HOT: An Efficient Halpern Accelerating Algorithm for Optimal Transport Problems

This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in <inline-formula><tex-math notation="LaTeX">\math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 47; H. 8; S. 6703 - 6714
Hauptverfasser: Zhang, Guojun, Gu, Zhexuan, Yuan, Yancheng, Sun, Defeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.08.2025
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in <inline-formula><tex-math notation="LaTeX">\mathbb {R}^{2}</tex-math> <mml:math><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="yuan-ieq1-3564353.gif"/> </inline-formula> with ground distances calculated by <inline-formula><tex-math notation="LaTeX">L_{2}^{2}</tex-math> <mml:math><mml:msubsup><mml:mi>L</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:msubsup></mml:math><inline-graphic xlink:href="yuan-ieq2-3564353.gif"/> </inline-formula>-norm. Specifically, we design a Halpern accelerating algorithm to solve the equivalent reduced model of the discrete OT problem. Moreover, we derive a novel procedure to solve the involved linear systems in the HOT algorithm in linear time complexity. Consequently, we can obtain an <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math> <mml:math><mml:mi>ɛ</mml:mi></mml:math><inline-graphic xlink:href="yuan-ieq3-3564353.gif"/> </inline-formula>-approximate solution to the optimal transport problem with <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="yuan-ieq4-3564353.gif"/> </inline-formula> supports in <inline-formula><tex-math notation="LaTeX">O(M^{1.5}/\varepsilon )</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:mi>ɛ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="yuan-ieq5-3564353.gif"/> </inline-formula> flops, which significantly improves the best-known computational complexity. We further propose an efficient procedure to recover an optimal transport plan for the original OT problem based on a solution to the reduced model, thereby overcoming the limitations of the reduced OT model in applications that require the transport plan. We implement the HOT algorithm in PyTorch and extensive numerical results show the superior performance of the HOT algorithm compared to existing state-of-the-art algorithms for solving the OT problems.
AbstractList This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in <inline-formula><tex-math notation="LaTeX">\mathbb {R}^{2}</tex-math> <mml:math><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="yuan-ieq1-3564353.gif"/> </inline-formula> with ground distances calculated by <inline-formula><tex-math notation="LaTeX">L_{2}^{2}</tex-math> <mml:math><mml:msubsup><mml:mi>L</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:msubsup></mml:math><inline-graphic xlink:href="yuan-ieq2-3564353.gif"/> </inline-formula>-norm. Specifically, we design a Halpern accelerating algorithm to solve the equivalent reduced model of the discrete OT problem. Moreover, we derive a novel procedure to solve the involved linear systems in the HOT algorithm in linear time complexity. Consequently, we can obtain an <inline-formula><tex-math notation="LaTeX">\varepsilon</tex-math> <mml:math><mml:mi>ɛ</mml:mi></mml:math><inline-graphic xlink:href="yuan-ieq3-3564353.gif"/> </inline-formula>-approximate solution to the optimal transport problem with <inline-formula><tex-math notation="LaTeX">M</tex-math> <mml:math><mml:mi>M</mml:mi></mml:math><inline-graphic xlink:href="yuan-ieq4-3564353.gif"/> </inline-formula> supports in <inline-formula><tex-math notation="LaTeX">O(M^{1.5}/\varepsilon )</tex-math> <mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>M</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>.</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:mi>ɛ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="yuan-ieq5-3564353.gif"/> </inline-formula> flops, which significantly improves the best-known computational complexity. We further propose an efficient procedure to recover an optimal transport plan for the original OT problem based on a solution to the reduced model, thereby overcoming the limitations of the reduced OT model in applications that require the transport plan. We implement the HOT algorithm in PyTorch and extensive numerical results show the superior performance of the HOT algorithm compared to existing state-of-the-art algorithms for solving the OT problems.
This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in $\mathbb {R}^{2}$ with ground distances calculated by $L_{2}^{2}$-norm. Specifically, we design a Halpern accelerating algorithm to solve the equivalent reduced model of the discrete OT problem. Moreover, we derive a novel procedure to solve the involved linear systems in the HOT algorithm in linear time complexity. Consequently, we can obtain an $\varepsilon$-approximate solution to the optimal transport problem with $M$ supports in $O(M^{1.5}/\varepsilon )$ flops, which significantly improves the best-known computational complexity. We further propose an efficient procedure to recover an optimal transport plan for the original OT problem based on a solution to the reduced model, thereby overcoming the limitations of the reduced OT model in applications that require the transport plan. We implement the HOT algorithm in PyTorch and extensive numerical results show the superior performance of the HOT algorithm compared to existing state-of-the-art algorithms for solving the OT problems.This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in $\mathbb {R}^{2}$ with ground distances calculated by $L_{2}^{2}$-norm. Specifically, we design a Halpern accelerating algorithm to solve the equivalent reduced model of the discrete OT problem. Moreover, we derive a novel procedure to solve the involved linear systems in the HOT algorithm in linear time complexity. Consequently, we can obtain an $\varepsilon$-approximate solution to the optimal transport problem with $M$ supports in $O(M^{1.5}/\varepsilon )$ flops, which significantly improves the best-known computational complexity. We further propose an efficient procedure to recover an optimal transport plan for the original OT problem based on a solution to the reduced model, thereby overcoming the limitations of the reduced OT model in applications that require the transport plan. We implement the HOT algorithm in PyTorch and extensive numerical results show the superior performance of the HOT algorithm compared to existing state-of-the-art algorithms for solving the OT problems.
This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient implementation of the HOT algorithm for the case where the supports are in $\mathbb {R}^{2}$R2 with ground distances calculated by $L_{2}^{2}$L22-norm. Specifically, we design a Halpern accelerating algorithm to solve the equivalent reduced model of the discrete OT problem. Moreover, we derive a novel procedure to solve the involved linear systems in the HOT algorithm in linear time complexity. Consequently, we can obtain an $\varepsilon$ɛ-approximate solution to the optimal transport problem with $M$M supports in $O(M^{1.5}/\varepsilon )$O(M1.5/ɛ) flops, which significantly improves the best-known computational complexity. We further propose an efficient procedure to recover an optimal transport plan for the original OT problem based on a solution to the reduced model, thereby overcoming the limitations of the reduced OT model in applications that require the transport plan. We implement the HOT algorithm in PyTorch and extensive numerical results show the superior performance of the HOT algorithm compared to existing state-of-the-art algorithms for solving the OT problems.
Author Zhang, Guojun
Gu, Zhexuan
Sun, Defeng
Yuan, Yancheng
Author_xml – sequence: 1
  givenname: Guojun
  orcidid: 0000-0002-6388-6596
  surname: Zhang
  fullname: Zhang, Guojun
  email: guojun.zhang@connect.polyu.hk
  organization: The Hong Kong Polytechnic University, Hong Kong
– sequence: 2
  givenname: Zhexuan
  orcidid: 0009-0006-5867-0447
  surname: Gu
  fullname: Gu, Zhexuan
  email: zhexuan.gu@connect.polyu.hk
  organization: The Hong Kong Polytechnic University, Hong Kong
– sequence: 3
  givenname: Yancheng
  orcidid: 0000-0002-8243-4683
  surname: Yuan
  fullname: Yuan, Yancheng
  email: yancheng.yuan@polyu.edu.hk
  organization: The Hong Kong Polytechnic University, Hong Kong
– sequence: 4
  givenname: Defeng
  orcidid: 0000-0003-0481-272X
  surname: Sun
  fullname: Sun, Defeng
  email: defeng.sun@polyu.edu.hk
  organization: The Hong Kong Polytechnic University, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40279232$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAURi1URMvjDyCEPLKk2NeJH2xRBRQJFIYyR657DUF5YacD_55AC2K6yzlXn84xmbRdi4ScczbnnJnr1XP-9DAHBtlcZDIVmTggM-CSJQYMTMiMcQmJ1qCn5DjGd8Z4mjFxRKYpA2VAwIwUy2J1Q_OW3npfuQrbgS5t3WNoae4c1hjsULWvNK9fu1ANbw31XaBFP1SNrekq2Db2XRjoc-jWNTbxlBx6W0c8298T8nJ3u1osk8fi_mGRPyYOlBoSJ1PnrDTCcL02qJiTsPHgtdx4bu0atTbAU2udZxl3ElmWageQSnTIBYoTcrX724fuY4txKJsqjntr22K3jaXgJjVKKa1G9HKPbtcNbso-jNvDZ_kbYQRgB7jQxRjQ_yGcld-ly5_S5Xfpcl96lC52UoWI_wSjZGYy8QUfm3kp
CODEN ITPIDJ
Cites_doi 10.1016/j.orl.2023.11.007
10.1007/s10957-024-02592-2
10.1145/2024156.2024192
10.1109/TPAMI.2007.1058
10.1109/ACCESS.2016.2639065
10.1561/2200000073
10.21236/ADA457044
10.1137/19M1251795
10.1016/0898-1221(76)90003-1
10.1007/BF01581204
10.1109/TVCG.2009.64
10.1137/24M1650053
10.1007/s10107-021-01643-0
10.1090/psapm/076/05
10.1007/s10957-016-0877-2
10.1214/aos/1017938923
10.1049/cp:20070055
10.1073/pnas.1319779111
10.1137/16M1106018
10.1109/ICCV.2009.5459199
10.1007/978-3-319-41589-5_4
10.1007/s10851-010-0251-1
10.1109/CVPR.2008.4587662
10.1090/S0002-9904-1967-11864-0
10.1109/tpami.2024.3379571
10.1145/115234.115366
10.1145/2461912.2461939
10.1137/130929886
10.1023/B:VISI.0000036836.66311.97
10.1007/s11263-012-0566-z
10.1137/09076934X
10.1080/10556788.2014.895828
10.1145/2766963
10.1007/s11590-020-01617-9
10.1007/s00041-015-9439-5
10.1137/22M1481865
10.1109/TPAMI.2016.2615921
10.1007/s12532-018-0134-9
10.21236/ADA214689
10.1090/gsm/058
10.1051/m2an/197509R200411
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TPAMI.2025.3564353
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 6714
ExternalDocumentID 40279232
10_1109_TPAMI_2025_3564353
10976595
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong Special Administrative Region, China
  grantid: 15303720
– fundername: Research Center for Intelligent Operations Research and The Hong Kong Polytechnic University
  grantid: P0045485
– fundername: Research Center for Intelligent Operations Research
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c277t-c64cca693918b9e70c62df2f86df1aabe889214aacf051c6e0548c2246ece13e3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001522958700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Fri Oct 03 00:10:54 EDT 2025
Mon Jul 21 06:03:33 EDT 2025
Sat Nov 29 07:47:52 EST 2025
Wed Aug 27 02:12:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c277t-c64cca693918b9e70c62df2f86df1aabe889214aacf051c6e0548c2246ece13e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8243-4683
0009-0006-5867-0447
0000-0003-0481-272X
0000-0002-6388-6596
PMID 40279232
PQID 3194977787
PQPubID 23479
PageCount 12
ParticipantIDs ieee_primary_10976595
crossref_primary_10_1109_TPAMI_2025_3564353
pubmed_primary_40279232
proquest_miscellaneous_3194977787
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref56
ref15
ref58
ref53
ref52
ref11
ref17
Guminov (ref14)
ref16
ref19
ref18
Cuturi (ref10)
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
Auricchio (ref37)
ref49
ref8
Zhang (ref26) 2022
ref7
Dvurechensky (ref13)
ref9
ref4
ref3
ref6
ref5
Tran-Dinh (ref43) 2021
ref40
Zhu (ref21) 2008
Applegate (ref24)
ref35
ref34
ref36
ref31
ref30
ref32
ref2
Cuturi (ref54) 2022
ref1
Lin (ref29) 2022; 23
ref39
ref38
Indyk (ref33)
Tupitsa (ref27) 2022
Flamary (ref55) 2021; 22
Mai (ref20)
ref23
Jambulapati (ref25) 2019
ref22
Dantzig (ref48) 2003
ref28
Lin (ref12)
References_xml – ident: ref52
  doi: 10.1016/j.orl.2023.11.007
– ident: ref45
  doi: 10.1007/s10957-024-02592-2
– ident: ref32
  doi: 10.1145/2024156.2024192
– ident: ref36
  doi: 10.1109/TPAMI.2007.1058
– ident: ref53
  doi: 10.1109/ACCESS.2016.2639065
– ident: ref9
  doi: 10.1561/2200000073
– ident: ref11
  doi: 10.21236/ADA457044
– ident: ref19
  doi: 10.1137/19M1251795
– ident: ref47
  doi: 10.1016/0898-1221(76)90003-1
– start-page: 1367
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref13
  article-title: Computational optimal transport: Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm
– ident: ref57
  doi: 10.1007/BF01581204
– ident: ref4
  doi: 10.1109/TVCG.2009.64
– ident: ref41
  doi: 10.1137/24M1650053
– ident: ref42
  doi: 10.1007/s10107-021-01643-0
– ident: ref38
  doi: 10.1090/psapm/076/05
– year: 2021
  ident: ref43
  article-title: Halpern-type accelerated and splitting algorithms for monotone inclusions
– volume: 22
  start-page: 1
  issue: 78
  year: 2021
  ident: ref55
  article-title: Pot: Python optimal transport
  publication-title: J. Mach. Learn. Res.
– ident: ref51
  doi: 10.1007/s10957-016-0877-2
– ident: ref7
  doi: 10.1214/aos/1017938923
– ident: ref1
  doi: 10.1049/cp:20070055
– start-page: 2292
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: Sinkhorn distances: Lightspeed computation of optimal transport
– start-page: 20243
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Practical large-scale linear programming using primal-dual hybrid gradient
– ident: ref6
  doi: 10.1073/pnas.1319779111
– ident: ref15
  doi: 10.1137/16M1106018
– ident: ref16
  doi: 10.1109/ICCV.2009.5459199
– year: 2022
  ident: ref26
  article-title: An efficient HPR algorithm for the Wasserstein barycenter problem with ${O}$O(Dim(P)/$\varepsilon$ɛ) computational complexity
– ident: ref50
  doi: 10.1007/978-3-319-41589-5_4
– year: 2008
  ident: ref21
  article-title: An efficient primal-dual hybrid gradient algorithm for total variation image restoration
– ident: ref23
  doi: 10.1007/s10851-010-0251-1
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref20
  article-title: A fast and accurate splitting method for optimal transport: Analysis and implementation
– ident: ref34
  doi: 10.1109/CVPR.2008.4587662
– ident: ref49
  doi: 10.1090/S0002-9904-1967-11864-0
– ident: ref28
  doi: 10.1109/tpami.2024.3379571
– volume: 23
  start-page: 1
  issue: 137
  year: 2022
  ident: ref29
  article-title: On the efficiency of entropic regularized algorithms for optimal transport
  publication-title: J. Mach. Learn. Res.
– ident: ref18
  doi: 10.1145/115234.115366
– ident: ref2
  doi: 10.1145/2461912.2461939
– start-page: 3886
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref14
  article-title: On a combination of alternating minimization and Nesterov’s momentum
– ident: ref39
  doi: 10.1137/130929886
– ident: ref5
  doi: 10.1023/B:VISI.0000036836.66311.97
– start-page: 11355
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2019
  ident: ref25
  article-title: A direct $\tilde{O}(1/\epsilon )$O˜(1/ε) iteration parallel algorithm for optimal transport
– start-page: 3982
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref12
  article-title: On efficient optimal transport: An analysis of greedy and accelerated mirror descent algorithms
– ident: ref31
  doi: 10.1007/s11263-012-0566-z
– year: 2022
  ident: ref54
  article-title: Optimal transport tools (OTT): A JAX toolbox for all things wasserstein
– ident: ref22
  doi: 10.1137/09076934X
– ident: ref56
  doi: 10.1080/10556788.2014.895828
– ident: ref3
  doi: 10.1145/2766963
– year: 2022
  ident: ref27
  article-title: Numerical methods for large-scale optimal transport
– ident: ref44
  doi: 10.1007/s11590-020-01617-9
– start-page: 5798
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref37
  article-title: Computing Kantorovich-Wasserstein distances on $ d$d-dimensional histograms using $(d+ 1)$(d+1)-partite graphs
– volume-title: Proc. Workshop Stat. Comput. Theories Vis.
  ident: ref33
  article-title: Fast image retrieval via embeddings
– ident: ref35
  doi: 10.1007/s00041-015-9439-5
– ident: ref30
  doi: 10.1137/22M1481865
– ident: ref40
  doi: 10.1109/TPAMI.2016.2615921
– ident: ref58
  doi: 10.1007/s12532-018-0134-9
– ident: ref17
  doi: 10.21236/ADA214689
– ident: ref8
  doi: 10.1090/gsm/058
– ident: ref46
  doi: 10.1051/m2an/197509R200411
– volume-title: Linear Programming 2: Theory and Extensions
  year: 2003
  ident: ref48
SSID ssj0014503
Score 2.511927
Snippet This paper proposes an efficient HOT algorithm for solving the optimal transport (OT) problems with finite supports. We particularly focus on an efficient...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 6703
SubjectTerms acceleration
Approximation algorithms
computational complexity
Computational efficiency
Computational modeling
Costs
Halpern iteration
Histograms
Kantorovich-Wasserstein distance
Linear programming
Memory management
Numerical models
Optimal transport
Time complexity
Training
Title HOT: An Efficient Halpern Accelerating Algorithm for Optimal Transport Problems
URI https://ieeexplore.ieee.org/document/10976595
https://www.ncbi.nlm.nih.gov/pubmed/40279232
https://www.proquest.com/docview/3194977787
Volume 47
WOSCitedRecordID wos001522958700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4o8aAHUUTFB1kTb6bQlrLtemsMBBMFDphwa7bbXSSBQnj4-53dtgQPHLz10O42-83szOzsfAPwrHSXOMUwLKGSW55quRa3Y2FRX1KmvMBRylDmf_j9fjAes2FerG5qYaSU5vKZbOhHk8tPFmKrj8qaOluq-e-O4dj3aVastUsZeG3TBhldGFRxjCOKChmbNUfD8PMdY0G33Wi10QS3dfccDJw0d577xyCZDiuHnU1jdLrlf_7uBZzn3iUJM3G4hCOZVqBcdG4guSJX4GyPhvAKBr3B6JWEKekYPgkclPT4bClXKQmFQLukpSSdkHA2Waymm-85QU-XDHCzmeNkO3p0Msya06yr8NXtjN56Vt5owRKu728sQT0EkrIWc4KYSd8W1E2UqwKaKIfzWAYBcx2Pc6FQhwWV6OcFQlPRSSH1Meo1lNJFKm-BJALNXcIdxDnxEspjdAhZzO2WJxLX4XENXorVjpYZn0Zk4hCbRQamSMMU5TDVoKqXde_NbEVr8FQgFKE66BwHT-Viu45wR_HQpcVtqAY3GXS7rwvE7w6Meg-nevLset8DlDarrXyEE_Gzma5XdZS5cVA3MvcLUNXRCw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCB92M8g8QNFdosTRtuFQINMbYdhsStStMEkFg37cHvx0nbCQ4cuPXQplE-O7bj-DPApbFd4ozAsIRr6THTpJ70M-XxSHNhWBwY4yjz21GnE7--il5VrO5qYbTW7vKZvraPLpefD9XMHpXd2Gyp5b9bhOWQMeqX5VrzpAELXSNkdGJQyTGSqGtkfHHT7yXPjxgN0vC6GaIRDm3_HAydLHse_WWSXI-Vv91NZ3YeNv854S3YqPxLkpQCsQ0LutiBzbp3A6lUeQfWfxAR7kK31e3fkqQg945RAgclLfk50uOCJEqhZbJyUryR5PNtOP6Yvg8I-rqki9vNAH82J0gnvbI9zWQPXh7u-3ctr2q14CkaRVNPcYZQctEUQZwJHfmK09xQE_PcBFJmOo4FDZiUyqAWK67R04uVJaPTStuD1H1YKoaFPgSSKzR4uQwQ6ZzlXGboEopM-k2mchrIrAFX9Wqno5JRI3WRiC9SB1NqYUormBqwZ5f1x5vlijbgokYoRYWwWQ5Z6OFskuKewtCpxY2oAQcldPOva8SP_hj1HFZb_ed22n7sPB3Dmp1IednvBJam45k-hRX1Nf2YjM-c5H0DbOTTag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HOT%3A+An+Efficient+Halpern+Accelerating+Algorithm+for+Optimal+Transport+Problems&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhang%2C+Guojun&rft.au=Gu%2C+Zhexuan&rft.au=Yuan%2C+Yancheng&rft.au=Sun%2C+Defeng&rft.date=2025-08-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=PP&rft_id=info:doi/10.1109%2FTPAMI.2025.3564353&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon