Nested sampling with normalizing flows for gravitational-wave inference
We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalizing flows and incorporate it into our sampler nessai. nessai is designed for problems where computing the likelihood is computationally expensive and therefor...
Gespeichert in:
| Veröffentlicht in: | Physical review. D Jg. 103; H. 10; S. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
College Park
American Physical Society
05.05.2021
|
| Schlagworte: | |
| ISSN: | 2470-0010, 2470-0029 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalizing flows and incorporate it into our sampler nessai. nessai is designed for problems where computing the likelihood is computationally expensive and therefore the cost of training a normalizing flow is offset by the overall reduction in the number of likelihood evaluations. We validate our sampler on 128 simulated gravitational wave signals from compact binary coalescence and show that it produces unbiased estimates of the system parameters. Subsequently, we compare our results to those obtained with dynesty and find good agreement between the computed log-evidences while requiring 2.07 times fewer likelihood evaluations. We also highlight how the likelihood evaluation can be parallelized in nessai without any modifications to the algorithm. Finally, we outline diagnostics included in nessai and how these can be used to tune the sampler's settings. |
|---|---|
| AbstractList | We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalizing flows and incorporate it into our sampler nessai. nessai is designed for problems where computing the likelihood is computationally expensive and therefore the cost of training a normalizing flow is offset by the overall reduction in the number of likelihood evaluations. We validate our sampler on 128 simulated gravitational wave signals from compact binary coalescence and show that it produces unbiased estimates of the system parameters. Subsequently, we compare our results to those obtained with dynesty and find good agreement between the computed log-evidences while requiring 2.07 times fewer likelihood evaluations. We also highlight how the likelihood evaluation can be parallelized in nessai without any modifications to the algorithm. Finally, we outline diagnostics included in nessai and how these can be used to tune the sampler's settings. |
| ArticleNumber | 103006 |
| Author | Messenger, Chris Williams, Michael J. Veitch, John |
| Author_xml | – sequence: 1 givenname: Michael J. orcidid: 0000-0003-2198-2974 surname: Williams fullname: Williams, Michael J. – sequence: 2 givenname: John orcidid: 0000-0002-6508-0713 surname: Veitch fullname: Veitch, John – sequence: 3 givenname: Chris orcidid: 0000-0001-7488-5022 surname: Messenger fullname: Messenger, Chris |
| BookMark | eNp9UMFOAjEQbQwmIvIFXjbxvDjd7rbbo0EFE6LG6LnplhZKlhbbBYJf725ADx48TGbeZN7Lm3eJes47jdA1hhHGQG5fl4f4pnf3oxZ0BUDPUD_LGaQAGe_9zhgu0DDGFbQjBc4w7qPJs46NnidRrje1dYtkb5tl4nxYy9p-dQtT-31MjA_JIsidbWRjvZN1upc7nVhndNBO6St0bmQd9fDUB-jj8eF9PE1nL5On8d0sVRljTVoZllOQHKgsMl5qXs0rVVBT6FxJRTCtGAAhULGcEF0SgkF1VrmhBaOakQG6Oepugv_ctt7Fym9D6yeKrCBFWbKsFRggcrxSwccYtBGbYNcyHAQG0YUmfkITHTiG1rL4H5Y6vdsEaet_ud_ypHW8 |
| CitedBy_id | crossref_primary_10_1007_s41114_024_00055_8 crossref_primary_10_1051_0004_6361_202142525 crossref_primary_10_1103_PhysRevD_111_043045 crossref_primary_10_3389_frai_2022_811563 crossref_primary_10_3847_1538_4357_ac4508 crossref_primary_10_3847_2041_8213_ade42f crossref_primary_10_1093_mnras_stad1397 crossref_primary_10_1088_1475_7516_2024_11_038 crossref_primary_10_1093_mnras_stab2236 crossref_primary_10_1103_PhysRevD_106_083003 crossref_primary_10_1103_5kbh_83k7 crossref_primary_10_3847_1538_4357_ad8080 crossref_primary_10_1093_mnras_stad2408 crossref_primary_10_1093_mnras_stac2272 crossref_primary_10_1103_rml9_qyw1 crossref_primary_10_1103_PhysRevD_106_042002 crossref_primary_10_1051_0004_6361_202450381 crossref_primary_10_3847_1538_4357_ad4602 crossref_primary_10_3847_1538_4357_ad6305 crossref_primary_10_1103_PhysRevD_111_063005 crossref_primary_10_1093_mnras_stad1288 crossref_primary_10_3847_1538_4357_ad758a crossref_primary_10_1038_s43586_022_00121_x crossref_primary_10_1103_c66v_rl3w crossref_primary_10_1088_1361_6382_ad8f26 crossref_primary_10_1093_mnras_staf892 crossref_primary_10_1051_0004_6361_202346844 crossref_primary_10_1103_PhysRevD_111_042009 crossref_primary_10_1103_7bkx_hs53 crossref_primary_10_3847_1538_4357_acf5cd crossref_primary_10_1007_s11433_023_2270_7 crossref_primary_10_1088_1475_7516_2025_05_062 crossref_primary_10_1038_s41586_025_08593_z crossref_primary_10_3847_1538_4357_ad49a0 crossref_primary_10_1093_mnras_stab2977 crossref_primary_10_1140_epjc_s10052_025_14502_5 crossref_primary_10_1088_1475_7516_2025_01_084 crossref_primary_10_1088_2632_2153_acd5aa crossref_primary_10_1093_mnras_staf962 crossref_primary_10_1088_1361_6382_adff33 crossref_primary_10_1088_1361_6382_adfd33 crossref_primary_10_1002_andp_202200271 crossref_primary_10_1103_PhysRevD_111_024019 crossref_primary_10_1088_2632_2153_ad2972 crossref_primary_10_1103_PhysRevD_111_023004 crossref_primary_10_3847_1538_4357_ace899 crossref_primary_10_1093_mnras_stad1542 crossref_primary_10_1103_fp4b_mvzx crossref_primary_10_1088_1674_1137_ad2a5f crossref_primary_10_1103_PhysRevD_111_084067 crossref_primary_10_1088_1361_6382_adfe50 crossref_primary_10_3847_1538_4357_ad83b5 |
| Cites_doi | 10.1103/PhysRevD.90.024018 10.1103/PhysRevD.94.044031 10.1002/andp.201600209 10.1088/0264-9381/32/2/024001 10.1007/s41114-020-00026-9 10.1088/0264-9381/32/7/074001 10.1109/MCSE.2011.37 10.1088/1538-3873/aaef0b 10.1145/377939.377946 10.1103/PhysRevLett.121.161101 10.1103/PhysRevD.88.062001 10.1088/0264-9381/31/19/195010 10.1093/mnras/staa1469 10.1214/06-BA127 10.1103/PhysRevD.102.104057 10.1109/MCSE.2007.55 10.1038/s41592-019-0686-2 10.1093/mnras/staa2345 10.1093/mnras/staa278 10.1198/106186006X136976 10.1103/PhysRevLett.116.241102 10.1093/mnras/staa2483 10.1103/PhysRevD.86.104063 10.1103/PhysRevD.100.024059 10.1103/PhysRevD.91.042003 10.1103/PhysRevD.81.062003 10.1093/mnras/stv1911 10.32614/RJ-2011-016 10.21105/joss.00024 10.3847/2041-8213/aa91c9 10.1103/PhysRevLett.119.161101 10.1103/PhysRevLett.116.061102 10.1111/j.1365-2966.2009.14548.x 10.1088/2632-2153/abb93a 10.1201/b10905 10.1111/j.1365-2966.2011.20288.x 10.1093/mnras/staa2850 10.1214/aoms/1177730256 10.3847/1538-4365/ab06fc 10.1103/PhysRevLett.124.041102 10.1103/PhysRevX.9.031040 10.1214/aoms/1177692644 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society May 15, 2021 |
| Copyright_xml | – notice: Copyright American Physical Society May 15, 2021 |
| DBID | AAYXX CITATION 7U5 8FD H8D L7M |
| DOI | 10.1103/PhysRevD.103.103006 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2470-0029 |
| ExternalDocumentID | 10_1103_PhysRevD_103_103006 |
| GroupedDBID | 3MX 5VS AAYXX ABSSX AECSF AEQTI AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK CITATION EBS EJD ER. NPBMV ROL S7W 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c277t-bf7460a906a5298e9bdbc56f5e4cac316b700330b7433e83310c60979f6576e73 |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655874500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2470-0010 |
| IngestDate | Sun Jun 29 16:01:05 EDT 2025 Sat Nov 29 03:09:37 EST 2025 Tue Nov 18 21:51:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c277t-bf7460a906a5298e9bdbc56f5e4cac316b700330b7433e83310c60979f6576e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7488-5022 0000-0003-2198-2974 0000-0002-6508-0713 |
| PQID | 2535887200 |
| PQPubID | 2048221 |
| ParticipantIDs | proquest_journals_2535887200 crossref_primary_10_1103_PhysRevD_103_103006 crossref_citationtrail_10_1103_PhysRevD_103_103006 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-05 |
| PublicationDateYYYYMMDD | 2021-05-05 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | College Park |
| PublicationPlace_xml | – name: College Park |
| PublicationTitle | Physical review. D |
| PublicationYear | 2021 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevD.103.103006Cc74R1 PhysRevD.103.103006Cc71R1 PhysRevD.103.103006Cc54R1 PhysRevD.103.103006Cc34R1 PhysRevD.103.103006Cc55R1 PhysRevD.103.103006Cc76R1 PhysRevD.103.103006Cc35R1 PhysRevD.103.103006Cc58R1 W. McKinney (PhysRevD.103.103006Cc73R1) 2010 PhysRevD.103.103006Cc36R1 PhysRevD.103.103006Cc59R1 S. Brooks (PhysRevD.103.103006Cc15R1) 2011 PhysRevD.103.103006Cc19R1 PhysRevD.103.103006Cc18R1 PhysRevD.103.103006Cc17R1 PhysRevD.103.103006Cc16R1 PhysRevD.103.103006Cc14R1 PhysRevD.103.103006Cc13R1 PhysRevD.103.103006Cc12R1 PhysRevD.103.103006Cc1R1 PhysRevD.103.103006Cc2R1 PhysRevD.103.103006Cc10R1 PhysRevD.103.103006Cc4R1 A. Paszke (PhysRevD.103.103006Cc46R1) 2019 PhysRevD.103.103006Cc5R1 PhysRevD.103.103006Cc70R1 PhysRevD.103.103006Cc7R1 PhysRevD.103.103006Cc61R1 PhysRevD.103.103006Cc9R1 PhysRevD.103.103006Cc60R1 PhysRevD.103.103006Cc62R1 PhysRevD.103.103006Cc20R1 PhysRevD.103.103006Cc65R1 PhysRevD.103.103006Cc43R1 PhysRevD.103.103006Cc64R1 PhysRevD.103.103006Cc22R1 PhysRevD.103.103006Cc44R1 PhysRevD.103.103006Cc67R1 PhysRevD.103.103006Cc66R1 PhysRevD.103.103006Cc24R1 PhysRevD.103.103006Cc25R1 PhysRevD.103.103006Cc26R1 PhysRevD.103.103006Cc28R1 PhysRevD.103.103006Cc29R1 |
| References_xml | – ident: PhysRevD.103.103006Cc17R1 doi: 10.1103/PhysRevD.90.024018 – ident: PhysRevD.103.103006Cc19R1 doi: 10.1103/PhysRevD.94.044031 – volume-title: Proceedings of the 9th python in Science Conference year: 2010 ident: PhysRevD.103.103006Cc73R1 – ident: PhysRevD.103.103006Cc61R1 doi: 10.1002/andp.201600209 – ident: PhysRevD.103.103006Cc5R1 doi: 10.1088/0264-9381/32/2/024001 – ident: PhysRevD.103.103006Cc7R1 doi: 10.1007/s41114-020-00026-9 – ident: PhysRevD.103.103006Cc4R1 doi: 10.1088/0264-9381/32/7/074001 – ident: PhysRevD.103.103006Cc70R1 doi: 10.1109/MCSE.2011.37 – ident: PhysRevD.103.103006Cc24R1 doi: 10.1088/1538-3873/aaef0b – ident: PhysRevD.103.103006Cc43R1 doi: 10.1145/377939.377946 – ident: PhysRevD.103.103006Cc2R1 doi: 10.1103/PhysRevLett.121.161101 – ident: PhysRevD.103.103006Cc12R1 doi: 10.1103/PhysRevD.88.062001 – ident: PhysRevD.103.103006Cc18R1 doi: 10.1088/0264-9381/31/19/195010 – ident: PhysRevD.103.103006Cc58R1 doi: 10.1093/mnras/staa1469 – ident: PhysRevD.103.103006Cc16R1 doi: 10.1214/06-BA127 – ident: PhysRevD.103.103006Cc29R1 doi: 10.1103/PhysRevD.102.104057 – ident: PhysRevD.103.103006Cc74R1 doi: 10.1109/MCSE.2007.55 – volume-title: Advances in Neural Information Processing Systems 32 year: 2019 ident: PhysRevD.103.103006Cc46R1 – ident: PhysRevD.103.103006Cc71R1 doi: 10.1038/s41592-019-0686-2 – ident: PhysRevD.103.103006Cc65R1 doi: 10.1093/mnras/staa2345 – ident: PhysRevD.103.103006Cc35R1 doi: 10.1093/mnras/staa278 – ident: PhysRevD.103.103006Cc62R1 doi: 10.1198/106186006X136976 – ident: PhysRevD.103.103006Cc13R1 doi: 10.1103/PhysRevLett.116.241102 – ident: PhysRevD.103.103006Cc22R1 doi: 10.1093/mnras/staa2483 – ident: PhysRevD.103.103006Cc59R1 doi: 10.1103/PhysRevD.86.104063 – ident: PhysRevD.103.103006Cc60R1 doi: 10.1103/PhysRevD.100.024059 – ident: PhysRevD.103.103006Cc14R1 doi: 10.1103/PhysRevD.91.042003 – ident: PhysRevD.103.103006Cc64R1 doi: 10.1103/PhysRevD.81.062003 – ident: PhysRevD.103.103006Cc20R1 doi: 10.1093/mnras/stv1911 – ident: PhysRevD.103.103006Cc67R1 doi: 10.32614/RJ-2011-016 – ident: PhysRevD.103.103006Cc76R1 doi: 10.21105/joss.00024 – ident: PhysRevD.103.103006Cc1R1 doi: 10.3847/2041-8213/aa91c9 – ident: PhysRevD.103.103006Cc10R1 doi: 10.1103/PhysRevLett.119.161101 – ident: PhysRevD.103.103006Cc54R1 doi: 10.1103/PhysRevLett.116.061102 – ident: PhysRevD.103.103006Cc34R1 doi: 10.1111/j.1365-2966.2009.14548.x – ident: PhysRevD.103.103006Cc26R1 doi: 10.1088/2632-2153/abb93a – volume-title: Handbook of Markov Chain Monte Carlo year: 2011 ident: PhysRevD.103.103006Cc15R1 doi: 10.1201/b10905 – ident: PhysRevD.103.103006Cc55R1 doi: 10.1111/j.1365-2966.2011.20288.x – ident: PhysRevD.103.103006Cc36R1 doi: 10.1093/mnras/staa2850 – ident: PhysRevD.103.103006Cc66R1 doi: 10.1214/aoms/1177730256 – ident: PhysRevD.103.103006Cc25R1 doi: 10.3847/1538-4365/ab06fc – ident: PhysRevD.103.103006Cc28R1 doi: 10.1103/PhysRevLett.124.041102 – ident: PhysRevD.103.103006Cc9R1 doi: 10.1103/PhysRevX.9.031040 – ident: PhysRevD.103.103006Cc44R1 doi: 10.1214/aoms/1177692644 |
| SSID | ssj0001609711 |
| Score | 2.6832469 |
| Snippet | We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalizing flows and... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | Algorithms Coalescing Gravitational waves Machine learning Parallel processing Parameter estimation Sampling |
| Title | Nested sampling with normalizing flows for gravitational-wave inference |
| URI | https://www.proquest.com/docview/2535887200 |
| Volume | 103 |
| WOSCitedRecordID | wos000655874500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 2470-0029 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001609711 issn: 2470-0010 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELaAXaS9IPaBeK582FtJ143jOD4iHouQqBCCFbcodlypUhUQ6QLi1zPj2GmACi0HDo0at7ESzxd7ZjT-PkJ-gc8g7agsIUwdmCgRmY4KqZOIC8WM5rCA6EZsQg6H2dWVOvPltrWTE5BVlT08qJsPNTW0gbFx6-w7zN12Cg3wHYwORzA7HP_L8EOXwezVBdaKh0xrha7pZPzo6iYn1_eOhaGH2kOeo7uYRPcoRDQOGwC7XutZMGaz0aU_KxPupmt8BX7vpB9-_WvH00Zqqlvxe4p05ZhMbMkNuqmHeOAK_cRshooTVK1hvi7Vdtt8GiNMsYx3scTmz90MOSTwic7t3QGyAeCHsTlM2S9WsLau0EU0jOehkxxPmk4WyadYCuVii_P-LA2XIokWhuXtw3huKrjs95ybee6_PF--nU9ysUpWfDBB9xoQfCULtvpGlhtr1d_JnwYKNECBIhRoBwrUQYECFOhrKNAWCj_I5dHhxf5x5IUzIhNLOY30SCYpKxRLCxGrzCpdaiPSkbCJKQwfpFqihh_T4D5ym3Fw8Q2OgxqlEH5aydfIUnVd2XVCk4LJclBCkKpQm7zMDCtVDJO64RCsG7FB4jAcufG3ieImk_wNW2yQ3faim4ZU5e2_b4dxzv2LVuex4AIWSHjzN9_X2xb5MsPyNlma3v6zO-SzuZuO69ufDh1Pto15Yw |
| linkProvider | SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nested+sampling+with+normalizing+flows+for+gravitational-wave+inference&rft.jtitle=Physical+review.+D&rft.au=Williams%2C+Michael+J.&rft.au=Veitch%2C+John&rft.au=Messenger%2C+Chris&rft.date=2021-05-05&rft.issn=2470-0010&rft.eissn=2470-0029&rft.volume=103&rft.issue=10&rft_id=info:doi/10.1103%2FPhysRevD.103.103006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevD_103_103006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0010&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0010&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0010&client=summon |