Adaptive granularity: Transparent integration of fine- and coarse-grain communication

The granularity of shared data is one of the key factors affecting the performance of distributed shared memory machines (DSM). Given that programs exhibit quite different sharing patterns, providing only one or tow fixed granularities cannot result in an efficient use of resources. On the other han...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of parallel programming Ročník 25; číslo 5; s. 419 - 446
Hlavní autoři: Park, Daeyeon, Saavedra, Rafael H., Moon, Sungdo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Plenum Press 01.10.1997
Springer Nature B.V
Témata:
ISSN:0885-7458, 1573-7640
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The granularity of shared data is one of the key factors affecting the performance of distributed shared memory machines (DSM). Given that programs exhibit quite different sharing patterns, providing only one or tow fixed granularities cannot result in an efficient use of resources. On the other hand, supporting arbitrarily granularity sizes significantly increases not only hardware complexity but software overhead as well. Furthermore, the efficient use of arbitrary granularities put the burden on users to provide information about program behavior to compilers and runtime systems. These kind of requirements tend to restrict the programmability of the shared memory model. A new connections scheme is presented, called Adaptive Granularity (AG). Adaptive Granularity makes it possible to transparently integrate bulk transfer into the shared memory model by supporting variable-size granularity and memory replication. It consists of 2 protocols: one for small data and another for large data.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0885-7458
1573-7640
DOI:10.1007/BF02699885