/PhysRevLett.120.192001 10.1103/PhysRevD.99.054506 10.1103/PhysRevD.96.115002 10.1103/PhysRevD.79.094508 10.1016/j.cpc.2008.06.013 10.1103/PhysRevLett.119.142002 10.1016/j.ppnp.2018.01.007 10.1103/PhysRevD.80.034030 10.1016/j.nuclphysb.2014.08.008 10.1038/s41586-018-0161-8 10.1088/1361-6471/aa9422 10.1103/PhysRevD.91.074004 10.1016/0003-4916(78)90039-8 10.1155/2012/350150 10.1103/PhysRevD.95.094515 10.1016/0370-1573(82)90035-7 10.1103/PhysRevLett.112.042501 10.1007/978-3-319-73171-1 10.1103/PhysRevD.95.114514 10.1103/PhysRevD.96.034511 10.1103/PhysRevD.98.094512 10.1016/0550-3213(85)90002-1 10.1016/0370-2693(91)91393-A 10.1103/PhysRevD.92.014002 10.1016/j.physletb.2017.01.046 10.1137/130919507 10.1103/PhysRevLett.116.252001 10.1016/j.physletb.2019.03.036 10.1016/j.physletb.2014.06.080 10.1140/epjc/s10052-019-7354-7 10.1016/j.nuclphysb.2016.11.003 10.1088/0954-3899/43/1/013001 10.1103/PhysRevD.98.074505 10.1103/PhysRevD.98.054518 10.1140/epja/i2017-12237-2 10.1103/PhysRevD.96.054507 10.1103/PhysRevD.86.074502 10.1016/0550-3213(95)00126-D 10.1103/PhysRevLett.115.092301 10.1103/PhysRevD.88.014503 10.1103/PhysRevD.99.114505 10.1103/PhysRevD.95.034505 10.1103/PhysRevD.85.051503 10.1126/science.1257050 10.1016/j.physrep.2016.02.002 10.1016/S0550-3213(99)00036-X 10.1088/1126-6708/2001/08/058 10.1103/PhysRevD.93.074005 10.1103/PhysRevD.94.054503 10.1088/1126-6708/2009/10/064 10.1103/PhysRevD.86.014505 10.1103/PhysRevD.93.014009 10.1103/PhysRevD.93.094504 10.1103/PhysRevD.87.054019 10.1103/PhysRevD.94.054508 10.1088/1126-6708/2006/04/038 10.1103/PhysRevD.96.099906 10.1103/PhysRevC.87.032501 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society Sep 1, 2020 |
| Copyright_xml | – notice: Copyright American Physical Society Sep 1, 2020 |
| DBID | AAYXX CITATION 7U5 8FD H8D L7M |
| DOI | 10.1103/PhysRevD.102.054517 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2470-0029 |
| ExternalDocumentID | 10_1103_PhysRevD_102_054517 |
| GroupedDBID | 3MX 5VS AAYXX ABSSX AECSF AEQTI AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK CITATION EBS EJD ER. NPBMV ROL S7W 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c277t-cf7eba061026cfd7ca395dc71e9ca27dd713e8bee7de43bccfb433e313e544683 |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573352100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2470-0010 |
| IngestDate | Sun Nov 09 07:51:47 EST 2025 Sat Nov 29 03:09:28 EST 2025 Tue Nov 18 21:53:05 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c277t-cf7eba061026cfd7ca395dc71e9ca27dd713e8bee7de43bccfb433e313e544683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9136-3621 0000-0002-6199-0242 0000-0002-9626-5200 |
| PQID | 2458081090 |
| PQPubID | 2048221 |
| ParticipantIDs | proquest_journals_2458081090 crossref_citationtrail_10_1103_PhysRevD_102_054517 crossref_primary_10_1103_PhysRevD_102_054517 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-29 |
| PublicationDateYYYYMMDD | 2020-09-29 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | College Park |
| PublicationPlace_xml | – name: College Park |
| PublicationTitle | Physical review. D |
| PublicationYear | 2020 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevD.102.054517Cc30R1 PhysRevD.102.054517Cc55R1 PhysRevD.102.054517Cc76R1 PhysRevD.102.054517Cc57R1 PhysRevD.102.054517Cc78R1 PhysRevD.102.054517Cc59R1 PhysRevD.102.054517Cc29R1 PhysRevD.102.054517Cc27R1 PhysRevD.102.054517Cc25R1 PhysRevD.102.054517Cc60R1 H. Leutwyler (PhysRevD.102.054517Cc80R1) PhysRevD.102.054517Cc81R1 PhysRevD.102.054517Cc23R1 PhysRevD.102.054517Cc62R1 PhysRevD.102.054517Cc83R1 PhysRevD.102.054517Cc41R1 PhysRevD.102.054517Cc21R1 PhysRevD.102.054517Cc64R1 PhysRevD.102.054517Cc85R1 PhysRevD.102.054517Cc43R1 PhysRevD.102.054517Cc87R1 PhysRevD.102.054517Cc40R1 PhysRevD.102.054517Cc68R1 PhysRevD.102.054517Cc1R1 PhysRevD.102.054517Cc89R1 C. Michael (PhysRevD.102.054517Cc46R1) PhysRevD.102.054517Cc47R1 PhysRevD.102.054517Cc49R1 PhysRevD.102.054517Cc18R1 PhysRevD.102.054517Cc16R1 PhysRevD.102.054517Cc39R1 PhysRevD.102.054517Cc92R1 PhysRevD.102.054517Cc37R2 PhysRevD.102.054517Cc14R1 PhysRevD.102.054517Cc37R1 PhysRevD.102.054517Cc71R1 PhysRevD.102.054517Cc90R1 PhysRevD.102.054517Cc9R1 PhysRevD.102.054517Cc12R1 PhysRevD.102.054517Cc35R1 PhysRevD.102.054517Cc50R1 PhysRevD.102.054517Cc73R1 PhysRevD.102.054517Cc3R1 PhysRevD.102.054517Cc10R1 PhysRevD.102.054517Cc33R1 PhysRevD.102.054517Cc52R1 PhysRevD.102.054517Cc94R1 PhysRevD.102.054517Cc5R1 PhysRevD.102.054517Cc31R1 PhysRevD.102.054517Cc54R1 PhysRevD.102.054517Cc77R1 PhysRevD.102.054517Cc56R1 PhysRevD.102.054517Cc79R1 PhysRevD.102.054517Cc58R1 PhysRevD.102.054517Cc28R1 PhysRevD.102.054517Cc26R1 PhysRevD.102.054517Cc82R1 R. Crewther (PhysRevD.102.054517Cc22R2) 1980; 91 PhysRevD.102.054517Cc24R1 PhysRevD.102.054517Cc61R1 PhysRevD.102.054517Cc84R1 PhysRevD.102.054517Cc22R1 PhysRevD.102.054517Cc63R1 PhysRevD.102.054517Cc86R1 PhysRevD.102.054517Cc42R1 PhysRevD.102.054517Cc20R1 PhysRevD.102.054517Cc65R1 PhysRevD.102.054517Cc88R1 PhysRevD.102.054517Cc44R1 PhysRevD.102.054517Cc2R1 PhysRevD.102.054517Cc67R1 PhysRevD.102.054517Cc48R1 PhysRevD.102.054517Cc69R1 P. Cushman (PhysRevD.102.054517Cc75R1) 2013 PhysRevD.102.054517Cc19R1 PhysRevD.102.054517Cc17R1 PhysRevD.102.054517Cc38R1 PhysRevD.102.054517Cc93R1 PhysRevD.102.054517Cc15R1 PhysRevD.102.054517Cc36R1 PhysRevD.102.054517Cc70R1 PhysRevD.102.054517Cc91R1 PhysRevD.102.054517Cc4R1 PhysRevD.102.054517Cc13R1 PhysRevD.102.054517Cc34R1 PhysRevD.102.054517Cc51R1 PhysRevD.102.054517Cc72R1 PhysRevD.102.054517Cc6R1 PhysRevD.102.054517Cc11R1 PhysRevD.102.054517Cc32R1 PhysRevD.102.054517Cc53R1 PhysRevD.102.054517Cc74R1 PhysRevD.102.054517Cc95R1 |
| References_xml | – ident: PhysRevD.102.054517Cc58R1 doi: 10.1103/PhysRevD.98.034503 – ident: PhysRevD.102.054517Cc22R1 doi: 10.1016/0370-2693(79)90128-X – ident: PhysRevD.102.054517Cc6R1 doi: 10.1126/science.aao0990 – ident: PhysRevD.102.054517Cc60R1 doi: 10.1103/PhysRevD.99.014510 – ident: PhysRevD.102.054517Cc43R1 doi: 10.1103/PhysRevD.94.114509 – ident: PhysRevD.102.054517Cc62R1 doi: 10.1142/S0217751X1950009X – ident: PhysRevD.102.054517Cc81R1 doi: 10.1016/j.nuclphysa.2010.05.048 – ident: PhysRevD.102.054517Cc85R1 doi: 10.1103/PhysRevD.91.094503 – ident: PhysRevD.102.054517Cc61R1 doi: 10.1103/PhysRevD.100.034513 – ident: PhysRevD.102.054517Cc41R1 doi: 10.1016/0370-2693(87)91160-9 – ident: PhysRevD.102.054517Cc89R1 doi: 10.1103/PhysRevLett.116.172001 – ident: PhysRevD.102.054517Cc10R1 doi: 10.1103/PhysRevD.75.012001 – ident: PhysRevD.102.054517Cc78R1 doi: 10.1007/JHEP06(2012)063 – ident: PhysRevD.102.054517Cc29R1 doi: 10.1088/1126-6708/2004/08/007 – ident: PhysRevD.102.054517Cc39R1 doi: 10.1016/0550-3213(94)90262-3 – ident: PhysRevD.102.054517Cc31R1 doi: 10.1103/PhysRevD.83.045010 – ident: PhysRevD.102.054517Cc73R1 doi: 10.1103/PhysRevLett.119.132001 – ident: PhysRevD.102.054517Cc2R1 doi: 10.1103/PhysRevLett.110.172502 – ident: PhysRevD.102.054517Cc82R1 doi: 10.1103/PhysRevD.85.054502 – ident: PhysRevD.102.054517Cc74R1 doi: 10.1103/PhysRevLett.103.201802 – ident: PhysRevD.102.054517Cc5R1 doi: 10.1103/PhysRevD.99.036006 – ident: PhysRevD.102.054517Cc14R1 doi: 10.1016/0370-2693(96)00535-7 – ident: PhysRevD.102.054517Cc47R1 doi: 10.1103/PhysRevD.73.074506 – ident: PhysRevD.102.054517Cc44R1 doi: 10.1103/PhysRevD.100.014509 – ident: PhysRevD.102.054517Cc4R1 doi: 10.1103/PhysRevD.85.054512 – ident: PhysRevD.102.054517Cc40R1 doi: 10.1016/0920-5632(90)90273-W – volume: 91 start-page: 487 issn: 0370-2693 year: 1980 ident: PhysRevD.102.054517Cc22R2 publication-title: Phys. Lett. B – ident: PhysRevD.102.054517Cc65R1 doi: 10.1103/PhysRevD.98.091501 – ident: PhysRevD.102.054517Cc51R1 doi: 10.1103/PhysRevD.89.034501 – ident: PhysRevD.102.054517Cc83R1 doi: 10.1103/PhysRevD.88.054503 – ident: PhysRevD.102.054517Cc19R1 doi: 10.1103/PhysRevLett.20.224 – ident: PhysRevD.102.054517Cc3R1 doi: 10.1103/PhysRevLett.122.242501 – ident: PhysRevD.102.054517Cc69R1 doi: 10.1103/PhysRevLett.120.192001 – ident: PhysRevD.102.054517Cc49R1 doi: 10.1103/PhysRevD.99.054506 – ident: PhysRevD.102.054517Cc12R1 doi: 10.1103/PhysRevD.96.115002 – ident: PhysRevD.102.054517Cc57R1 doi: 10.1103/PhysRevD.79.094508 – ident: PhysRevD.102.054517Cc33R1 doi: 10.1016/j.cpc.2008.06.013 – ident: PhysRevD.102.054517Cc38R1 doi: 10.1103/PhysRevLett.119.142002 – ident: PhysRevD.102.054517Cc23R1 doi: 10.1016/j.ppnp.2018.01.007 – ident: PhysRevD.102.054517Cc70R1 doi: 10.1103/PhysRevD.80.034030 – ident: PhysRevD.102.054517Cc71R1 doi: 10.1016/j.nuclphysb.2014.08.008 – ident: PhysRevD.102.054517Cc24R1 doi: 10.1038/s41586-018-0161-8 – ident: PhysRevD.102.054517Cc92R1 doi: 10.1088/1361-6471/aa9422 – ident: PhysRevD.102.054517Cc67R1 doi: 10.1103/PhysRevD.91.074004 – ident: PhysRevD.102.054517Cc34R1 doi: 10.1016/0003-4916(78)90039-8 – ident: PhysRevD.102.054517Cc9R1 doi: 10.1155/2012/350150 – ident: PhysRevD.102.054517Cc26R1 doi: 10.1103/PhysRevD.95.094515 – ident: PhysRevD.102.054517Cc21R1 doi: 10.1016/0370-1573(82)90035-7 – ident: PhysRevD.102.054517Cc20R1 doi: 10.1103/PhysRevLett.112.042501 – ident: PhysRevD.102.054517Cc15R1 doi: 10.1007/978-3-319-73171-1 – ident: PhysRevD.102.054517Cc37R1 doi: 10.1103/PhysRevD.95.114514 – ident: PhysRevD.102.054517Cc35R1 doi: 10.1103/PhysRevD.96.034511 – ident: PhysRevD.102.054517Cc64R1 doi: 10.1103/PhysRevD.98.094512 – ident: PhysRevD.102.054517Cc30R1 doi: 10.1016/0550-3213(85)90002-1 – ident: PhysRevD.102.054517Cc76R1 doi: 10.1016/0370-2693(91)91393-A – ident: PhysRevD.102.054517Cc91R1 doi: 10.1103/PhysRevD.92.014002 – ident: PhysRevD.102.054517Cc17R1 doi: 10.1016/j.physletb.2017.01.046 – ident: PhysRevD.102.054517Cc42R1 doi: 10.1137/130919507 – ident: PhysRevD.102.054517Cc88R1 doi: 10.1103/PhysRevLett.116.252001 – ident: PhysRevD.102.054517Cc93R1 doi: 10.1016/j.physletb.2019.03.036 – ident: PhysRevD.102.054517Cc16R1 doi: 10.1016/j.physletb.2014.06.080 – ident: PhysRevD.102.054517Cc25R1 doi: 10.1140/epjc/s10052-019-7354-7 – ident: PhysRevD.102.054517Cc48R1 doi: 10.1016/j.nuclphysb.2016.11.003 – ident: PhysRevD.102.054517Cc13R1 doi: 10.1088/0954-3899/43/1/013001 – volume-title: Proc. Sci. ident: PhysRevD.102.054517Cc46R1 – ident: PhysRevD.102.054517Cc63R1 doi: 10.1103/PhysRevD.98.074505 – volume-title: Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA year: 2013 ident: PhysRevD.102.054517Cc75R1 – ident: PhysRevD.102.054517Cc27R1 doi: 10.1103/PhysRevD.98.054518 – ident: PhysRevD.102.054517Cc11R1 doi: 10.1140/epja/i2017-12237-2 – ident: PhysRevD.102.054517Cc36R1 doi: 10.1103/PhysRevD.96.054507 – ident: PhysRevD.102.054517Cc50R1 doi: 10.1103/PhysRevD.86.074502 – ident: PhysRevD.102.054517Cc52R1 doi: 10.1016/0550-3213(95)00126-D – ident: PhysRevD.102.054517Cc79R1 doi: 10.1103/PhysRevLett.115.092301 – ident: PhysRevD.102.054517Cc84R1 doi: 10.1103/PhysRevD.88.014503 – ident: PhysRevD.102.054517Cc59R1 doi: 10.1103/PhysRevD.99.114505 – ident: PhysRevD.102.054517Cc56R1 doi: 10.1103/PhysRevD.95.034505 – ident: PhysRevD.102.054517Cc77R1 doi: 10.1103/PhysRevD.85.051503 – ident: PhysRevD.102.054517Cc94R1 doi: 10.1126/science.1257050 – ident: PhysRevD.102.054517Cc95R1 doi: 10.1016/j.physrep.2016.02.002 – ident: PhysRevD.102.054517Cc53R1 doi: 10.1016/S0550-3213(99)00036-X – ident: PhysRevD.102.054517Cc28R1 doi: 10.1088/1126-6708/2001/08/058 – ident: PhysRevD.102.054517Cc72R1 doi: 10.1103/PhysRevD.93.074005 – ident: PhysRevD.102.054517Cc86R1 doi: 10.1103/PhysRevD.94.054503 – volume-title: Proc. Sci. ident: PhysRevD.102.054517Cc80R1 – ident: PhysRevD.102.054517Cc55R1 doi: 10.1088/1126-6708/2009/10/064 – ident: PhysRevD.102.054517Cc54R1 doi: 10.1103/PhysRevD.86.014505 – ident: PhysRevD.102.054517Cc68R1 doi: 10.1103/PhysRevD.93.014009 – ident: PhysRevD.102.054517Cc87R1 doi: 10.1103/PhysRevD.93.094504 – ident: PhysRevD.102.054517Cc90R1 doi: 10.1103/PhysRevD.87.054019 – ident: PhysRevD.102.054517Cc18R1 doi: 10.1103/PhysRevD.94.054508 – ident: PhysRevD.102.054517Cc32R1 doi: 10.1088/1126-6708/2006/04/038 – ident: PhysRevD.102.054517Cc37R2 doi: 10.1103/PhysRevD.96.099906 – ident: PhysRevD.102.054517Cc1R1 doi: 10.1103/PhysRevC.87.032501 |
| SSID | ssj0001609711 |
| Score | 2.6591985 |
| Snippet | We determine the nucleon axial, scalar and tensor charges within lattice quantum chromodynamics including all contributions from valence and sea quarks. We... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | Charm (particle physics) Flavor (particle physics) Nucleons Pions Quantum chromodynamics Quarks Standard model (particle physics) Tensors |
| Title | Nucleon axial, tensor, and scalar charges and σ -terms in lattice QCD |
| URI | https://www.proquest.com/docview/2458081090 |
| Volume | 102 |
| WOSCitedRecordID | wos000573352100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 2470-0029 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001609711 issn: 2470-0010 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKAhIXxFMsLMgHlkubktrJ2j5CtxVCVVlQF_UWJY6jjVSlpc1WvXPmt_GXGD_yklYrOKBKUTVN48TzeTIzngdCbwOSGNea56cUDJSEJB4HUeyFXGQBpYz7Jhjz-4zN53y5FBe93q8qF2a_YkXBDwex-a-sBhowW6fO_gO764sCAb4D0-EIbIfjXzF-risU6xjjQ26K-fd1jPq6DtPcAVPibd9USFK2QPPpeHrKqaeFtImOXcWlDonrfx2ft3XXi4qlNt1l2AQLuyyZ7fq643f9GEt5la87Dtax1UfLvLAn146fKRjF8Eix9fN8bnsjwPTUGzSNzKu3mepbcsGnjVgjgW5147tgVtWmuQtVctknLQCGLSk7uln2-7oGhR74m9qf65oUQ9BHQ5sa2q20Pf8STS9ns2gxWS7ebX54ugmZ3qx3HVnuoLuEhYIba3rYuOzOdMEtbcLXz-DqWMHQ728YuKvrdF_1Rn9ZPEIPneGBP1jAPEY9VTxB9-0E7p6iiYMNNrAZYAuaAQa2YgsZ7CBjSL9_WrjgvMAOLhjg8gxdTieL8SfPtdjwJGGs9GTGVBKDTgemuMxSJmMqwlSykRIyJixN2YgqnijFUhXQRMosgRUMi5uqMAjOOH2Ojop1oV4gnImApUkAbwgVBzyRIgHdSFD46PzwkTpGpJqMSLr687oNyioydqhPo2oGgUAiO4PHaFD_aWPLr9x--kk1y5FbkruIBKFuL-ML_-XtP79CDxpIn6CjcnutXqN7cl_mu-0bg4U_xWODCg |
| linkProvider | SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleon+axial%2C+tensor%2C+and+scalar+charges+and+%CF%83-terms+in+lattice+QCD&rft.jtitle=Physical+review.+D&rft.au=Alexandrou%2C+C&rft.au=Bacchio%2C+S&rft.au=Constantinou%2C+M&rft.au=Finkenrath%2C+J&rft.date=2020-09-29&rft.pub=American+Physical+Society&rft.issn=2470-0010&rft.eissn=2470-0029&rft.volume=102&rft.issue=5&rft.spage=1&rft_id=info:doi/10.1103%2FPhysRevD.102.054517&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0010&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0010&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0010&client=summon |