Nested sampling with normalizing flows for gravitational-wave inference

We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalizing flows and incorporate it into our sampler nessai. nessai is designed for problems where computing the likelihood is computationally expensive and therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D Jg. 103; H. 10; S. 1
Hauptverfasser: Williams, Michael J., Veitch, John, Messenger, Chris
Format: Journal Article
Sprache:Englisch
Veröffentlicht: College Park American Physical Society 05.05.2021
Schlagworte:
ISSN:2470-0010, 2470-0029
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalizing flows and incorporate it into our sampler nessai. nessai is designed for problems where computing the likelihood is computationally expensive and therefore the cost of training a normalizing flow is offset by the overall reduction in the number of likelihood evaluations. We validate our sampler on 128 simulated gravitational wave signals from compact binary coalescence and show that it produces unbiased estimates of the system parameters. Subsequently, we compare our results to those obtained with dynesty and find good agreement between the computed log-evidences while requiring 2.07 times fewer likelihood evaluations. We also highlight how the likelihood evaluation can be parallelized in nessai without any modifications to the algorithm. Finally, we outline diagnostics included in nessai and how these can be used to tune the sampler's settings.
AbstractList We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalizing flows and incorporate it into our sampler nessai. nessai is designed for problems where computing the likelihood is computationally expensive and therefore the cost of training a normalizing flow is offset by the overall reduction in the number of likelihood evaluations. We validate our sampler on 128 simulated gravitational wave signals from compact binary coalescence and show that it produces unbiased estimates of the system parameters. Subsequently, we compare our results to those obtained with dynesty and find good agreement between the computed log-evidences while requiring 2.07 times fewer likelihood evaluations. We also highlight how the likelihood evaluation can be parallelized in nessai without any modifications to the algorithm. Finally, we outline diagnostics included in nessai and how these can be used to tune the sampler's settings.
ArticleNumber 103006
Author Messenger, Chris
Williams, Michael J.
Veitch, John
Author_xml – sequence: 1
  givenname: Michael J.
  orcidid: 0000-0003-2198-2974
  surname: Williams
  fullname: Williams, Michael J.
– sequence: 2
  givenname: John
  orcidid: 0000-0002-6508-0713
  surname: Veitch
  fullname: Veitch, John
– sequence: 3
  givenname: Chris
  orcidid: 0000-0001-7488-5022
  surname: Messenger
  fullname: Messenger, Chris
BookMark eNp9UMFOAjEQbQwmIvIFXjbxvDjd7rbbo0EFE6LG6LnplhZKlhbbBYJf725ADx48TGbeZN7Lm3eJes47jdA1hhHGQG5fl4f4pnf3oxZ0BUDPUD_LGaQAGe_9zhgu0DDGFbQjBc4w7qPJs46NnidRrje1dYtkb5tl4nxYy9p-dQtT-31MjA_JIsidbWRjvZN1upc7nVhndNBO6St0bmQd9fDUB-jj8eF9PE1nL5On8d0sVRljTVoZllOQHKgsMl5qXs0rVVBT6FxJRTCtGAAhULGcEF0SgkF1VrmhBaOakQG6Oepugv_ctt7Fym9D6yeKrCBFWbKsFRggcrxSwccYtBGbYNcyHAQG0YUmfkITHTiG1rL4H5Y6vdsEaet_ud_ypHW8
CitedBy_id crossref_primary_10_1007_s41114_024_00055_8
crossref_primary_10_1051_0004_6361_202142525
crossref_primary_10_1103_PhysRevD_111_043045
crossref_primary_10_3389_frai_2022_811563
crossref_primary_10_3847_1538_4357_ac4508
crossref_primary_10_3847_2041_8213_ade42f
crossref_primary_10_1093_mnras_stad1397
crossref_primary_10_1088_1475_7516_2024_11_038
crossref_primary_10_1093_mnras_stab2236
crossref_primary_10_1103_PhysRevD_106_083003
crossref_primary_10_1103_5kbh_83k7
crossref_primary_10_3847_1538_4357_ad8080
crossref_primary_10_1093_mnras_stad2408
crossref_primary_10_1093_mnras_stac2272
crossref_primary_10_1103_rml9_qyw1
crossref_primary_10_1103_PhysRevD_106_042002
crossref_primary_10_1051_0004_6361_202450381
crossref_primary_10_3847_1538_4357_ad4602
crossref_primary_10_3847_1538_4357_ad6305
crossref_primary_10_1103_PhysRevD_111_063005
crossref_primary_10_1093_mnras_stad1288
crossref_primary_10_3847_1538_4357_ad758a
crossref_primary_10_1038_s43586_022_00121_x
crossref_primary_10_1103_c66v_rl3w
crossref_primary_10_1088_1361_6382_ad8f26
crossref_primary_10_1093_mnras_staf892
crossref_primary_10_1051_0004_6361_202346844
crossref_primary_10_1103_PhysRevD_111_042009
crossref_primary_10_1103_7bkx_hs53
crossref_primary_10_3847_1538_4357_acf5cd
crossref_primary_10_1007_s11433_023_2270_7
crossref_primary_10_1088_1475_7516_2025_05_062
crossref_primary_10_1038_s41586_025_08593_z
crossref_primary_10_3847_1538_4357_ad49a0
crossref_primary_10_1093_mnras_stab2977
crossref_primary_10_1140_epjc_s10052_025_14502_5
crossref_primary_10_1088_1475_7516_2025_01_084
crossref_primary_10_1088_2632_2153_acd5aa
crossref_primary_10_1093_mnras_staf962
crossref_primary_10_1088_1361_6382_adff33
crossref_primary_10_1088_1361_6382_adfd33
crossref_primary_10_1002_andp_202200271
crossref_primary_10_1103_PhysRevD_111_024019
crossref_primary_10_1088_2632_2153_ad2972
crossref_primary_10_1103_PhysRevD_111_023004
crossref_primary_10_3847_1538_4357_ace899
crossref_primary_10_1093_mnras_stad1542
crossref_primary_10_1103_fp4b_mvzx
crossref_primary_10_1088_1674_1137_ad2a5f
crossref_primary_10_1103_PhysRevD_111_084067
crossref_primary_10_1088_1361_6382_adfe50
crossref_primary_10_3847_1538_4357_ad83b5
Cites_doi 10.1103/PhysRevD.90.024018
10.1103/PhysRevD.94.044031
10.1002/andp.201600209
10.1088/0264-9381/32/2/024001
10.1007/s41114-020-00026-9
10.1088/0264-9381/32/7/074001
10.1109/MCSE.2011.37
10.1088/1538-3873/aaef0b
10.1145/377939.377946
10.1103/PhysRevLett.121.161101
10.1103/PhysRevD.88.062001
10.1088/0264-9381/31/19/195010
10.1093/mnras/staa1469
10.1214/06-BA127
10.1103/PhysRevD.102.104057
10.1109/MCSE.2007.55
10.1038/s41592-019-0686-2
10.1093/mnras/staa2345
10.1093/mnras/staa278
10.1198/106186006X136976
10.1103/PhysRevLett.116.241102
10.1093/mnras/staa2483
10.1103/PhysRevD.86.104063
10.1103/PhysRevD.100.024059
10.1103/PhysRevD.91.042003
10.1103/PhysRevD.81.062003
10.1093/mnras/stv1911
10.32614/RJ-2011-016
10.21105/joss.00024
10.3847/2041-8213/aa91c9
10.1103/PhysRevLett.119.161101
10.1103/PhysRevLett.116.061102
10.1111/j.1365-2966.2009.14548.x
10.1088/2632-2153/abb93a
10.1201/b10905
10.1111/j.1365-2966.2011.20288.x
10.1093/mnras/staa2850
10.1214/aoms/1177730256
10.3847/1538-4365/ab06fc
10.1103/PhysRevLett.124.041102
10.1103/PhysRevX.9.031040
10.1214/aoms/1177692644
ContentType Journal Article
Copyright Copyright American Physical Society May 15, 2021
Copyright_xml – notice: Copyright American Physical Society May 15, 2021
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1103/PhysRevD.103.103006
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2470-0029
ExternalDocumentID 10_1103_PhysRevD_103_103006
GroupedDBID 3MX
5VS
AAYXX
ABSSX
AECSF
AEQTI
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
CITATION
EBS
EJD
ER.
NPBMV
ROL
S7W
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c277t-bf7460a906a5298e9bdbc56f5e4cac316b700330b7433e83310c60979f6576e73
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655874500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-0010
IngestDate Sun Jun 29 16:01:05 EDT 2025
Sat Nov 29 03:09:37 EST 2025
Tue Nov 18 21:51:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c277t-bf7460a906a5298e9bdbc56f5e4cac316b700330b7433e83310c60979f6576e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7488-5022
0000-0003-2198-2974
0000-0002-6508-0713
PQID 2535887200
PQPubID 2048221
ParticipantIDs proquest_journals_2535887200
crossref_primary_10_1103_PhysRevD_103_103006
crossref_citationtrail_10_1103_PhysRevD_103_103006
PublicationCentury 2000
PublicationDate 2021-05-05
PublicationDateYYYYMMDD 2021-05-05
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-05
  day: 05
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
PublicationTitle Physical review. D
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevD.103.103006Cc74R1
PhysRevD.103.103006Cc71R1
PhysRevD.103.103006Cc54R1
PhysRevD.103.103006Cc34R1
PhysRevD.103.103006Cc55R1
PhysRevD.103.103006Cc76R1
PhysRevD.103.103006Cc35R1
PhysRevD.103.103006Cc58R1
W. McKinney (PhysRevD.103.103006Cc73R1) 2010
PhysRevD.103.103006Cc36R1
PhysRevD.103.103006Cc59R1
S. Brooks (PhysRevD.103.103006Cc15R1) 2011
PhysRevD.103.103006Cc19R1
PhysRevD.103.103006Cc18R1
PhysRevD.103.103006Cc17R1
PhysRevD.103.103006Cc16R1
PhysRevD.103.103006Cc14R1
PhysRevD.103.103006Cc13R1
PhysRevD.103.103006Cc12R1
PhysRevD.103.103006Cc1R1
PhysRevD.103.103006Cc2R1
PhysRevD.103.103006Cc10R1
PhysRevD.103.103006Cc4R1
A. Paszke (PhysRevD.103.103006Cc46R1) 2019
PhysRevD.103.103006Cc5R1
PhysRevD.103.103006Cc70R1
PhysRevD.103.103006Cc7R1
PhysRevD.103.103006Cc61R1
PhysRevD.103.103006Cc9R1
PhysRevD.103.103006Cc60R1
PhysRevD.103.103006Cc62R1
PhysRevD.103.103006Cc20R1
PhysRevD.103.103006Cc65R1
PhysRevD.103.103006Cc43R1
PhysRevD.103.103006Cc64R1
PhysRevD.103.103006Cc22R1
PhysRevD.103.103006Cc44R1
PhysRevD.103.103006Cc67R1
PhysRevD.103.103006Cc66R1
PhysRevD.103.103006Cc24R1
PhysRevD.103.103006Cc25R1
PhysRevD.103.103006Cc26R1
PhysRevD.103.103006Cc28R1
PhysRevD.103.103006Cc29R1
References_xml – ident: PhysRevD.103.103006Cc17R1
  doi: 10.1103/PhysRevD.90.024018
– ident: PhysRevD.103.103006Cc19R1
  doi: 10.1103/PhysRevD.94.044031
– volume-title: Proceedings of the 9th python in Science Conference
  year: 2010
  ident: PhysRevD.103.103006Cc73R1
– ident: PhysRevD.103.103006Cc61R1
  doi: 10.1002/andp.201600209
– ident: PhysRevD.103.103006Cc5R1
  doi: 10.1088/0264-9381/32/2/024001
– ident: PhysRevD.103.103006Cc7R1
  doi: 10.1007/s41114-020-00026-9
– ident: PhysRevD.103.103006Cc4R1
  doi: 10.1088/0264-9381/32/7/074001
– ident: PhysRevD.103.103006Cc70R1
  doi: 10.1109/MCSE.2011.37
– ident: PhysRevD.103.103006Cc24R1
  doi: 10.1088/1538-3873/aaef0b
– ident: PhysRevD.103.103006Cc43R1
  doi: 10.1145/377939.377946
– ident: PhysRevD.103.103006Cc2R1
  doi: 10.1103/PhysRevLett.121.161101
– ident: PhysRevD.103.103006Cc12R1
  doi: 10.1103/PhysRevD.88.062001
– ident: PhysRevD.103.103006Cc18R1
  doi: 10.1088/0264-9381/31/19/195010
– ident: PhysRevD.103.103006Cc58R1
  doi: 10.1093/mnras/staa1469
– ident: PhysRevD.103.103006Cc16R1
  doi: 10.1214/06-BA127
– ident: PhysRevD.103.103006Cc29R1
  doi: 10.1103/PhysRevD.102.104057
– ident: PhysRevD.103.103006Cc74R1
  doi: 10.1109/MCSE.2007.55
– volume-title: Advances in Neural Information Processing Systems 32
  year: 2019
  ident: PhysRevD.103.103006Cc46R1
– ident: PhysRevD.103.103006Cc71R1
  doi: 10.1038/s41592-019-0686-2
– ident: PhysRevD.103.103006Cc65R1
  doi: 10.1093/mnras/staa2345
– ident: PhysRevD.103.103006Cc35R1
  doi: 10.1093/mnras/staa278
– ident: PhysRevD.103.103006Cc62R1
  doi: 10.1198/106186006X136976
– ident: PhysRevD.103.103006Cc13R1
  doi: 10.1103/PhysRevLett.116.241102
– ident: PhysRevD.103.103006Cc22R1
  doi: 10.1093/mnras/staa2483
– ident: PhysRevD.103.103006Cc59R1
  doi: 10.1103/PhysRevD.86.104063
– ident: PhysRevD.103.103006Cc60R1
  doi: 10.1103/PhysRevD.100.024059
– ident: PhysRevD.103.103006Cc14R1
  doi: 10.1103/PhysRevD.91.042003
– ident: PhysRevD.103.103006Cc64R1
  doi: 10.1103/PhysRevD.81.062003
– ident: PhysRevD.103.103006Cc20R1
  doi: 10.1093/mnras/stv1911
– ident: PhysRevD.103.103006Cc67R1
  doi: 10.32614/RJ-2011-016
– ident: PhysRevD.103.103006Cc76R1
  doi: 10.21105/joss.00024
– ident: PhysRevD.103.103006Cc1R1
  doi: 10.3847/2041-8213/aa91c9
– ident: PhysRevD.103.103006Cc10R1
  doi: 10.1103/PhysRevLett.119.161101
– ident: PhysRevD.103.103006Cc54R1
  doi: 10.1103/PhysRevLett.116.061102
– ident: PhysRevD.103.103006Cc34R1
  doi: 10.1111/j.1365-2966.2009.14548.x
– ident: PhysRevD.103.103006Cc26R1
  doi: 10.1088/2632-2153/abb93a
– volume-title: Handbook of Markov Chain Monte Carlo
  year: 2011
  ident: PhysRevD.103.103006Cc15R1
  doi: 10.1201/b10905
– ident: PhysRevD.103.103006Cc55R1
  doi: 10.1111/j.1365-2966.2011.20288.x
– ident: PhysRevD.103.103006Cc36R1
  doi: 10.1093/mnras/staa2850
– ident: PhysRevD.103.103006Cc66R1
  doi: 10.1214/aoms/1177730256
– ident: PhysRevD.103.103006Cc25R1
  doi: 10.3847/1538-4365/ab06fc
– ident: PhysRevD.103.103006Cc28R1
  doi: 10.1103/PhysRevLett.124.041102
– ident: PhysRevD.103.103006Cc9R1
  doi: 10.1103/PhysRevX.9.031040
– ident: PhysRevD.103.103006Cc44R1
  doi: 10.1214/aoms/1177692644
SSID ssj0001609711
Score 2.6832469
Snippet We present a novel method for sampling iso-likelihood contours in nested sampling using a type of machine learning algorithm known as normalizing flows and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Coalescing
Gravitational waves
Machine learning
Parallel processing
Parameter estimation
Sampling
Title Nested sampling with normalizing flows for gravitational-wave inference
URI https://www.proquest.com/docview/2535887200
Volume 103
WOSCitedRecordID wos000655874500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 2470-0029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001609711
  issn: 2470-0010
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELaAXaS9IPaBeK582FtJ143jOD4iHouQqBCCFbcodlypUhUQ6QLi1zPj2GmACi0HDo0at7ESzxd7ZjT-PkJ-gc8g7agsIUwdmCgRmY4KqZOIC8WM5rCA6EZsQg6H2dWVOvPltrWTE5BVlT08qJsPNTW0gbFx6-w7zN12Cg3wHYwORzA7HP_L8EOXwezVBdaKh0xrha7pZPzo6iYn1_eOhaGH2kOeo7uYRPcoRDQOGwC7XutZMGaz0aU_KxPupmt8BX7vpB9-_WvH00Zqqlvxe4p05ZhMbMkNuqmHeOAK_cRshooTVK1hvi7Vdtt8GiNMsYx3scTmz90MOSTwic7t3QGyAeCHsTlM2S9WsLau0EU0jOehkxxPmk4WyadYCuVii_P-LA2XIokWhuXtw3huKrjs95ybee6_PF--nU9ysUpWfDBB9xoQfCULtvpGlhtr1d_JnwYKNECBIhRoBwrUQYECFOhrKNAWCj_I5dHhxf5x5IUzIhNLOY30SCYpKxRLCxGrzCpdaiPSkbCJKQwfpFqihh_T4D5ym3Fw8Q2OgxqlEH5aydfIUnVd2XVCk4LJclBCkKpQm7zMDCtVDJO64RCsG7FB4jAcufG3ieImk_wNW2yQ3faim4ZU5e2_b4dxzv2LVuex4AIWSHjzN9_X2xb5MsPyNlma3v6zO-SzuZuO69ufDh1Pto15Yw
linkProvider SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nested+sampling+with+normalizing+flows+for+gravitational-wave+inference&rft.jtitle=Physical+review.+D&rft.au=Williams%2C+Michael+J.&rft.au=Veitch%2C+John&rft.au=Messenger%2C+Chris&rft.date=2021-05-05&rft.issn=2470-0010&rft.eissn=2470-0029&rft.volume=103&rft.issue=10&rft_id=info:doi/10.1103%2FPhysRevD.103.103006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevD_103_103006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0010&client=summon